首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Three tree-ring rainfall reconstructions from China and Korea are used in this paper to investigate the East Asian summer monsoon-related precipitation variation over the past 160 years. Statistically, there is no linear correlation on a year-by-year basis between Chinese and Korean monsoon rainfall, but region-wide synchronous variation on a decadal-scale was observed. More rainfall intervals were 1860–1890, 1910–1925, and 1940–1960, and dry or even drought periods were 1890–1910, 1925–1940, and 1960–present. Reconstructions also display that the East Asian summer monsoon precipitation suddenly changed from more into less around mid-1920. These tree-ring precipitation records were also confirmed by Chinese historical dryness/wetness index and Korean historical rain gauge data.  相似文献   

2.
The main characteristic of the East Asian climate is the monsoon system. Plenty of studies have demonstrated that the Asian monsoon system plays a crucial role in the global climate sys- tem [1-4]. The Asian summer monsoon can be divided into two parts, t…  相似文献   

3.
Rockfall is an important process in the final sculpturing of escarpments and scree slopes that originate in bedrock landslides in the Flysch Carpathians. The spatio‐temporal characteristics of rockfall activity were studied at four localities representative of old landslides in the highest part of the Czech Flysch Carpathians (Moravskoslezské Beskydy Mountains). Historical activity, chronology, and spatial context of rockfall activity were reconstructed using dendrogeomorphic techniques and rockfall rate index (RR). A total of 1132 increment cores from 283 trees growing in the rockfall transport and accumulation zones enabled the dating of 989 rockfall events. Reconstruction of a 78‐year‐long RR chronology suggests similar rockfall histories and trends at all study sites, indicating the existence of major common factors driving rockfall dynamics in the region. Temporal analysis and correlation of the RR series obtained with monthly mean temperatures, numbers of days with temperature transitions through 0 °C and monthly precipitation totals show that meteorological characteristics have evident but variable influence on rockfall activity. The most important factor is the effect of freeze–thaw cycles throughout the year, supplemented by low temperatures, especially during autumn. The influence of precipitation totals is of lesser importance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Global climate change is one of the most serious issues we are facing today. While its exact impacts on our water resources are hard to predict, there is a general consensus among scientists that it will result in more frequent and more severe hydrologic extremes (e.g. floods, droughts). Since rainfall is the primary input for hydrologic and water resource studies, assessment of the effects of climate change on rainfall is essential for devising proper short-term emergency measures as well as long-term management strategies. This is particularly the case for a region like the Korean Peninsula, which is susceptible to both floods (because of its mountainous terrain and frequent intense rainfalls during the short rainy season) and droughts (because of its smaller area, long non-rainy season, and lack of storage facilities). In view of this, an attempt is made in the present study to investigate the potential impacts of climate change on rainfall in the Korean Peninsula. More specifically, the dynamics of ‘present rainfall’ and ‘future rainfall’ at the Seoul meteorological station in the Han River basin are examined and compared; monthly scale is considered in both cases. As for ‘present rainfall,’ two different data sets are used: (1) observed rainfall for the period 1971–1999; and (2) rainfall for the period 1951–1999 obtained through downscaling of coarse-scale climate outputs produced by the Bjerknes Center for Climate Research-Bergen Climate Model Version 2 (BCCR-BCM2.0) climate model with the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) 20th Century Climate in Coupled Models (20C3M) scenario. The ‘future rainfall’ (2000–2099) is obtained through downscaling of climate outputs projected by the BCCR-BCM2.0 with the A2 emission scenario. For downscaling of coarse-scale climate outputs to basin-scale rainfall, a K-nearest neighbor (K-NN) technique is used. Examination of the nature of rainfall dynamics is made through application of four methods: autocorrelation function, phase space reconstruction, correlation dimension, and close returns plot. The results are somewhat mixed, depending upon the method, as to whether the rainfall dynamics are chaotic or stochastic; however, the dynamics of the future rainfall seem more on the chaotic side than on the stochastic side, and more so when compared to that of the present rainfall.  相似文献   

5.
The major controls of rockfall activity are divided into two interacting groups. (a)Climatic factors which, through their control of temperatures and the availability and state of water, are primary controls of rockfall trigger mechanisms. (b) Geologic factors which, via cliff form (plan, profile, dissection etc.) and the character and availability of materials, influence the type, spatial distribution and intensity of rockfall activity. Detailed examination of these controls suggest that both seasonal and daily patterns of rockfall activity can vary markedly over a very small area. The implications of this variability for the design and interpretation of rockfall inventories are discussed using sample data from Surprise Valley, Jasper National Park, for the period from May-October 1969. On a seasonal basis rockfall activity showed a major spring peak with secondary maxima in the fall and associated with major summer storms. Two sites of differing aspect and morphology were studied in more detail revealing marked differences in the mean hourly frequency (0·94:0·20), mean hourly probability (0·40:0·16, hours with rockfall/hours observed) and daily pattern of rockfall activity. The west facing site showed equal hourly probability of rockfalls from 1000 to 2000 hr whereas the east facing slope had a greater hourly probability when it was in the sun (1100 1400hr) than in the shade (1400-1900hr). The differences in rockfall frequency and probabilities reflect the physical characteristics of the individual sites whereas the daily pattern of rockfalls is related to microclimate. These results suggest that if future inventory studies are to make a significant contribution, they must be carefully designed field experiments in which. (i) Data are restricted to the study or comparison of single continuously observed sites. (ii) Study sites and/or data periods are carefully selected to isolate and investigate specific controls e.g. the influence of cliff form, aspect, periods of rainfall etc. on rockfall patterns. (iii) Good on-site microclimate data are available. Also comparison of frequency measures based on the arithmetic mean should be avoided since the distribution of rockfalls per hour closely follows a Poisson distribution with occasional high values which unduly influence the value of the arithmetic mean. It is suggested that rockfall probabilities, based on the binary decision of whether or not a rockfall occurs in a given period, are a more useful measure for daily patterns of rockfall activity.  相似文献   

6.
There is increased interest in the potential of tree planting to help mitigate flooding using nature-based solutions or natural flood management. However, many publications based upon catchment studies conclude that, as flood magnitude increases, benefit from forest cover declines and is insignificant for extreme flood events. These conclusions conflict with estimates of evaporation loss from forest plot observations of gross rainfall, through fall and stem flow. This study explores data from existing studies to assess the magnitudes of evaporation and attempts to identify the meteorological conditions under which they would be supported. This is achieved using rainfall event data collated from publications and data archives from studies undertaken in temperate environments around the world. The meteorological conditions required to drive the observed evaporation losses are explored theoretically using the Penman–Monteith equation. The results of this theoretical analysis are compared with the prevailing meteorological conditions during large and extreme rainfall events in mountainous regions of the United Kingdom to assess the likely significance of wet canopy evaporation loss. The collated dataset showed that event Ewc losses between approximately 2 and 38% of gross rainfall (1.5 to 39.4 mm day−1) have been observed during large rainfall events (up to 118 mm day−1) and that there are few data for extreme events (>150 mm day−1). Event data greater than 150 mm (reported separately) included similarly high percentage evaporation losses. Theoretical estimates of wet-canopy evaporation indicated that, to reproduce the losses towards the high end of these observations, relative humidity and the aerodynamic resistance for vapour transport needed to be lower than approximately 97.5% and 0.5 to 2 s m−1 respectively. Surface meteorological data during large and extreme rainfall events in the United Kingdom suggest that conditions favourable for high wet-canopy evaporation are not uncommon and indicate that significant evaporation losses during large and extreme events are possible but not for all events and not at all locations. Thus the disparity with the results from catchment studies remains.  相似文献   

7.
This study presents an evaluation of a comprehensive dataset with information on about 700 recorded rockfall events in Germany for the first time. The focus is on the analysis of monthly distributions of three rockfall clusters in German low mountain ranges and of three elevation classes to provide an overview of the characteristic seasonal occurrence of rockfalls in Germany. Each rockfall distribution is correlated with records of meteorological station clusters which are representative for the long-term climate conditions of the particular rockfall cluster and elevation class, respectively. The stored parameters in the dataset (year of occurrence, rock volumes, slope angles, affected objects) are evaluated to complete the extensive and differentiated overview of rockfalls in Germany. The analyses of the distributions of the three rockfall clusters show a distinct event concentration in the winter months. Differences are apparent between the monthly distributions of the elevation classes in which clear peaks are partially visible. Freeze–thaw cycles are considered to be the major trigger of winter rockfalls in Germany. Overall, the presented results may serve as a basis for further studies in the German low mountain ranges. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
The purpose of dendrogeomorphic analyses is to amplify the signal related to the geomorphic process under investigation, and to minimize the noise induced by other signals in the tree-ring series. Yet, to date, no study accounts specifically for interferences induced by climate conditions or exogenous disturbances and which can, potentially, affect the quality of tree-ring based process reconstructions. In this paper, we develop a specific procedure allowing evaluation of the quality of reconstructions in five avalanche paths at Oberwald (Swiss Alps). The study is based on possible interferences between snow avalanches, climatic conditions and ecological signals in the tree-ring series. Analysis of past events was based on tree-ring series from 564 heavily affected, multi-centennial European larch trees (Larix decidua Mill.) growing near or next to the avalanche paths. A total of 2389 growth disturbances, such as scars, tangential rows of traumatic resin ducts, compression wood as well as abrupt growth suppressions or releases, were identified in the samples, indicating 43 destructive snow avalanches since AD 1780. At the same time, 31 potential events, which were detected with the conventional Shroder index value, were rejected from the final reconstruction due to potentially strong interferences between the different signals. This high rejection rate underlines the necessity to systematically–and carefully–discriminate ecological and climatic noise from avalanche-related disturbances. This discrimination is even more so crucial as a significant proportion of dendrogeomorphic studies in the Alps are based on L. decidua trees which are cyclically affected by larch budmoth outbreaks.  相似文献   

9.
Litter layers develop across a diverse array of vegetated ecosystems and undergo significant temporal compositional changes due to canopy phenological phases and disturbances. Past research on temporal dynamics of litter interception has focused primarily on litter thickness and leaf fall, yet forest phenophases can change many more litter attributes (e.g., woody debris, bark shedding, and release of reproductive materials). In this study, weekly changes in litter composition over 1 year were used to estimate litter water storage dynamics and model event‐based litter interception. Litter interception substantially reduced throughfall (6–43%), and litter water storage capacity ranged from 1 to 3 mm, peaking when megastrobili release and liana leaf senescence occurred simultaneously during fall 2015. Tropical storm disturbances occurred during the sampling period, allowing evaluation of how meteorological disturbances altered litter interception. High wind speeds and intense rainfall from 2 tropical storms increased litter interception by introducing new woody debris, which, in this study, stored more water than the pre‐existing woody debris. After 2 extreme weather events, a third (Hurricane Hermine) did not increase woody debris (or litter interception), suggesting that the canopy pool of branches susceptible to breakage had been largely depleted. Needle and bark shedding had minor effects on litter interception. Results suggest that the release of reproductive materials and meteorological disturbances appear to be the major compositional drivers of litter interception beyond their obvious contribution to litter thickness.  相似文献   

10.
Tree radial growth is influenced by individual tree abilities, climate, competition, disturbance regimes, as well as biogeomorphic processes – including biomechanical interactions between trees and soil. Trees are actively involved in hillslope dynamics, both responding to and affecting many (bio)geomorphic processes. Using dendrochronology, we studied feedbacks associated with tree–soil–landscape formation, specifically relationships between hillslope processes, biomechanical effects of trees in soils, tree microhabitat conditions and their morphological adaptations, in the flysch zone of the Carpathians. We visually evaluated stem shape, microhabitat conditions and the biomechanical effects of 1663 trees. Cores were taken in four growing directions from 224 individuals of European beech (Fagus sylvatica L.). In a set of 193 cross-dated beeches, average tree-ring widths and tree eccentricities in all directions were calculated and analysed in relation to the biogeomorphic impacts of trees. Some significant drivers of tree radial growth and sources of stem eccentricity were detected. The radial growth of trees on which deadwood was leaning was markedly limited. In contrast, trees with exposed roots expressed the highest growth rates. This clearly suggests that root exposure may not be an effect of ‘exogenous’ soil creep, but may rather result from individually intensifying tree growth due to fine-scale disturbance dynamics. The response of biomechanical tree–soil interactions in tree radial growth weakened with increasing stem diameter, reflecting the stabilizing role of larger trees. The significance of calendar year on radial growth suggests seasonality in the dynamic component of soil creep. Tree eccentricity was observed mainly in the downslope direction, which suggests a relatively complex effect of biomechanics on stem tilting. © 2020 John Wiley & Sons, Ltd.  相似文献   

11.
Wang  Jianglin  Yang  Bao  Zheng  Jingyun  Zhang  Xuezhen  Wang  Zhiyuan  Fang  Miao  Shi  Feng  Liu  Jingjing 《中国科学:地球科学(英文版)》2020,63(8):1126-1143
The temperature variability over multidecadal and longer timescales(e.g., the cold epochs in the late 15 th, 17 th, and early 19 th centuries) is significant and dominant in the millennium-long, large-scale reconstructions and model simulations;however, their temporal patterns in the reconstructed and simulated temperature series are not well understood and require a detailed assessment and comparison. Here, we compare the reconstructed and simulated temperature series for the Northern Hemisphere(NH) at multidecadal and longer-term timescales(30 years) by evaluating their covariance, climate sensitivity and amplitude of temperature changes. We found that covariances between different reconstructions or between reconstructions and simulations are generally high for the whole period of 850–1999 CE, due to their similar long-term temporal patterns. However,covariances between different reconstructions or between reconstructions and simulations steadily decline as time series extends further back in time, becoming particularly small during Medieval times. This is related to the large uncetainties in the reconstructions caused by the decreased number of proxy records and sample duplication during the pre-instrumental periods.Reconstructions based solely on tree-ring data show higher skill than multiproxy reconstructions in capturing the amplitude of volcanic cooling simulated by models. Meanwhile, climate models have a shorter recovery(i.e., lag) in response to the cooling caused by volcanic eruptions and solar activity minima, implying the lack of some important feedback mechanisms between external forcing and internal climate processes in climate models. Amplitudes of temperature variations in the latest published tree-ring reconstructions are comparable to those of the multiproxy reconstructions. We found that the temperature difference between the Medieval Climate Anomaly(950–1250 CE) and the Little Ice Age(1450–1850 CE) is generally larger in proxybased reconstructions than in model simulations, but the reason is unclear.  相似文献   

12.
High-frequency stable isotope data are useful for validating atmospheric moisture circulation models and provide improved understanding of the mechanisms controlling isotopic compositions in tropical rainfall. Here, we present a near-continuous 6-month record of O- and H-isotope compositions in both water vapour and daily rainfall from Northeast Australia measured by laser spectroscopy. The data set spans both wet and dry seasons to help address a significant data and knowledge gap in the southern hemisphere tropics. We interpret the isotopic records for water vapour and rainfall in the context of contemporaneous meteorological observations. Surface air moisture provided near-continuous tracking of the links between isotopic variations and meteorological events on local to regional spatial scales. Power spectrum analysis of the isotopic variation showed a range of significant periodicities, from hourly to monthly scales, and cross-wavelet analysis identified significant regions of common power for hourly averaged water vapour isotopic composition and relative humidity, wind direction, and solar radiation. Relative humidity had the greatest subdiurnal influence on isotopic composition. On longer timescales (weeks to months), isotope variability was strongly correlated with both wind direction and relative humidity. The high-frequency records showed diurnal isotopic variations in O- and H-isotope compositions due to local dew formation and, for deuterium excess, as a result of evapotranspiration. Several significant negative isotope anomalies on a daily scale were associated with the activity of regional mesoscale convective systems and the occurrence of two tropical cyclones. Calculated air parcel back trajectories identified the predominant moisture transport paths from the Southwest Pacific Ocean, whereas moisture transport from northerly directions occurred mainly during the wet season monsoonal airflow. Water vapour isotope compositions reflected the same meteorological events as recorded in rainfall isotopes but provided much more detailed and continuous information on atmospheric moisture cycling than the intermittent isotopic record provided by rainfall. Improved global coverage of stable isotope data for atmospheric water vapour is likely to improve simulations of future changes to climate drivers of the hydrological cycle.  相似文献   

13.
Evidence of the solar activity modulation of the Earth’s climate has been observed on several parameters, from decadal to millennial time scales. Several proxies have been used to reconstruct the paleoclimate as well as the solar activity. The paleoclimate reconstructions are based on direct and/or indirect effects of global and regional climate conditions. The solar activity reconstructions are based on the production of the 14C isotope due to the interaction of cosmic ray flux and the Earth’s atmosphere. Because trees respond to climate conditions and store 14C, they have been used as proxies for both for climate and solar activity reconstructions. The imprints of solar activity cycles dating back to 10,000 years ago have been observed on tree-ring samples using 14C data, and those dating back to 20 million years ago have been analyzed using fossil tree-growth rings. All this corresponds to the Cenozoic era. However, solar activity imprints on tree rings from earlier than that era have not been investigated yet. In this work, we showed that tree rings from the Mesozoic Era (of ~200 million years ago) recorded 11- and 22-year cycles, which may be related to solar activity cycles, and that were statistically significant at the 95 % confidence level. The fossil wood was collected in the southern region of Brazil. Our analysis of the fossils' tree-ring width series power spectra showed characteristics similar to the modern araucaria tree, with a noticeable decadal periodicity. Assuming that the Earth’s climate responds to solar variability and that responses did not vary significantly over the last ~200 million years, we conclude that the solar–climate connection was likely present during the Mesozoic era.  相似文献   

14.
Both from a systemic and natural hazard perspective, it is essential to understand the causes and frequency of rockfalls in mountain terrain and to predict the block sizes deposited at specific locations. Commonly, rockfalls are studied either retrospectively, using talus slopes, or directly by rockwall surveys. Nevertheless, our understanding of rockfall activity, particularly at the lower magnitude spectrum, is still incomplete. Moreover, the explanatory framework is rarely addressed explicitly. In this study, we investigate two rockwall–talus systems in the Swiss Alps to estimate the rockfall frequency–magnitude pattern and their key controls. We present a holistic approach that integrates deductive geotechnical and thermal investigations of the source rockwalls with abductive talus‐based explanations of rockfall volume and frequency. The rockwalls' three‐dimensional (3D) joint pattern indicates that 75% of the blocks may be released as debris fall (< 14 m3) and boulder falls (14–61 m3), which is mirrored in the corresponding talus material. Using two‐year records of near‐surface rockwall temperatures as input for a 1D heat conduction model underlines the destabilizing role of seasonal ice segregation. Deepest frost cracking of 300 cm may occur on the north‐northeast (NNE)‐exposed, snow‐rich rockwall, with peaks at the outermost surface. The synthesis of all data suggests that infrequent, large planar slides (approximately every 250 years) overlain by smaller, more frequent wedge and toppling failures (approximately every 17–50 years) as well as high‐frequency flake‐like clasts (3–6 events/year) characterize the rockfall frequency–magnitude pattern at Hungerli Peak. Here, we argue that small‐size rockfalls need more scientific attention, particularly in discontinuous permafrost zones. Our study emphasizes that future frequency–magnitude research should ideally incorporate site‐specific structural and thermal properties, rather than just focusing on climatic or meteorological triggers. We discuss how holistic rockwall–talus approaches, as proposed here, could help to increase our process understanding of rockfalls in mountain environments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
High-resolution rockfall inventories captured at a regional scale are scarce. This is partly owing to difficulties in measuring the range of possible rockfall volumes with sufficient accuracy and completeness, and at a scale exceeding the influence of localized controls. This paucity of data restricts our ability to abstract patterns of erosion, identify long-term changes in behaviour and assess how rockfalls respond to changes in rock mass structural and environmental conditions. We have addressed this by developing a workflow that is tailored to monitoring rockfalls and the resulting cliff retreat continuously (in space), in three-dimensional (3D) and over large spatial scales (>104 m). We tested our approach by analysing rockfall activity along 20.5 km of coastal cliffs in North Yorkshire (UK), in what we understand to be the first multi-temporal detection of rockfalls at a regional scale. We show that rockfall magnitude–frequency relationships, which often underpin predictive models of erosion, are highly sensitive to the spatial extent of monitoring. Variations in rockfall shape with volume also imply a systemic shift in the underlying mechanisms of detachment with scale, leading us to question the validity of applying a single probabilistic model to the full range of rockfalls observed here. Finally, our data emphasize the importance of cliff retreat as an episodic process. Going forwards, there will a pressing need to understand and model the erosional response of such coastlines to rising global sea levels as well as projected changes to winds, tides, wave climates, precipitation and storm events. The methodologies and data presented here are fundamental to achieving this, marking a step-change in our ability to understand the competing effects of different processes in determining the magnitude and frequency of rockfall activity and ultimately meaning that we are better placed to investigate relationships between process and form/erosion at critical, regional scales. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

16.
Seasonal suspended sediment transfer in glaciated catchments is responsive to meteorological, geomorphological, and glacio-fluvial conditions, and thus is a useful indicator of environmental system dynamics. Knowledge of multifaceted fluvial sediment-transfer processes is limited in the Alaskan Arctic – a region sensitive to contemporary environmental change. For two glaciated sub-catchments at Lake Peters, northeast Brooks Range, Alaska, we conducted a two-year endeavour to monitor the hydrology and meteorology, and used the data to derive multiple-regression models of suspended sediment load. Statistical selection of the best models shows that incorporating meteorological or temporal explanatory variables improves performances of turbidity- and discharge-based sediment models. The resulting modelled specific suspended sediment yields to Lake Peters are: 33 (20–60) t km−2 yr−1 in 2015, and 79 (50–140) t km−2 yr−1 in 2016 (95% confidence band estimates). In contrast to previous studies in Arctic Alaska, fluvial suspended sediment transfer to Lake Peters was primarily influenced by rainfall, and secondarily influenced by temperature-driven melt processes associated with clockwise diurnal hysteresis. Despite different sub-catchment glacier coverage, specific yields were the same order of magnitude from the two primary inflows to Lake Peters, which are Carnivore Creek (128 km2; 10% glacier coverage) and Chamberlin Creek (8 km2; 23% glacier coverage). Seasonal to longer-term sediment exhaustion and/or contrasting glacier dynamics may explain the lower than expected relative specific sediment yield from the more heavily glacierized Chamberlin Creek catchment. Absolute suspended sediment yield (t yr−1) from Carnivore Creek to Lake Peters was 27 times greater than from Chamberlin Creek, which we attribute to catchment size and sediment supply differences. Our results provide a foundational understanding of the current sediment transfer regime and are useful for predicting changes in fluvial sediment transport in glaciated Alaskan Arctic catchments.  相似文献   

17.
Water driven soil erosion is a major cause of land degradation worldwide. Ephemeral gullies (EGs) are considered key contributors to agricultural catchment soil loss. Despite their importance, the parameters and drivers controlling EG dynamics have not been adequately quantified. Here we investigate the effects of rainfall characteristics on EGs, using the physically based landform evolution model (LEM) CAESAR‐Lisflood. An initial goal of this study was to test the feasibility of using a LEM to estimate EG dynamics based on an easily obtainable and moderate spatial resolution (2 × 2 m) Digital Elevation Model (DEM). EG evolution was simulated for two rainfall seasons in a 0.37 km2 agricultural plot situated in a semiarid catchment in central Israel. The 2014 rainfall season was used to calibrate the model and the 2015 season was used for validation. The model overall well predicted the EG network structure and average depth but tended to underestimate the EG length. The effects of rainfall characteristics on EG dynamics were investigated by comparing simulations employing seven rainfall scenarios. Four of these scenarios differ in their overall rainfall volume relative to observed precipitation (+20%, +10%, ?10%, ?20%). The remaining three scenarios vary in the temporal distribution of rainfall during each storm, allowing us to isolate the effect of rainfall intensity on EG evolution. The results show that: (1) EG dynamics strongly correlated with changes in rainfall volume; (2) small‐scale morphological behavior varies between rainfall scenarios, resulting in different meandering and connectivity variability; (3) EG evolution is divided into two main stages, an initial rapid development occurring after the first two weeks of the rainy season, followed by a stable development period; (4) a 12 mm h?1 intensity threshold was observed to initiate and, later, modify EGs; and (5) inner storm rainfall variability can have a considerable effect on EG evolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Tropical river basins are experiencing major hydrological alterations as a result of climate variability and deforestation. These drivers of flow changes are often difficult to isolate in large basins based on either observations or experiments; however, combining these methods with numerical models can help identify the contribution of climate and deforestation to hydrological alterations. This paper presents a study carried out in the Tapaj?s River (Brazil), a 477,000 km2 basin in South‐eastern Amazonia, in which we analysed the role of annual land cover change on daily river flows. Analysis of observed spatial and temporal trends in rainfall, forest cover, and river flow metrics for 1976 to 2008 indicates a significant shortening of the wet season and reduction in river flows through most of the basin despite no significant trend in annual precipitation. Coincident with seasonal trends over the past 4 decades, over 35% of the original forest (140,000 out of 400,000 km2) was cleared. In order to determine the effects of land clearing and rainfall variability to trends in river flows, we conducted hindcast simulations with ED2 + R, a terrestrial biosphere model incorporating fine scale ecosystem heterogeneity arising from annual land‐use change and linked to a flow routing scheme. The simulations indicated basin‐wide increases in dry season flows caused by land cover transitions beginning in the early 1990s when forest cover dropped to 80% of its original extent. Simulations of historical potential vegetation in the absence of land cover transitions indicate that reduction in rainfall during the dry season (mean of ?9 mm per month) would have had an opposite and larger magnitude effect than deforestation (maximum of +4 mm/month), leading to the overall net negative trend in river flows. In light of the expected increase in future climate variability and water infrastructure development in the Amazon and other tropical basins, this study presents an approach for analysing how multiple drivers of change are altering regional hydrology and water resources management.  相似文献   

19.
While dendroclimatic studies have extended the knowledge of drought variations in Tien Shan, these have been almost exclusively based on tree-ring data from Tien Shan in China. We present a drought reconstruction for Almaty based on a tree-ring width chronology developed from sites of the Schrenk spruce in Tien Shan, Kazakhstan. The drought reconstruction, spanning AD 1785–2014, was developed by calibrating tree-ring series with the mean August to January standardized precipitation evapotranspiration index (SPEI). The drought reconstruction was verified with independent data and accounts for 41.9 % of the actual SPEI variance during the common period. The drought reconstruction compares well with some tree-ring-based drought/precipitation reconstructions from Western Tien Shan and reveals the large-scale drought signals of Western Tien Shan. The wavelet analysis indicates the existence of some decadal (60 and 11 years) and interannual (2.0–4.0 years) periodicities, which may potentially be the fingerprints of large-scale land–atmosphere–ocean circulations. This study provides the first long-term drought reconstruction and drought assessment for Almaty and will aid in future plans to address climate change of Kazakhstan.  相似文献   

20.
Precipitation is the most fundamental input of water for terrestrial ecosystems. Most precipitation inputs are vertical, via rain, but can be horizontal, via wind‐driven rain and snow, or, in some ecosystems such as tropical montane cloud forests (TMCFs), via fog interception. Fog interception can be particularly important in ecosystems where fog is frequently present and there are seasonal periods of lower rainfall. Epiphytes in trees are a major ecological component of TMCFs and are particularly dependent on fog interception during periods of lower rainfall because they lack access to soil water. But assessing fog interception by epiphytes remains problematic because: (i) a variety of field or laboratory methods have been used, yet comparisons of interception by epiphytes versus interception by various types of fog gauge are lacking; (ii) previous studies have not accounted for potential interactions between meteorological factors. We compared fog interception by epiphytes with two kinds of commonly used fog gauges and developed relations between fog interception and meteorological variables by conducting laboratory experiments that manipulated key fog characteristics and from field measurements of fog interception by epiphytes. Fog interception measured on epiphytes was correlated with that measured from fog gauges but was more than an order of magnitude smaller than the actual measurements from fog gauges, highlighting a key measurement issue. Our laboratory measurements spanned a broad range of liquid water content (LWC) values for fog and indicate how fog interception is sensitive to an interaction between wind speed and LWC. Based on our results, considered in concert with those from other studies, we hypothesize that fog interception is constrained when LWC is low or high, and that fog interception increases with wind speed for intermediate values of LWC—a net result of deposition, impaction, and evaporation processes—until interception begins to decrease with further increases in wind speed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号