首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
拱坝非线性地震反应分析   总被引:2,自引:0,他引:2  
本文根据一致粘弹性模型的概念,引入应变率的影响,将混凝土静态William-Warnke三参数模型改造成一致粘塑性William-Warnke三参数本构模型,并用这个模型对某高拱坝进行了非线性地震响应分析,与线弹性模型和应变率无关的William-Warnke三参数模型的结果进行了比较,初步探讨了应变率对拱坝地震反应的影响。  相似文献   

2.
Earthquake safety assessment of concrete arch and gravity dams   总被引:9,自引:1,他引:8  
Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessment of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrete subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range. Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods.  相似文献   

3.
Parallel computation of seismic analysis of high arch dam   总被引:1,自引:1,他引:0  
Parallel computation programs are developed for three-dimensional meso-mechanics analysis of fully-graded dam concrete and seismic response analysis of high arch dams (ADs), based on the Parallel Finite Element Program Generator (PFEPG). The computational algorithms of the numerical simulation of the meso-structure of concrete specimens were studied. Taking into account damage evolution, static preload, strain rate effect, and the heterogeneity of the meso-structure of dam concrete, the fracture processes of damage evolution and configuration of the cracks can be directly simulated. In the seismic response analysis of ADs, all the following factors are involved, such as the nonlinear contact due to the opening and slipping of the contraction joints, energy dispersion of the far-field foundation, dynamic interactions of the dam-foundation- reservoir system, and the combining effects of seismic action with all static loads. The correctness, reliability and efficiency of the two parallel computational programs are verified with practical illustrations.  相似文献   

4.
基于接触非线性有限元模型,以锦屏一级拱坝为例,库水分别采用附加质量模型、可压缩流体有限元模型、不可压缩流体有限元模型计算了正常蓄水位及运行低水位时坝体的动力响应,结果表明:库水模型对拱坝动力响应有较大影响,随库水深度的增大,各模型计算结果差异增大;相比于流体可压缩模型,采用不可压缩流体模型所得动力响应普遍偏大;运行低水位工况,由于静水压力减小导致拱效应减弱,从而降低了拱坝的整体性,因此运行低水位工况各缝开度普遍高于正常蓄水位工况,且其拉应力范围较大,因此,运行低水位工况将对抗震设计起控制作用。  相似文献   

5.
A new plastic-damage constitutive model for cyclic loading of concrete has been developed for the earthquake analysis of concrete dams. The rate-independent model consistently includes the effects of strain softening, represented by separate damage variables for tension and compression. A simple scalar degradation model simulates the effects of damage on the elastic stiffness and the recovery of stiffness after cracks close. To simulate large crack opening displacements, the evolution of inelastic strain is stopped beyond a critical value for the tensile damage variable. Subsequent deformation can be recovered upon crack closing. The rate-independent plastic-damage model forms the backbone model for a rate-dependent viscoplastic extension. The rate-dependent regularization is necessary to obtain a unique and mesh objective numerical solution. Damping is represented as a linear viscoelastic behaviour proportional to the elastic stiffness including the degradation damage. The plastic-damage constitutive model is used to evaluate the response of Koyna dam in the 1967 Koyna earthquake. The analysis shows two localized cracks forming and then joining at the change in geometry of the upper part of the dam. The upper portion of the dam vibrates essentially as rigid-body rocking motion after the upper cracks form, but the dam remains stable. The vertical component of ground motion influences the post-cracking response. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
论证了广大坝抗震安全性研究的实践与发展现状。目前大坝在地震作用下的应力与变形分析方法主要有拟静力法和动力响应分析法,并依据大坝混凝土的抗拉强度判断大坝的安全性;各国规范体现的抗震设防弹念和大坝材料的容许应力差别很大。坝址河谷不同高程处地震动状态不尽相同、河谷两恻同一高程处地震动也不一样。混凝土材料的强度与加载速度、应变速率有关;地震时大坝不同部位的应变速率不相同、同一部位的应变速率也随时间变化;混凝土的动态强度既与应变速率有关。也与应变历史等其它因素有关。大坝河谷地震动的输入机理和模型研究、混凝土的动态强度的变化规律探索、大坝抗震安全性评价准则的完善与创新等将有待深入。通过以上内容针对性分析,提出了大坝抗震评价的一些合理建议、方法以及进一步的研究方向。  相似文献   

7.
通过钢筋混凝土构件的动态试验,研究不同加载速率下的钢筋混凝土梁柱力学特性。考虑屈服强度、极限强度和刚度的动力效应,引入损伤因子,并考虑混凝土损伤对卸载刚度的影响,建立了钢筋混凝土构件率相关的三折线恢复力模型。利用有限元分析软件模拟钢筋混凝土构件的动态试验,对比模拟结果与试验结果得出:考虑应变率效应和混凝土损伤对卸载刚度的影响,能够更好地反映构件的动力特性。对一平面框架结构模型进行不同加载速率下的动态分析,研究加载速率对结构动力反应的影响,结果表明,随着加载速率的增大,结构模型各构件的强度和刚度增大,结构模型整体抗侧移刚度增强,水平位移减小。  相似文献   

8.
This paper focuses on analyzing the nonlinear seismic response of high‐arch dams with cantilever reinforcement strengthening. A modified embedded‐steel model is presented to evaluate the effects of the strengthening measure on alleviating the extension and opening of cracks under strong earthquakes. By stiffening reinforced steel, this model can easily consider the steel–concrete interaction for lightly reinforced concrete (RC) members without the need of dividing them into RC and plain concrete zones. The new tensile constitutive relations of reinforced steel are derived from the load–deformation relationship of RC members in direct tension. This model has been implemented in the finite element code and its applicability is verified by two numerical simulations for RC tests. Subsequently, numerical analyses for a 210‐m high‐arch dam (Dagangshan arch dam) are conducted with and without the presence of cantilever reinforcement. Numerical results show that reinforcement strengthening can reduce the nonlinear response of the arch dam, e.g. joint opening and crest displacement, and limit the extension and opening width of concrete cracks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
深厚库底回填料是影响面板堆石坝动力响应的重要因素之一。为深入研究深厚库底回填料对面板堆石坝动力响应的影响,基于某拟建抽水蓄能电站,采用三维动力有限元分析系统研究其上库面板坝的地震反应,主要包括坝体加速度、面板动力响应、接缝变位情况以及库底防渗土工膜的动应变等。计算结果表明:由于库底回填料的存在,坝体加速度放大效应被明显削弱;面板周边以受拉为主,中部大部分区域受压;垂直缝呈现出周边张开、中间闭合的趋势;土工膜的顺河向和坝轴向的动拉应变皆小于屈服应变,最大应变出现在库底材料分界处,为提高坝体渗透安全性,建议对主堆石区与连接板相接处的回填料进行适当范围换填的处理措施。研究成果可以为类似工程提供参考。  相似文献   

10.
An integrative seismic safety evaluation of an arch dam should include all sources of nonlinearities, dynamic interactions between different components and the external loads. The present paper investigates the calibration procedure and nonlinear seismic response of an existing high arch dam. The first part explains the conducted analyses for the static and thermal calibrations of the dam based on site measurements. The second part investigates the nonlinear seismic analysis of the calibrated model considering the effect of joints, cracking of mass concrete, reservoir–dam–rock interaction, hydrodynamic pressure inside the opened joints and the geometric nonlinearity. Penetration of the water inside the opened joints accelerates the damage process. The integrative seismic assessment of a case study shows that the dam will fail under the maximum credible earthquake scenario. The dam is judged to be severely damaged with extensive cracking and the joints undergo opening/sliding. A systematic procedure is proposed for seismic and post-seismic safety of dams.  相似文献   

11.
拱坝非线性地震反应分析   总被引:1,自引:0,他引:1  
以乌东德拱坝为对象,进行了拱坝非线性地震反应分析。结果表明:坝体损伤区域明显大于坝体混凝土按线弹性材料计算时最大主应力超过抗拉强度的区域,说明传统方法低估了拱坝的开裂范围,偏于危险;考虑基岩的非线性后,坝体损伤总体上要有所减小;坝基岩体剪胀角对坝基岩体的屈服和坝体混凝土的损伤都有影响,但是规律不明确,因此应该进行基岩剪胀角的敏感性分析。  相似文献   

12.
Seismic response analysis of arch dam-water-rock foundation systems   总被引:2,自引:0,他引:2  
The effect of water compressibility on the seismic responses of arch dams is not well understood. In this paper, a numerical model is developed with rigorous representation of the dynamic interaction between arch dam-water-rock foundation. The model is applied to the seismic response a nalysis of an arch dam with a height of 292m designed to aseismic intensity of IX. It is shown that consideration of the water compressibility clearly decreases the stress responses at key positions of the dam, while the added mass model gives a conservative estimate.  相似文献   

13.
A nonlinear, slip-joint element for analyzing the effect of discontinuities on a concrete, arch dam's seismic response is developed. The joint element has been incorporated into a finite-element-based, solution for predicting dynamic structural response. This joint model, plus the numerical procedure incorporated into the incremental solution, models inter-element impact across a joint when adjacent, structural elements separate and later collide. Collision is incorporated into the incremental analysis by calculating the exchange of momentum and energy with the equations describing eccentric, rigid-body impact. Joint material's force-deflection relations are multi-linear with hysteresis. Coulomb friction is also modeled. The joint element and numerical procedure have been tested with two models. The first is a segmented arch of seven, straight beam elements connected to one another. The arch dam has been experimentally tested. Analytical results are compared with experimental results from the sealed model. Second is a rectangular plate model subject to lateral base accelerations. One horizontal edge is fixed and the opposite edge is free. The vertical edges may be fixed or connected to the base by joint elements.  相似文献   

14.
The purpose of this study is to investigate the effect of retrofitting dynamic characteristics of a damaged laboratory arch dam model, subsequently repaired with high-strength structural mortar and strengthened with composite carbon fiber reinforced polymer. This study constructed in laboratory conditions is a prototype arch dam–reservoir–foundation model. Five test cases of ambient vibration on the arch dam model illustrate the changes in dynamic characteristics: natural frequency, mode shape, and damping ratio, before and after retrofitting. The ambient vibration tests collected data from the dam body during vibrations by natural excitations which provided small impacts and response signals from sensitivity accelerometers placed at crest points. Enhanced Frequency Domain Decomposition Method in the frequency domain extracts the experimental dynamic characteristics. At the end of the study, experimentally identified dynamic characteristics obtained from all test cases have been compared with each other. Apparently, after the retrofitting, the natural frequencies of the dam body increased considerably, demonstrating that the retrofitting, including repairing and strengthening is very effective on the flashback of initial dynamic characteristics.  相似文献   

15.
There are several alternatives to evaluate seismic damage‐cracking behavior of concrete arch dams, among which damage theory is the most popular. A more recent option introduced for this purpose is plastic–damage (PD) approach. In this study, a special finite element program coded in 3‐D space is developed on the basis of a well‐established PD model successfully applied to gravity dams in 2‐D plane stress state. The model originally proposed by Lee and Fenves in 1998 relies on isotropic damaged elasticity in combination with isotropic tensile and compressive plasticity to capture inelastic behaviors of concrete in cyclic or dynamic loadings. The present implementation is based on the rate‐dependent version of the model, including large crack opening/closing possibilities. Moreover, with utilizing the Hilber–Hughes–Taylor time integration scheme, an incremental–iterative solution strategy is detailed for the coupled dam–reservoir equations while the damage–dependent damping stress is included. The program is initially validated, and then, it is employed for the main analyses of the Koyna gravity dam in a 3‐D modeling as well as a typical concrete arch dam. The former is a major verification for the further examination on the arch dam. The application of the PD model to an arch dam is more challenging because the governing stress condition is multiaxial, causing shear damage to become more important than uniaxial states dominated in gravity dams. In fact, the softening and strength loss in compression for the damaged regions under multiaxial cyclic loadings affect its seismic safety. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A nonlinear finite element model for earthquake response analysis of arch dam–water–foundation rock systems is proposed in this paper. The model includes dynamic dam–water and dam–foundation rock interactions, the opening of contraction joints, the radiation damping of semi‐unbounded foundation rock, the compressibility of impounded water, and the upstream energy propagating along the semi‐unbounded reservoir. Meanwhile, a new equivalent force scheme is suggested to achieve free‐field input in the model. The effects of the earthquake input mechanism, joint opening, water compressibility, and radiation damping on the earthquake response of the Ertan arch dam (240 m high) in China are investigated using the proposed model. The results show that these factors significantly affect the earthquake response of the Ertan arch dam. Such factors should therefore be considered in the earthquake response analysis and earthquake safety evaluation of high arch dams. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
基于非线性指数型动接触本构模型,对实际键槽模型进行简化处理。采用的本构模型可以考虑缝面的开合非线性以及横缝键槽的咬合作用。采用点-面接触模型模拟横缝的非线性动接触行为,精细研究了缝面开度、径向位移的变化及其对坝体应力状态的影响,并与平缝结果进行了比较。以一座拟建的混凝土重力拱坝,探讨了横缝及其诱导缝对大坝工作性态的影响,并对横缝键槽的影响进行了综合分析。研究表明,横缝的径向滑移量要远大于开度,当考虑诱导缝时,由于大坝整体性受到削弱,横缝开度变大;考虑键槽效应后,径向滑移效应大幅减小,而法向开度增大,坝踵处的主拉应力以及拱冠梁顶处的拱向拉应力的最大值均变大。  相似文献   

18.
The arch dam–foundation rock dynamic interaction and the nonlinear opening and closing effects of contact joints on arch dam are important to the seismic response analysis of arch dams. Up to date, there is not yet a reasonable and rigorous procedure including the two factors in seismic response analysis. The methods for the analysis of arch dam–foundation rock dynamic interaction in frequency domain are not suitable to the problem with nonlinear behaviors, in this paper, so an analysis method in time domain is proposed by combining the explicit finite element method and the transmitting boundary, and the dynamic relaxation technique is adopted to obtain the initial static response for dynamic analysis. Moreover, the influence of arch dam–foundation dynamic interaction with energy dispersion on seismic response of designed Xiaowan arch dam in China is studied by comparing the results of the proposed method and the conventional method with the massless foundation, and the local material nonlinear and nonhomogeneous behaviors of foundation rock are also considered. The reservoir water effect is assumed as Westergaard added mass model in calculation. The influence of the closing–opening effects of contact joints of arch dam on the seismic response will be studied in another paper.  相似文献   

19.
A time-domain method for the analysis of arch dam-foundation rock dynamic interaction during earthquake was proposed, and the dynamic relaxation technique was adopted to obtain the initial static response for dynamic analysis by [Du et al. (2005). The paper has been contributed to Bulletin of earthquake engineering]. In this paper, a nonlinear explicit method in time domain considering the opening and closing effect of contact joints on arch dam during earthquake is further proposed by introducing the dynamic contact force model into the method. The simulation accuracy of dynamic contact force model is verified by comparing its calculation result and test result of scale model on shaking table. Finally, the influence of joints on the seismic response of Xiaowan arch dam is studied by the proposed method and some conclusions are given.  相似文献   

20.
China is a country of high seismicity with many hydropower resources. Recently,a series of high arch dams have either been completed or are being constructed in seismic regions,of which most are concrete dams. The evaluation of seismic safety often becomes a critical problem in dam design. In this paper,a brief introduction to major progress in the research on seismic aspects of large concrete dams,conducted mainly at the Institute of Water Resources and Hydropower Research(IWHR) during the past 60 years,is presented. The dam site-specific ground motion input,improved response analysis,dynamic model test verification,field experiment investigations,dynamic behavior of dam concrete,and seismic monitoring and observation are described. Methods to prevent collapse of high concrete dams under maximum credible earthquakes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号