首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
New multibeam mapping and whole-rock geochemistry establish the first order definition of the modern submarine Kermadec arc between 30° and 35° S. Twenty-two volcanoes with basal diameters > 5 km are newly discovered or fully-mapped for the first time; Giggenbach, Macauley, Havre, Haungaroa, Kuiwai, Ngatoroirangi, Sonne, Kibblewhite and Yokosuka. For each large volcano, edifice morphology and structure, surficial deposits, lava fields, distribution of sector collapses, and lava compositions are determined. Macauley and Havre are large silicic intra-oceanic caldera complexes. For both, concentric ridges on the outer flanks are interpreted as recording mega-bedforms associated with pyroclastic density flows and edifice foundering. Other stratovolcanoes reveal complex histories, with repeated cycles of tectonically controlled construction and sector collapse, extensive basaltic flow fields, and the development of summit craters and/or small nested calderas.Combined with existing data for the southernmost arc segment, we provide an overview of the spatial distribution and magmatic heterogeneity along ∼780 km of the Kermadec arc at 30°–36°30′ S. Coincident changes in arc elevation and lava composition define three volcano–tectonic segments. A central deeper segment at 32°20′–34°10′ S has basement elevations of > 3200 m water-depth, and relatively simple stratovolcanoes dominated by low-K series, basalt–basaltic andesite. In contrast, the adjoining arc segments have higher basement elevations (typically < 2500 m water-depth), multi-vent volcanic centres including caldera complexes, and erupt sub-equal proportions of dacite and basalt–basaltic andesite. The association of silicic magmas with higher basement elevations (and hence thicker crust), coupled with significant inter- and intra-volcano heterogeneity of the silicic lavas, but not the mafic lavas, is interpreted as evidence for dehydration melting of the sub-arc crust. Conversely, the crust beneath the deeper arc segments is thinner, initially cooler, and has not yet reached the thermal requirements for anatexis. Silicic calderas with diameters > 3 km coincide with the shallower arc segments. The dominant mode of large caldera formation is interpreted as mass-discharge pyroclastic eruption with syn-eruptive collapse. Hence, the shallower arc segments are characterized by both the generation of volatile-enriched magmas from crustal melting and a reduced hydrostatic load, allowing magma vesiculation and fragmentation to initiate and sustain pyroclastic eruptions. Proposed initiation parameters for submarine pyroclastic eruptions are water-depths < 1000 m, magmas with 5–6 wt.% water and > 70 wt.% SiO2, and a high discharge rate.  相似文献   

2.
We report here the first detailed 2D tomographic image of the crust and upper mantle structure of a Cretaceous seamount that formed during the interaction of the Pacific plate and the Louisville hotspot. Results show that at ~ 1.5 km beneath the seamount summit, the core of the volcanic edifice appears to be dominantly intrusive, with velocities faster than 6.5 km/s. The edifice overlies both high lower crustal (> 7.2–7.6 km/s) and upper mantle (> 8.3 km/s) velocities, suggesting that ultramafic rocks have been intruded as sills rather than underplated beneath the crust. The results suggest that the ratio between the volume of intra-crustal magmatic intrusion and extrusive volcanism is as high as ~ 4.5. In addition, the inversion of Moho reflections shows that the Pacific oceanic crust has been flexed downward by up to ~ 2.5 km beneath the seamount. The flexure can be explained by an elastic plate model in which the seamount emplaced upon oceanic lithosphere that was ~ 10 Myr at the time of loading. Intra-crustal magmatic intrusion may be a feature of hotspot volcanism at young, hot, oceanic lithosphere, whereas, magmatic underplating below a pre-existing Moho may be more likely to occur where a hotspot interacts with oceanic lithosphere that is several tens of millions of years old.  相似文献   

3.
Auroral arcs can develop small-scale distortions known as vortex streets or curls. Other common and somewhat larger spatially periodic distortions are auroral folds. In this event study we present simultaneous wide and narrow field imager observations of a third kind of structuring, on even smaller spatial scales. Boundary undulations, or “ruffs”, have been observed to form on the edge of an auroral arc and they occur superimposed on curls, folds or at times of auroral shear. The undulations typically have wavelengths of less than 3 km and amplitudes of less than 800 m. They are observed to move on the edge of the arc, with velocities of about 11 km/s. These observations, with multi-scale deformations, reveal a much more intricate structuring of auroral arcs than previously found.  相似文献   

4.
We present 23 new ages from three volcanic complexes of the Lesser Antilles arc in Martinique Island (French West Indies). These ages obtained with the K–Ar Cassignol–Gillot technique are distributed within the whole Quaternary. They allowed us to reconstruct a detailed history of successive volcanic growth and flank collapse stages. Trois Ilets Volcanism has been active during at least 2 Ma, between 2.35 ± 0.03 Ma and 346 ± 27 ka, with monogenetic volcanoes of basaltic-andesite to andesitic compositions. We here propose that magma mixing, which characterizes this volcanism, could have been initiated between 617 and 346 ka by the activation of arc-parallel and arc-transverse fault systems. Meanwhile, the Carbet complex was active 25 km to the north from 998 ± 14 to 322 ± 6 ka, and was partially destroyed by a flank collapse after 602 ± 10 ka. Together with geochemical data, our ages show that Mount Conil and Mount Pelée volcanoes are parts of the same edifice sharing a single magmatic reservoir. Mount Conil started to emerge before 543 ± 8 ka, and andesites erupted until 127 ± 2 ka, when a flank collapse destroyed the western flank of the edifice, probably triggering the emplacement of Piton Marcel, the last eruption of this first stage. We note that this collapse occurred during the transition from oxygen stages 6 to 5, i.e. during glacial to interglacial change, when eustatic level rapidly increased. After that, and until present, Mount Pelée volcano was built with periods of cone growth intercalated by flank collapse events. We here show that a peak of activity occurred between 550 and 330 ka in western Martinique within the three complexes, which are spaced of 15–25 km. Since 330 ka volcanic activity is limited to the northernmost Mount Conil–Mount Pelée complex. Our data are in agreement with the regional scale observations that the whole recent Lesser Antilles arc was subject to a high volcanic activity since 600 ka, probably linked to an increase in magma production. This permanent establishment of rising magma in regularly spaced batches and tectonically controlled, could explain the individual chemical evolution of each edifice and the different eruptive dynamisms occurring at the same time along the recent arc.  相似文献   

5.
The Kamchatka Peninsula in far eastern Russia represents the most volcanically active arc in the world in terms of magma production and the number of explosive eruptions. We investigate large-scale silicic volcanism in the past several million years and present new geochronologic results from major ignimbrite sheets exposed in Kamchatka. These ignimbrites are found in the vicinity of morphologically-preserved rims of partially eroded source calderas with diameters from ~ 2 to ~ 30 km and with estimated volumes of eruptions ranging from 10 to several hundred cubic kilometers of magma. We also identify and date two of the largest ignimbrites: Golygin Ignimbrite in southern Kamchatka (0.45 Ma), and Karymshina River Ignimbrites (1.78 Ma) in south-central Kamchatka. We present whole-rock geochemical analyses that can be used to correlate ignimbrites laterally. These large-volume ignimbrites sample a significant proportion of remelted Kamchatkan crust as constrained by the oxygen isotopes. Oxygen isotope analyses of minerals and matrix span a 3‰ range with a significant proportion of moderately low-δ18O values. This suggests that the source for these ignimbrites involved a hydrothermally-altered shallow crust, while participation of the Cretaceous siliceous basement is also evidenced by moderately elevated δ18O and Sr isotopes and xenocryst contamination in two volcanoes. The majority of dates obtained for caldera-forming eruptions coincide with glacial stages in accordance with the sediment record in the NW Pacific, suggesting an increase in explosive volcanic activity since the onset of the last glaciation 2.6 Ma. Rapid changes in ice volume during glacial times and the resulting fluctuation of glacial loading/unloading could have caused volatile saturation in shallow magma chambers and, in combination with availability of low-δ18O glacial meltwaters, increased the proportion of explosive vs effusive eruptions. The presented results provide new constraints on Pliocene–Pleistocene volcanic activity in Kamchatka, and thus constrain an important component of the Pacific Ring of Fire.  相似文献   

6.
The Donguinyó-Huichapan caldera complex is located 110 km to the NNW of Mexico City, in the central sector of the Mexican Volcanic Belt. It is a 10 km in diameter complex apparently with two overlapping calderas, each one related to an ignimbrite sequence that contrasts in composition, mineralogy, welding, distribution, and physical aspect. The geologic evolution of this complex includes the following phases, 1) A first caldera formed at 5.0 ± 0.3 Ma, with the eruption of several discrete pulses of andesitic to trachydacitic pyroclastic flows that produced a series of densely welded ignimbrites; 2) At 4.6 ± 0.3 Ma, several small shield volcanoes and cinder cones built the rim of this caldera and erupted basaltic-andesite and andesitic lava flows; 3) At 4.2 ± 0.2 Ma, a second caldera was formed associated to the eruption of the Huichapan Tuff, which is a rhyolitic pyroclastic sequence consisting of minor unwelded ignimbrites, pumice fall and surge deposits, and a voluminous welded ignimbrite; 4) Also yielding an age of 4.2 ± 0.2 Ma, several trachydacitic lava domes were extruded along the new ring fracture and formed the rim of the Huichapan caldera, as well as five intra-caldera domes of dacitic and trachydacitic composition. Peripheral volcanism includes a large 2.5 ± 0.1 Ma shield volcano that was emplaced on the Huichapan caldera rim.The two calderas that form the Donguinyó-Huichapan complex have contrasting differences in volcanic styles that were apparently due to their differences in composition. Products erupted by the Donguinyó caldera are basaltic-andesite to trachydacitic in composition, whereas Huichapan caldera products are all high-silica rhyolites.  相似文献   

7.
The South Sandwich volcanic arc is sited on a young oceanic crust, erupts low-K tholeiitic rocks, is characterized by unexotic pelagic and volcanogenic sediments on the down-going slab, and simple tectonic setting, and is ideal for assessing element transport through subduction zones. As a means of quantifying processes attending transfer of subduction-related fluids from the slab to the mantle wedge, boron concentrations and isotopic compositions were determined for representative lavas from along the arc. The samples show variable fluid-mobile/fluid-immobile element ratios and high enrichments of B/Nb (2.7 to 55) and B/Zr (0.12 to 0.57), similar to those observed in western Pacific arcs. δ11B values are among the highest so far reported for mantle-derived lavas; these are highest in the central part of the arc (+ 15 to + 18‰) and decrease toward the southern and northern ends (+ 12 to + 14‰). δ11B is roughly positively correlated with B concentrations and with 87Sr/86Sr ratios, but poorly coupled with other fluid-mobile elements such as Rb, Ba, Sr and U. Peridotites dredged from the forearc trench also have high δ11B (ca. + 10‰) and elevated B contents (38–140 ppm). Incoming pelagic sediments sampled at ODP Site 701 display a wide range in δ11B (+ 5 to ? 13‰; average = ? 4.1‰), with negative values most common. The unusually high δ11B values inferred for the South Sandwich mantle wedge cannot easily be attributed to direct incorporation of subducting slab materials or fluids derived directly therefrom. Rather, the heavy B isotopic signature of the magma sources is more plausibly explained by ingress of fluids derived from subduction erosion of altered frontal arc mantle wedge materials similar to those in the Marianas forearc. We propose that multi-stage recycling of high-δ11B and high-B serpentinite (possibly embellished by arc crust and volcaniclastic sediments) can produce extremely 11B-rich fluids at slab depths beneath the volcanic arc. Infiltration of such fluids into the mantle wedge likely accounts for the unusual magma sources inferred for this arc.  相似文献   

8.
One of the main morphological changes along the Southern Central Andes occurs from 36° to 39°S. The northern portion is characterized by prominent basement structures and a thick-skinned orogenic front with relief of over 2000 m with a deep level of exhumation where more than 4 km of section has been eroded. Contrastingly, the southern part is formed by mildly inverted basement structures restricted mainly to the hinterland zone, which reaches only 1500–1700 m relief. We quantify the variable contributions of two main contractional stages through the construction of three regionally balanced sections across the Andes, constrained by field and geophysical data. Extensional re-activation described for this segment in late Oligocene-early Miocene and Pliocene to Quaternary times, after the two main contractional episodes, suggests only 3 km of stretching that represents 30–10% of the original longitude. We, therefore, conclude that while initial Late Cretaceous to Eocene compression was similar along strike (∼10–7 km), it is the contrasting degrees of Neogene shortening (∼16–6 km) that have played the largest role in the along strike differences in structure and morphology along this portion of the southern Andes. Variable Neogene arc expansion could be responsible for the contrasting contractional deformation: In the north, late Miocene arc-related rocks cover most of the retroarc zone (>200 km with respect to the late Miocene arc front in the south), presumably driven by a shallow subduction episode in the area, whereas to the south they remain restricted to the continental drainage divide. Other factors involving architecture of previous rift structures, are proposed as additional mechanisms that accommodated variable shortening magnitudes through inversion.  相似文献   

9.
The Ganzi-Yushu-Xianshuihe Fault Zone (GYXFZ) is a typical active strike-slip fault that has triggered many large historic earthquakes, including the 2010 Mw 6.9 Yushu earthquake in the central Tibetan Plateau. This fault zone extends for ca. 800 km from the central Tibetan Plateau to its southeastern margin and varies in trend from WNW-ESE in the northwestern segment of the fault zone to NNW-SSE in the southeastern segment, having the geometry of an arc projecting northeastwards. In this study, we present evidence for the systematical sinistral deflection and/or offset of the Yangtze River and its branch stream channels and valleys along the GYXFZ. Topographic analysis of three-dimensional (3D) perspective images constructed using digital elevation model (DEM) data, 0.5 m-resolution WorldView and GeoEye images, and 15 m-resolution Landsat-Enhanced Thematic Mapper (ETM+) images, together with analysis of geological structures, reveals the following: (i) the main river channels and valleys of the Yangtze River drainage system show systematic sinistral deflections and/or offsets along the GYXFZ; (ii) various amounts of sinistral offset have accumulated on the tributary stream channels, valleys, and gullies of the Yangtze River along the fault, with a linear relation, D = aL, between the upstream length L from the deflected point and the offset amount D with a certain coefficient a; (iii) the maximum amount of sinistral offset is up to ca. 60 km, which was accumulated in the past 13–5 Ma; and (iv) the long-term average strike-slip rate is ca. 4.6–12 mm/year. Geological and geomorphic evidence, combined with geophysical data, demonstrates that the GYXFZ is currently active as one of the major seismogenic faults in the Tibetan Plateau, dominated by left-lateral strike-slip motion. Our findings supply important evidence for the tectonic evolution of strike-slip faults in the Tibetan Plateau since the Eurasia-India continental collision.  相似文献   

10.
The peridotites from north of the town of Nain in central Iran consist of clinopyroxene-bearing harzburgite and lherzolite with small lenses of dunite and chromitite pods. The lherzolite contains aluminous spinel with a Cr number (Cr# = Cr/[Cr + Al]) of 0.17. The Cr number of spinels in harzburgite and chromitite is 0.38–0.42 and 0.62, respectively. This shows that the lherzolite and harzburgite resulted from <18% of partial melting of the source materials. The estimated temperature is 1100 ± 200 °C for peridotites, the estimated pressure is <15 ± 2.3 kbar for harzburgites and >16 ± 2.3 kbar for lherzolites and estimated fo2 is 10?1±0.5 for peridotites. Discriminant geochemical diagrams based on mineral chemistry of harzburgites indicate a supra-subduction zone (SSZ) to mid-oceanic ridge (MOR) setting for these rocks. On the basis of their Cr#, the harzburgite and lherzolite spinels are analogous to those from abyssal peridotites and oceanic ophiolites, whereas the chromites in the chromitite (on the basis of Cr# and boninitic nature of parental melts) resemble those from SSZ ophiolitic sequences. Therefore, the Nain ophiolite complex most likely originated in an oceanic crust related to supra-subduction zone, i.e. back arc basin. Field observations and mineral chemistry of the Nain peridotites, indicating the suture between the central Iran micro-continent (CIM) block and the Sanandaj–Sirjan zone, show that these peridotites mark the site of the Nain–Baft seaway, which opened with a slow rate of ocean-floor spreading behind the Mesozoic arc of the Sanandaj–Sirjan zone as a result of change of Neo Tethyan subduction régime during middle Cretaceous.  相似文献   

11.
Miocene to Quaternary large basaltic plateaus occur in the back-arc domain of the Andean chain in Patagonia. They are thought to result from the ascent of subslab asthenospheric magmas through slab windows generated from subducted segments of the South Chile Ridge (SCR). We have investigated three volcanic centres from the Lago General Carrera–Buenos Aires area (46–47°S) located above the inferred position of the slab window corresponding to a segment subducted 6 Ma ago. (1) The Quaternary Río Murta transitional basalts display major, trace elements, and Sr and Nd isotopic features similar to those of oceanic basalts from the SCR and from the Chile Triple Junction near Taitao Peninsula (e.g., (87Sr/86Sr)o = 0.70396–0.70346 and εNd = + 5.5  + 3.0). We consider them as derived from the melting of a Chile Ridge asthenospheric mantle source containing a weak subduction component. (2) The Plio-Quaternary (< 3.3 Ma) post-plateau basanites from Meseta del Lago Buenos Aires (MLBA), Argentina, likely derive from small degrees of melting of OIB-type mantle sources involving the subslab asthenosphere and the enriched subcontinental lithospheric mantle. (3) The main plateau basaltic volcanism in this region is represented by the 12.4–3.3-Ma-old MLBA basalts and the 8.2–4.4-Ma-old basalts from Meseta Chile Chico (MCC), Chile. Two groups can be distinguished among these main plateau basalts. The first group includes alkali basalts and trachybasalts displaying typical OIB signatures and thought to derive from predominantly asthenospheric mantle sources similar to those of the post-plateau MLBA basalts, but through slightly larger degrees of melting. The second one, although still dominantly alkalic, displays incompatible element signatures intermediate between those of OIB and arc magmas (e.g., La/Nb > 1 and TiO2 < 2 wt.%). These intermediate basalts differ from their strictly alkalic equivalents by having lower High Field Strength Element (HFSE) and higher εNd (up to + 5.4). These features are consistent with their derivation from an enriched mantle source contaminated by ca. 10% rutile-bearing restite of altered oceanic crust. The petrogenesis of the studied Mio-Pliocene basalts from MLBA and MCC is consistent with contributions of the subslab asthenosphere, the South American subcontinental lithospheric mantle and the subducted Pacific oceanic crust to their sources. However, their chronology of emplacement is not consistent with an ascent through an asthenospheric window opened as a consequence of the subduction of segment SCR-1, which entered the trench at 6 Ma. Indeed, magmatic activity was already important between 12 and 8 Ma in MLBA and MCC as well as in southernmost plateaus, i.e., 6 Ma before the subduction of the SCR-1 segment. We propose a geodynamic model in which OIB and intermediate magmas derived from deep subslab asthenospheric mantle did uprise through a tear-in-the-slab, which formed when the southernmost segments of the SCR collided with the Chile Trench around 15 Ma. During their ascent, they interacted with the Patagonian supraslab mantle and, locally, with slivers of subducted Pacific oceanic crust that contributed to the geochemical signature of the intermediate basalts.  相似文献   

12.
The Central American volcanic arc supplies a significant proportion of the persistent annual global sulphur dioxide emissions from volcanoes. In November/December 2003, we completed a survey of the arc section from Mombacho to San Cristóbal in Nicaragua recording individual mean fluxes of 800, 530 and 220 Mg day 1 in the plumes from San Cristóbal, Telica and Masaya, respectively. An assessment of fluxes published since 1997 along the entire Central America arc yields a mean total arc flux of SO2 of 4360 Mg day 1 or 8–16% of the annual estimated global volcanic SO2 flux to the troposphere. New field data shows that Masaya volcano continues to show stable HCl/SO2 and HF/SO2 ratios, suggesting a sustained flux of these components of ∼ 220 and 30 Mg day 1, respectively (1997 to 2004). Masaya's plume composition also appears to have been stable, between 2001 and 2003, with respect to all the particulate species measured, with significant fluxes of SO42− (4 Mg day 1), Na+ (0.9–1.3 Mg day 1) and K+ (0.7 Mg day 1). Extrapolating the Masaya plume species ratios to the entire Central American arc gives mean HCl and HF fluxes of 1300 and 170 Mg day 1 and a particulate sulphate flux of 40 Mg day 1 for 1997 to 2004, although without further understanding of the degassing processes and sources at depth of these different volatiles, these arc-scale estimates should be treated with caution. Combining our arc scale mean SO2 flux with published measurements of volcanic gas compositions with respect to CO2 and H2O allows us to estimate mean CO2 fluxes of 4400–9600 Mg day 1 and H2O fluxes of 70,000–78,000 Mg day 1 for the arc. Preliminary comparisons of these estimates of outgassing rates with published volatile input fluxes into the Central American subduction zone, suggest that Cl is more efficiently recycled through the subduction zone than CO2. The results for H2O are inconclusive.  相似文献   

13.
Large continental silicic magma systems commonly produce voluminous ignimbrites and associated caldera collapse events. Less conspicuous and relatively poorly documented are cases in which silicic magma chambers of similar size to those associated with caldera-forming events produce dominantly effusive eruptions of small-volume rhyolite domes and flows. The Bearhead Rhyolite and associated Peralta Tuff Member in the Jemez volcanic field, New Mexico, represent small-volume eruptions from a large silicic magma system in which no caldera-forming event occurred, and thus may have implications for the genesis and eruption of large volumes of silicic magma and the long-term evolution of continental silicic magma systems.40Ar/39Ar dating reveals that most units mapped as Bearhead Rhyolite and Peralta Tuff (the Main Group) were erupted during an ∼540 ka interval between 7.06 and 6.52 Ma. These rocks define a chemically coherent group of high-silica rhyolites that can be related by simple fractional crystallization models. Preceding the Main Group, minor amounts of unrelated trachydacite and low silica rhyolite were erupted at ∼11–9 and ∼8 Ma, respectively, whereas subsequent to the Main Group minor amounts of unrelated rhyolites were erupted at ∼6.1 and ∼1.5 Ma.The chemical coherency, apparent fractional crystallization-derived geochemical trends, large areal distribution of rhyolite domes (∼200 km2), and presence of a major hydrothermal system support the hypothesis that Main Group magmas were derived from a single, large, shallow magma chamber. The ∼540 ka eruptive interval demands input of heat into the system by replenishment with silicic melts, or basaltic underplating to maintain the Bearhead Rhyolite magma chamber.Although the volatile content of Main Group magmas was within the range of rhyolites from major caldera-forming eruptions such as the Bandelier and Bishop Tuffs, eruptions were smaller volume and dominantly effusive. Bearhead Rhyolite domes occur at the intersection of faults, and are cut by faults, suggesting that the magma chamber was structurally vented preventing volatiles from accumulating to levels high enough to trigger a caldera-forming eruption.  相似文献   

14.
In order to better understand the nature and formation of oceanic lithosphere beneath the Early Cretaceous Ontong Java Plateau, Re–Os isotopes have been analysed in a suite of peridotite xenoliths from Malaita, Solomon Islands. Geological, thermobarometric and petrological evidence from previous studies reveal that the xenoliths represent virtually the entire thickness of the southern part of subplateau lithospheric mantle (< 120 km). This study demonstrates that vertical Os isotopic variations correlate with compositional variations in a stratified lithosphere. The shallowest plateau lithosphere (< 85 km) is dominated by fertile lherzolites showing a restricted range of 187Os/188Os (0.1222 to 0.1288), consistent with an origin from ~ 160 Ma Pacific lithosphere. In contrast, the basal section of subplateau lithospheric mantle (~ 95–120 km) is enriched in refractory harzburgites with highly unradiogenic 187Os/188Os ratios ranging from 0.1152 to 0.1196, which yield Proterozoic model ages of 0.9–1.7 Ga. Although the whole range of Os isotope compositions of Malaita peridotites is within the variations seen in modern abyssal peridotites, the contrasting isotopic compositions of shallow and deep plateau lithosphere suggest their derivation from different mantle reservoirs. We propose that the subplateau lithosphere forms a genetically unrelated two-layered structure, comprising shallower, typical oceanic lithosphere underpinned by deeper impinged material, which included a component of recycled Proterozoic lithosphere. The impingement of residual but chemically heterogeneous mantle, mechanically coupled to the recently formed, thin lithosphere, may have a bearing on the anomalous initial uplift and late subsidence history of the seismically anomalous plateau root.  相似文献   

15.
We analyzed receiver-function data recorded by a temporary broadband array deployed as part of the BOLIVAR project and the permanent seismic network of Venezuela to study the mantle transition zone structure beneath the Caribbean-South American plate boundary and Venezuela. Significant topography on both the 410-km and the 660-km discontinuities was clearly imaged in the CCP (common-conversion-point) stacked images. Beneath the southeastern Caribbean, the 410-km is featured by a narrow (~ 200 km EW) ~ 25-km uplift extending in the NS direction around 63° west, while the 660-km is depressed by ~ 20 km in a narrow region slightly west to the uplift, a scenario that is more consistent with westward descent of the oceanic South American plate rather than a break-off of NNW dipping proto-Caribbean oceanic lithosphere along the El Pilar Fault. We also found a thick transition zone beneath the Falcon region in northwestern Venezuela, possibly associated with the subducted Nazca plate. A flat 410-km was observed beneath the Guayana shield, suggesting that the shield has a stable and moderately deep keel, which has little effect on the underlying transition zone structure.  相似文献   

16.
Explosion deep seismic sounding data sections of high quality had been obtained with RV Meteor in the Reykjanes Iceland Seismic Project (RRISP77 [Angenheister, G., Gebrande, H., Miller, H., Goldflam, P., Weigel, W., Jacoby, W.R., Pálmason, G., Björnsson, S., Einarsson, P., Pavlenkova, N.I., Zverev, S., Litvinenko, I.V., Loncarecic, B., Solomon, S., 1980. Reykjanes Ridge Iceland Seismic Experiment (RRISP 77). J. Geophys. 47, 228–238]) which close an information gap near 62°N. Preliminary results were presented by Weigel [Weigel, W., 1980. Aufbau des Reykjanes Rückens nach refraktionsseismischen Messungen. In: Weigel, W. (Ed.), Reykjanes Rücken, Island, Norwegischer Kontinentalrand. Abschlusskolloquium, Hamburg zur Meteor-Expedition, vol. 45. DFG, Bonn, pp. 53–61], and here we report on the data and results of interpretation. Clear refracted phases to 90 km distance permit crustal and uppermost mantle structure to be modelled by ray tracing. The apparent P-wave velocities are around 4.5, 6–6.5, 7–7.6 and 8.2–8.7 km/s, but no wide-angle reflections have been clearly seen. Accompanying sparker reflection data reveal thin sediment ponds in the axial zone and up to 400 m thick sediments at 10 Ma crustal age. Ray tracing reveals the following model below the sediments: (1) a distinct, 1–2 km thick upper crust (layer 2A) with Vp increasing with age (to 10 Ma) from <3.4 to 4.9 km/s and with a vertical gradient of 0.1–0.2 km/s/km, (2) a lower crust or layer 3 beginning at depths of 2 (axis) to 4 km (10 Ma age) below sea level with 6.1–6.8 km/s and similar vertical gradients as above, (3) the lower crust bottoms at 5.2–9.5 km depth below sea level (0–10 Ma) with a marked discontinuity, underneath which (4) Vp rises from about 7.5–7.8 km/s (0–10 Ma) with a positive vertical gradient of, again, 0.1–0.2 km/s/km such that 8 km/s would be reached at 12 km and deeper near the axis. Our preferred interpretation is that the mantle begins at the distinct discontinuity (“Moho”), but a deeper “Moho” of Vp  8 km/s cannot be excluded. From Iceland southward to 60°N several experiments show a decrease of crustal thickness from 14 to 8 km. Velocity trends with age across the ridge reflect cooling and filling of cracks, and thickness trends probably suggest volcanic productivity variations as previously suggested.Gravity inversion concentrates on a profile across the ridge with the above seismic a priori information; with 0.2–0.5 km depth uncertainty it leads to a good fit (±2.5 mGal where seismic data exist). Best fitting densities are (in kg/m3) for sediments, 2180; upper crust, 2450–2570; lower crust, 2850–2940; mantle lithosphere, 3215–3240 with a deficit for an asthenospheric wedge of no more than −100 kg/m3. The morphological ridges and troughs superimposed on the SE ridge flank are partly correlated, partly anti-correlated with the Bouguer anomaly and suggest that variable crustal density variations accompany the morphology variations.  相似文献   

17.
We used a wavelet formulation of the classical spectral isostatic analysis to invert satellite-derived gravity and topography/bathymetry for elastic thickness (Te) over South America and its surrounding plates. To provide a homogeneous representation of the gravity field for this vast region, we corrected free-air anomalies derived from a combination of terrestrial/marine gravity data with data from the GRACE and CHAMP satellite missions (model EIGEN-CG03C) by a simple Bouguer slab using a smoothed representation of surface relief (wavelengths > 125 km). The resulting Bouguer anomaly compares well with terrestrial data acquired in the Central Andes and allows Te to be confidently estimated for values greater than 10 km. The Te map resolves regional-scale features that are well-correlated with known surface structures and shows maximum values of 100 ± 15 km over the Archean–Neoproterozoic core of the continent, decreasing to less than 30 km around continental margins. Several regions of the oceanic plates and continental margins have an elastic thickness less than 10 km. We performed a quantitative analysis by comparing the elastic thickness with the thermal structure predicted from the age of oceanic crust and igneous–metamorphic rocks. This demonstrates that oceanic plates have been weakened by thermal interaction with hotspots and locally by fracturing and hydration near the trench. We observe that only the nucleus of the continent has resisted the thermomechanical weakening induced by the rifting of Africa and South America along the passive margin and the Andean orogeny along the active margin. This latter region shows along-strike variations in Te that correlate with the geotectonic segmentation of the margin and with the pattern of crustal seismicity. Our results reveal that the rigidity structure follows the segmentation of the seismogenic zone along the subduction fault, suggesting a causal relationship that should be investigated in order to improve the understanding and predictability of great earthquakes and tsunamis.  相似文献   

18.
New field and thermobarometric work in the Californian Salinian block clarifies current and pre-Tertiary relationships between the schist of Sierra de Salinas and Cretaceous arc-related granitic rocks. The contact is variably preserved as a brittle fault and high-temperature mylonite zone, the Salinas shear zone, which represents the contact between North America and sediments accreted above the Farallon slab between ∼ 76 Ma and ∼ 70 Ma. Near granulite facies, prograde replacement of hornblende with clinopyroxene is associated with deformation of plutonic rocks at the base of the upper plate. In the lower plate, the schist of Sierra de Salinas, garnet–biotite thermometry indicates decreasing temperatures down-section from at least 714 °C to ∼ 575 °C over an exposed thickness of ∼ 2.5 km, consistent with petrologic evidence of an inverted metamorphic gradient. The measured temperatures are significantly higher than observed at shallow levels above subducting slabs or predicted by 2D computational models assuming low shear stresses. Previous workers have called upon shear heating to explain similar observations in the correlative Pelona schist, an unlikely scenario given the results of recent rock deformation experiments which predict that feldspar–quartz–mica aggregates are far too weak to withstand stresses of ∼ 70 MPa required by the shear heating hypothesis. As an alternative, we propose that high temperatures resulted from conductive heating while the leading edge of the schist traveled ∼ 150 km beneath the recently active Salinian continental arc during the initiation of shallow subduction. Weakening of the schist due to high temperatures helped facilitate the collapse of the Salinian arc as the schist was emplaced. Schist emplacement coincided with loss of lower, mafic portions of the arc, and therefore evolution of the Southern California crust towards a more felsic composition.  相似文献   

19.
We analyzed records of eight seismic stations of the autonomous broadband seismograph network of a joint project between Utrecht University (the Netherlands), California Institute of Technology, and Centro de Investigación Científica y de Estudios Superiores de Ensenada (CICESE). These stations recorded the Mw 5.6 earthquake that occurred on 12 November 2003 at Salsipuedes basin in the middle of the Gulf of California 2 km west of the island Angel de la Guarda. This event was located at 29.16º N and 113.37º W, 30 km northeast of Bahia de los Angeles. A foreshock and hundreds of aftershocks were recorded in the 48 hours after its origin time. With the location of 29 earthquakes we identified the active segment, perpendicular to the main transform fault NW–SE of Canal de Ballenas, representing the transtensional boundary between the Pacific and North American plates. The direction of the active fault described is consistent with the normal fault mechanism reported by the National Earthquake Information Center (strike=39º, dip=34º, slip=–44º).From the duration magnitude of 456 aftershocks, we calculated a b-value of 1.14±0.28; furthermore, we calculated a seismic moment of (3.5 ±3.3) X1017Nm, a source radius of 3.7 ± 2.63 km, and a static stress drop of 3.94 ± 1.15 MPa (39.4 ± 11.5 bar.).  相似文献   

20.
We present new analyses of volatile, major, and trace elements for a suite of glasses and melt inclusions from the 85°E segment of the ultra-slow spreading Gakkel Ridge. Samples from this segment include limu o pele and glass shards, proposed to result from CO2-driven explosive activity. The major element and volatile compositions of the melt inclusions are more variable and consistently more primitive than the glass data. CO2 contents in the melt inclusions extend to higher values (167–1596 ppm) than in the co-existing glasses (187–227 ppm), indicating that the melt inclusions were trapped at greater depths. These melt inclusions record the highest CO2 melt concentrations observed for a ridge environment. Based on a vapor saturation model, we estimate that the melt inclusions were trapped between seafloor depths (~ 4 km) and ~ 9 km below the seafloor. However, the glasses are all in equilibrium with their eruption depths, which is inconsistent with the rapid magma ascent rates expected for explosive activity. Melting conditions inferred from thermobarometry suggest relatively deep (25–40 km) and cold (1240°–1325 °C) melting conditions, consistent with a thermal structure calculated for the Gakkel Ridge. The water contents and trace element compositions of the melt inclusions and glasses are remarkably homogeneous; this is an unexpected result for ultra-slow spreading ridges, where magma mixing is generally thought to be less efficient based on the assumption that steady-state crustal magma chambers are absent in these environments. All melts can be described by a single liquid line of descent originating from a pooled melt composition that is consistent with the aggregate melt calculated from a geodynamic model for the Gakkel Ridge. These data suggest a model in which deep, low degree melts are efficiently pooled in the upper mantle (9–20 km depth), after which crystallization commences and continues during ascent and eruption. Based on our melting model and the assumption that CO2 is perfectly incompatible, we show that the highest CO2 concentrations of the melt inclusions (~ 1600 ppm) are consistent with the calculated CO2 concentrations of primary undegassed melts. The highest measured CO2/Nb ratio (443) of Gakkel Ridge melt inclusions predicts a mantle CO2 content of 134 ppm and would result in a global ridge flux of 2.0 × 1012 mol CO2/yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号