首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Reference evapotranspiration (ET) is an important parameter that needs to be estimated accurately to enhance its utility in numerous applications. Although the widely recommended procedure for calculating this index involves using the FAO Penman–Monteith equation (ETo), the latter’s effectiveness is constrained by its considerable data requirements. To overcome this constraint, alternative methods using the limited data available have to be explored. In this study the ability of the Hargreaves and Samani (ETHS) and Thornthwaite (ETT) equations to estimate ET was investigated using multi-year data (1999–2008) from eight weather stations in the semi-arid Free State Province of South Africa. Results for non-calibrated equations are closely correlated, with ETHS tending to underestimate ET for the July to December period while ETT underestimates ET for all months of the calendar year. Although estimates from calibrated equations are also closely correlated, they have smaller deviations compared to the original equations with the calibrated Hargreaves and Samani equation (ETCHS) estimating reference evapotranspiration better than its calibrated Thornthwaite (ETCT) counterpart. The former’s better performance suggests that in data-scarce areas, the Hargreaves and Samani model is capable of giving results within acceptable ranges of accuracy.  相似文献   

2.
The Western Boreal Plain of North Central Alberta comprises a mosaic of wetlands and aspen (Populus tremuloides) dominated uplands where precipitation (P) is normally exceeded by evapotranspiration (ET). As such these systems are highly susceptible to the climatic variability that may upset the balance between P and ET. Above canopy evapotranspiration (ETC) and understory evapotranspiration (ETB) were examined using the eddy covariance technique situated at 25.5 m (7.5 m above tree crown) and 4.0 m above the ground surface, respectively. During the peak period of the growing seasons (green periods), ETC averaged 3.08 mm d?1 and 3.45 mm d?1 in 2005 and 2006, respectively, while ETB averaged 1.56 mm d?1 and 1.95 mm d?1. Early in the growing season, ETB was equal to or greater than ETC once understory development had occurred. However, upon tree crown growth, ETB was lessened due to a reduction in available energy. ETB ranged from 42 to 56% of ETC over the remainder of the snow‐free seasons. Vapour pressure deficit (VPD) and soil moisture (θ) displayed strong controls on both ETC and ETB. ETC responded to precipitation events as the developed tree crown intercepted and held available water which contributed to peak ETC following precipitation events >10 mm. While both ETC and ETB were shown to respond to VPD, soil moisture in the rooting zone is shown to be the strongest control regardless of atmospheric demand. Further, soil moisture and tension data suggest that rooting zone soil moisture is controlled by the redistribution of soil water by the aspen root system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Evapotranspiration (ET) plays an important role in integrated water resource planning, development and management. This process is particularly relevant in semiarid regions. The aim of this study is, hence, to compare spatial and temporal patterns of actual ET, as well as the temporal trends in two different semiarid forests, Caatinga (Brazil) and Tierra de Pinares (Spain). We used the surface energy balance algorithm for land (SEBAL) to assess actual evapotranspiration (ETa) in both areas. In the Brazilian semiarid forest, Caatinga is the main vegetation, while it is Pinares in Spain. For this purpose, 69 Landsat-5 and 42 Landsat-8 images (1995–2019) were used. The Mann–Kendall test was applied to assess the occurrence of trends in precipitation, temperature and potential ET data; and the Temporal Stability Index (TSI) to know which areas have greater seasonal ETa. The annual amplitude of the potential evapotranspiration (ET0) is the same in both areas, however, the Caatinga values are higher. In the Caatinga forest, when ET0 presents its highest values throughout the year, ETa presents the lowest, and vice versa. In the Pinares forest, ETa follows the ET0 dynamics during the year, and the difference between ET0 and ETa is maximum during the summer. The Caatinga forest showed a greater spatial variation of ETa than the Pinares forest as well as a greater extension with lower temporal stability of ETa than the Pinares forest. Both the Caatinga forest and the Pinares forest showed significant positive trends in annual ET0 and ETa. We estimate that the value of ETa increases more rapidly in Pinares than in the Brazilian Caatinga. Taking Caatinga as a hydrological mirror, some consequences are expected to Pinares, such as significant changes in the water balance, increase of biodiversity vulnerability, and reduction of water availability in soil and reservoirs.  相似文献   

4.
X. Mo  S. Liu  Z. Lin  S. Wang  S. Hu 《水文科学杂志》2013,58(12):2163-2177
Abstract

Using satellite observations of Normalized Difference Vegetation Index (NDVI) from NOAA-AVHRR and Terra-MODIS, together with climatic data in a physical evapotranspiration (ET) model, the spatio-temporal variability of ET is investigated in terrestrial China from 1981 to 2010. The model predictions of actual ET (ETa) are validated with ET values from in situ eddy covariance flux measurements and from basin water balance calculations. The national averaged crop reference ET (ETp) and ETa values are 916 ± 21 and 415 ± 12 mm year-1, respectively. The annual ETa pattern is closely associated with vegetation conditions in the eastern part of China, whereas ETa is low in the sparsely-vegetated areas and deserts in the northwestern region, corresponding to scarce rainfall events and amounts. The trends of ETp and ETa are remarkably different over the country, and the complementary relationship between ETp and ETa is revealed for the study period. Averaged over the whole country, ETa showed an increasing trend from the 1980s to the mid-1990s, followed by a decreasing trend, consistent with the precipitation anomaly. Across the main vegetation types, annual ETa amounts are found to correspond clearly with the bands of precipitation and ETp.  相似文献   

5.
The accurate estimation of evapotranspiration (ET) is essential for assessing water availability and requirements of regional-scale terrestrial ecosystems, and for understanding the hydrological cycle in alpine ecosystems. In this study, two large-scale weighing lysimeters were employed to estimate the magnitude and dynamics of actual evapotranspiration in a humid alpine Kobresia meadow from January 2018 to December 2019 on the northeastern Qinghai-Tibetan Plateau (QTP). The results showed that daily ETa averaged 2.24 ± 0.10 mm day −1 throughout the study period, with values of 3.89 ± 0.14 and 0.81 ± 0.06 mm day−1 during the growing season and non-growing season, respectively. The cumulative ETa during the study period was 937.39 mm, exceeding precipitation (684.20 mm) received at the site during the same period by 37%, suggesting that almost all precipitation in the lysimeters was returned to the atmosphere by evapotranspiration. Furthermore, the cumulative ETa (805.04 mm) was almost equal to the maximum potential evapotranspiration estimated by the FAO-56 reference evapotranspiration (ET0) (801.94 mm) during the growing season, but the cumulative ETa (132.25 mm) was 113.72% less than the minimum equilibrium ETeq) (282.86 mm) during the non-growing season due to the limited surface moisture in frozen soil. The crop coefficient (Kc) also showed a distinct seasonal pattern, with a monthly average of 1.01 during the growing season. Structural equation model (SEM) and boosted regression tree (BRT) show that net radiation and air temperature were the most important factors affecting daily ETa during the whole study period and growing season, but that non-growing season ETa was dominated by soil water content and net radiation. The daily Kc was dominated by net radiation. Furthermore, both ETa and Kc were also affected by aboveground biomass.  相似文献   

6.
Estimation of daily evapotranspiration (ET) over cloudy regions highly desires models which rely on meteorological data only. Notwithstanding, the conventional crop coefficient (Kc) method requires detailed knowledge of geo/biophysical properties of the coupled land-vegetation system, precipitation, and soil moisture. Six Eddy Covariance (EC) towers in Iowa, California and New Hampshire of the USA (covering corn, soybeans, prairie, and deciduous forest) were selected. Investigation on 6 years (2007–2012) 15-min micrometeorological records of these sites revealed that there is an indubitable strong interaction between relative humidity (RH), reference ET (ETo), and actual ET at different timescales. This allowed to bypass the need for the non-meteorological inputs and express Kc as a second-order polynomial function of RH and ETo, the ambient regression evapotranspiration model (AREM). The coefficients of the empirical function are crop-specific and may require calibration over different soil types. The mean absolute percentage error (MAPE) of the regression against daily EC observations was 17% during the growing season, and 32% throughout the year with root mean square error (RMSE) of 0.74 mm day−1 and coefficient of determination of 0.71. The model was fully operational (MAPE of 34% and RMSE of 0.82 mm day−1) over the four Iowan sites based on inputs from local weather stations and NLDAS-2 forcing data of NASA. AREM was capable of capturing the dynamics of ET at 15-min and daily timescales irrespective of varying complexities associated with biophysical, geophysical and climatological states.  相似文献   

7.
Eddy covariance (EC) and micro‐meteorological data were collected from May 2010 to January 2013 from urban, non‐irrigated bahiagrass (Paspalum notatum) in subtropical south Florida. The objectives were to determine monthly crop coefficients (Kc) for non‐irrigated bahiagrass by using EC evapotranspiration (ET) data and the Food and Agriculture Organization 56 Penman–Monteith reference evapotranspiration equation; compare crop ET (ETc) calculated with new Kc values to ETc obtained using Kc values available in the literature; and compare results and methodologies for statistical differences. New Kc values ranged from 0.62 to 0.92 and were different from Kc values found in the scientific literature for bahiagrass. Resulting ETc calculated using literature Kc values were significantly different from EC ET data, whereas ETc using the new Kc values was not. Specifically, literature Kc values were temporally biased to miscalculate the timing of convergence between potential and actual ET, assuming that our new Kc values calculated with EC methods were most accurate. As a consequence, ETc calculated using the literature Kc values was either too large or too small. However, one set of literature Kc values from a similar climate and water table depth were closer to our new Kc values, indicating that climate should be considered when selecting urban non‐irrigated Kc from the literature to estimate ET. Results also indicated that more than 1 year of EC ET data was needed when establishing monthly Kc values because of annual variability in factors controlling ET, such as water availability. The new Kc values reported herein could be used as an estimate for urban non‐irrigated bahiagrass within similar climates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Many applications in diverse disciplines require estimates of evapotranspiration (ET) at hourly or smaller time steps. The primary objectives of this study were to compare the American Society of Civil Engineers (ASCE) and FAO-56 Penman–Monteith equations for 15-min ET0 (ET0,15-min,ASCE and ET0,15-min,FAO) estimations for humid climate conditions and to compare the 24 h sum of ASCE (ET0,24 h,ASCE) and FAO-56 15-min ET0 (ET0,24 h,FAO) with the daily ET0 (ET0,d,FAO) computed from the daily FAO-56 equation, which is identical to ASCE daily ET0 equation. Ten-year, i.e., 1997–2006 continuous 15-min and daily weather data for 11 representative and well-distributed sites throughout Georgia, USA were used. It was evident that during the day, ET0,15-min,ASCE was higher than ET0,15-min,FAO due to a lower surface resistance parameter value, while at night ET0,15-min,ASCE was lower than ET0,15-min,FAO due to a higher surface resistance parameter value. The ET0,15-min,FAO was about 5% less than ET0,15-min,ASCE and ET0,24 h,FAO was about 5% lower than ET0,24 h,ASCE. The difference between ET0,15-min,ASCE and ET0,15-min,FAO during the day and night was highly dependent on wind speed. During the three summer months, i.e., June, July and August, on average, ET0,24 h,FAO was only 1% higher than ET0,d,FAO while ET0,24 h,ASCE was 5% higher than ET0,d,FAO. For the entire year, ET0,24 h,FAO was 8% higher than ET0,d,FAO while ET0,24 h,ASCE was 13% higher than ET0,d,FAO. The ET0,24 h,FAO and ET0,d,FAO had a better agreement than ET0,24 h,ASCE and ET0,d,FAO throughout the year and during the summer months. It is also worth noting that the daily calculations for FAO-56 and ASCE were identical. These results demonstrated that for applications that require 15-min time steps or daily ET0 for the entire year, the use of ET0,15-min,FAO and ET0,24 h,FAO, respectively, will yield more consistent outcomes. The use of ET0,d,FAO during the summer months can be as accurate as the use of ET0,24 h,FAO for applications that require daily time steps, such as irrigation scheduling.  相似文献   

9.
Analysis of spatial and temporal variations of reference evapotranspiration (ETo) is important in arid and semi‐arid regions where water resources are limited. The main aim of this study was to analyse the spatial distribution and the annual, seasonal and monthly trends of the Penman–Monteith ETo for 21 stations in the arid and semi‐arid regions of Iran. Three statistical tests the Mann‐Kendall, Sen's slope estimator and linear regression were used for the analysis. The analysis revealed that ETo increased from January to July and deceased from July to December at almost all stations. Additionally, higher annual ETo values were found in the southeast of the study region and lower values in the northwest of the region. Although the results showed both positive and negative trends in annual ETo series, ETo generally increased, significantly so in six (~30%) of the stations. Analysis of the impacts of meteorological variables on the temporal trends of ETo indicated that the increasing trend of ETo was most likely due to a significant increase in minimum air temperature, while decreasing trend of ETo was mainly caused by a significant decrease in wind speed. At the sites where increasing ETo trends were statistically significant, the rate of increase varied from (+)8·36 mm/year at Mashhad station to (+)31·68 mm/year at Iranshahr station. On average, an increasing trend of (+)4·42 mm/year was obtained for the whole study area during the last four decades. Seasonal and monthly ETo have also tended to increase at the majority of the stations. The greatest numbers of significant trends were observed in winter on the seasonal time‐scale and in September on the monthly time‐scale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Evapotranspiration (ET) is the largest term after precipitation in terrestrial water budgets. Accurate estimates of ET are needed for numerous agricultural and natural resource management tasks and to project changes in hydrological cycles due to potential climate change. We explore recent methods that combine vegetation indices (VI) from satellites with ground measurements of actual ET (ETa) and meteorological data to project ETa over a wide range of biome types and scales of measurement, from local to global estimates. The majority of these use time-series imagery from the Moderate Resolution Imaging Spectrometer on the Terra satellite to project ET over seasons and years. The review explores the theoretical basis for the methods, the types of ancillary data needed, and their accuracy and limitations. Coefficients of determination between modeled ETa and measured ETa are in the range of 0.45–0.95, and root mean square errors are in the range of 10–30% of mean ETa values across biomes, similar to methods that use thermal infrared bands to estimate ETa and within the range of accuracy of the ground measurements by which they are calibrated or validated. The advent of frequent-return satellites such as Terra and planed replacement platforms, and the increasing number of moisture and carbon flux tower sites over the globe, have made these methods feasible. Examples of operational algorithms for ET in agricultural and natural ecosystems are presented. The goal of the review is to enable potential end-users from different disciplines to adapt these methods to new applications that require spatially-distributed ET estimates.  相似文献   

11.
Chen Sun  Li Ren 《水文研究》2013,27(8):1200-1222
Quantitative assessment of surface water resources (SWRs) and evapotranspiration (ET) is essential and significant for reasonably planning and managing water resources in the Haihe River basin which is facing severe water shortage. In this study, a distributed hydrological model of the Haihe River basin was constructed using the Soil and Water Assessment Tool, well considering the reservoirs and agricultural management practices for reasonable simulation. The crop parameters were independently calibrated with the observed crop data at six experimental stations. Then, sensitivity ranks of hydrological parameters were analysed, which suggested the important parameters used for calibration. The model was successfully calibrated using the monthly observed data of discharge in around 1970–1991 and actual ET (ETa) in 2002–2004 for the mountainous area and Haihe plain, respectively. Meanwhile, good agreements between the simulated and statistical crop yields in 1985–2005 further verified the model's appropriateness. Finally, the calibrated model was used to assess SWRs and ETa in time and space during 1961–2005. Results showed that the average annual natural SWRs and the ETa were about 17.5 billion cubic metre and 542 mm, respectively, both with a slight downward trend. The spatial distributions of both SWRs and ETa were significantly impacted by variations of precipitation and land use. Moreover, the reservoir in operation was the main factor for the noticeable decline of actual SWRs. In the Haihe plain, the ETa with irrigation was increased by 46% compared with that under rainfed conditions. In addition, this study identified the regions with potential to improve the irrigation effects on water use. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This study was undertaken to evaluate the effects of climatic variability on inter‐annual variations in each component of evapotranspiration (ET) and the total ET in a temperate coniferous forest in Japan. We conducted eddy covariance flux and meteorological measurements for 7 years and parameterized a one‐dimensional multi‐layer biosphere‐atmosphere model (Kosugi et al., 2006 ) that partitions ET to transpiration (Tr), wet‐canopy evaporation (Ewet), and soil evaporation (Esoil). The model was validated with the observed flux data. Using the model, the components of ET were estimated for the 7 years. Annual precipitation, ET, Tr, Ewet, and Esoil over the 7 years were 1536 ± 334 mm, 752 ± 29 mm, 425 ± 37 mm, 219 ± 34 mm, and 108 ± 10 mm, respectively. The maximum inter‐annual fluctuation of observed ET was 64 mm with a coefficient of variance (CV) of 2.7%, in contrast to relatively large year‐to‐year variations in annual rainfall (CV = 20.1%). Tr was related to the vapour pressure deficit, incoming radiation, and air temperature with relatively small inter‐annual variations (CV = 8.2%). Esoil (CV = 8.6%) was related mainly to the vapour pressure deficit. Ewet was related to precipitation with large inter‐annual variations (CV = 14.3%) because of the variability in precipitation. The variations in Ewet were counterbalanced by the variations in Tr and Esoil, producing the small inter‐annual variations in total ET. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Irrigation of agricultural oases is the main water consumer in semi‐arid and arid regions of Northwestern China. The accurate estimation of evapotranspiration (ET) on the oases is extremely important for evaluating water use efficiency so as to reasonably allocate water resources, particularly in semi‐arid and arid areas. In this study, we integrated the soil moisture information into surface energy balance system (SEBS) for improving irrigated crop water consumption estimation. The new approach fed with the moderate resolution imaging spectro‐radiometer images mapped spatiotemporal ET on the oasis in the middle reach of the Heihe river. The daily ET outputs of the new approach were compared with those of the original SEBS using the eddy correlation observations, and the results demonstrate that the modified SEBS remedied the shortcoming of general overestimating ET without regard to soil water stress. Meanwhile, the crop planting structure and leaf area index spatiotemporal distribution in the studied region were derived from the high‐resolution Chinese satellite HJ‐1/CCD images for helping analyse the pattern of the monthly ET (ETmonthly). The results show that the spatiotemporal variation of ETmonthly is closely related to artificial irrigation and crop growth. Further evaluation of current irrigation water use efficiency was conducted on both irrigation district scale and the whole middle reach of the Heihe river. The results reveal that the average fraction of consumed water on irrigation district scale is 57% in 2012. The current irrigation water system is irrational because only 52% of the total irrigated amount was used to fulfil plant ET requirement and the rest of the irrigation water recharged into groundwater in the oasis in 2012. However, in view of the whole middle reach of the Heihe river, the irrigation water use efficiency could reach to 66% in 2012. But pumping groundwater for reused irrigation wastes mostly energy instead of water. An improved irrigation water allocation system according to actual ET requirement is needed to increase irrigation efficiency per cubic meter water resource in an effort to save both water and energy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The Food and Agriculture Organizations' (FAO) Penman–Monteith reference evapotranspiration (ET0) is a crucial index in the research of water and energy balance. Temporal and spatial variations in ET0 from 1981–2017 were investigated in the Hengduan Mountains, China. The results showed a change point around the year 2000 in ET0 series. ET0 decreased and increased significantly by +3.200 mm/year (p < 0.01) from 1981–2000 and by +4.109 mm/year (p < 0.01) from 2001–2017, respectively. The contribution analysis shows that the positive significant contribution of air temperature (TA) was offset by negative effects of decreases in downward shortwave radiation (Rs) and wind speed (WS) and an increase in actual vapour pressure (ea), causing the decrease in ET0 from 1981 to 2000. WS was the largest contributing factor for the decrease in ET0 from 1981 to 2000 during spring, winter and annually, while Rs and ea were the largest negative contributors in summer and autumn, respectively. An increase in TA was responsible for the increase in ET0 in all seasons except winter and the annual scale in 2001–2017. The sensitivity analysis shows that ET0 was most sensitive to TA, and WS was the least sensitive variable. The trends of ET0 increased with elevation; we denote this as the elevation-dependence of ET0 changes. The elevation-dependence was also noted for the trends of WS and ea, with higher elevations showing larger changes in WS and lower changes in ea. Besides, the sensitivities of TA, Rs and ea decreased with elevation, while that of WS increased slightly with elevation. A comprehensive investigation into the trends of climatic drivers and their sensitivities revealed complex trends of the contributions of climatic variables on ET0 with elevation, with no uniform trend existed in seasons. The results will contribute to our understanding of the response of ET0 to climate change in a mountainous area, and provide a guideline for the water resources management under climate change.  相似文献   

15.
Accurate estimation of evapotranspiration (ET) is essential in water resources management and hydrological practices. Estimation of ET in areas, where adequate meteorological data are not available, is one of the challenges faced by water resource managers. Hence, a simplified approach, which is less data intensive, is crucial. The FAO‐56 Penman–Monteith (FAO‐56 PM) is a sole global standard method, but it requires numerous weather data for the estimation of reference ET. A new simple temperature method is developed, which uses only maximum temperature data to estimate ET. Ten class I weather stations data were collected from the National Meteorological Agency of Ethiopia. This method was compared with the global standard PM method, the observed Piche evaporimeter data, and the well‐known Hargreaves (HAR) temperature method. The coefficient of determination (R2) of the new method was as high as 0.74, 0.75, and 0.91, when compared with that of PM reference evapotranspiration (ETo), Piche evaporimeter data, and HAR methods, respectively. The annual average R2 over the ten stations when compared with PM, Piche, and HAR methods were 0.65, 0.67, and 0.84, respectively. The Nash–Sutcliff efficiency of the new method compared with that of PM was as high as 0.67. The method was able to estimate daily ET with an average root mean square error and an average absolute mean error of 0.59 and 0.47 mm, respectively, from the PM ETo method. The method was also tested in dry and wet seasons and found to perform well in both seasons. The average R2 of the new method with the HAR method was 0.82 and 0.84 in dry and wet seasons, respectively. During validation, the average R2 and Nash–Sutcliff values when compared with Piche evaporation were 0.67 and 0.51, respectively. The method could be used for the estimation of daily ETo where there are insufficient data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Strategic planning of optimal water use requires an accurate assessment of actual evapotranspiration (ETa) to understand the environmental and hydrological processes of the world's largest contiguous irrigation networks, including the Indus Basin Irrigation System (IBIS) in Pakistan. The Surface Energy Balance System (SEBS) has been used successfully for accurate estimations of ETa in different river basins throughout the world. In this study, we examined the application of SEBS using publically available remote sensing data to assess spatial variations in water consumption and to map water stress from daily to annual scales in the IBIS. Ground‐based ETa was calculated by the advection‐aridity method, from nine meteorological sites, and used to evaluate the intra‐annual seasonality in the hydrological year 2009–2010. In comparison with the advection‐aridity, SEBS computed daily ETa was slightly underestimated with a bias of ?0.15 mm day?1 during the kharif (wet; April–September) season, and it was overestimated with a bias of 0.23 mm day?1 in the rabi (dry; October–March) season. Monthly values of the ETa estimated by SEBS were significantly (P < 0.05) controlled by mean air temperature and rainfall, among other climatological variables (relative humidity, sunshine hours and wind speed). Because of the seasonal (kharif and rabi) differences in the water and energy budget in the huge canal command areas of the IBIS, ETa and rainfall were positively correlated in the kharif season and were negatively correlated during the rabi season. In addition, analysis of the evaporation process showed that mixed‐cropping and rice–wheat dominated areas had lower and higher water consumption rates, respectively, in comparison with other cropping systems in the basin. Basin areas under water stress were identified by means of spatial variations in the relative evapotranspiration, which had an average value of 0.59 and 0.42 during the kharif and the rabi seasons, respectively. The hydrological parameters used in this study provide useful information for understanding hydrological processes at different spatial and temporal scales. Results of this study further suggest that the SEBS is useful for evaluation of water resources in semi‐arid to arid regions over longer periods, if the data inputs are carefully handled. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Reference evapotranspiration (ET 0 ) is a key parameter in hydrological and meteorological studies. In this study, the FAO Penman–Monteith equation was used to estimate ET 0 , and the change in ET 0 was investigated in China from 1960 to 2011. The results show that a change point around the year 1993 was detected for the annual ET 0 series by the Cramer’s test. For the national average, annual ET 0 decreased significantly (P < 0.001) by ?14.35 mm/decade from 1960 to 1992, while ET 0 increased significantly (P < 0.05) by 22.40 mm/decade from 1993 to 2011. A differential equation method was used to attribute the change in ET 0 to climate variables. The attribution results indicate that ET 0 was most sensitive to change in vapor pressure, followed by solar radiation, air temperature and wind speed. However, the effective impact of change in climate variable on ET 0 was the product of the sensitivity and the change rate of climate variable. During 1960–1992, the decrease in solar radiation was the main reason of the decrease in ET 0 in humid region, while decrease in wind speed was the dominant factor of decreases in ET 0 in arid region and semi-arid/semi-humid region of China. Decrease in solar radiation and/or wind speed offset the effect of increasing air temperature on ET 0 , and together led to the decrease in ET 0 from 1960 to 1992. Since 1993, the rapidly increasing air temperature was the dominant factor to the change in ET 0 in all the three regions of China, which led to the increase in ET 0 . Furthermore, the future change in ET 0 was calculated under IPCC SRES A1B and B1 scenarios with projections from three GCMs. The results showed that increasing air temperature would dominate the change in ET 0 and ET 0 would increase by 2.13–10.77, 4.42–16.21 and 8.67–21.27 % during 2020s, 2050s and 2080s compared with the average annual ET 0 during 1960–1990, respectively. The increases in ET 0 would lead to the increase in agriculture water consumption in the 21st century and may aggravate the water shortage in China.  相似文献   

18.
Xiaomang Liu  Dan Zhang 《水文研究》2013,27(26):3941-3948
Reference evapotranspiration (ET0) is an important element in the water cycle that integrates atmospheric demands and surface conditions, and analysis of changes in ET0 is of great significance for understanding climate change and its impacts on hydrology. As ET0 is an integrated effect of climate variables, increases in air temperature should lead to increases in ET0. However, this effect could be offset by decreases in vapor pressure deficit, wind speed, and solar radiation which lead to the decrease in ET0. In this study, trends in the Penman–Monteith ET0 at 80 meteorological stations during 1960–2010 in the driest region of China (Northwest China) were examined. The results show that there was a change point for ET0 series around the year 1993 based on the Pettitt's test. For the region average, ET0 decreased from 1960 to 1993 by ?2.34 mm yr?2, while ET0 began to increase since 1994 by 4.80 mm yr?2. A differential equation method based on the Food and Agriculture Organization Penman–Monteith formula was used to attribute the change in ET0. The attribution results show that the significant decrease in wind speed dominated the change in ET0, which offset the effect of increasing air temperature and led to the decrease in ET0 from 1960 to 1993. However, wind speed began to increase, and the amplitude of increase in air temperature also rose significantly since the mid‐1990s. Increases in air temperature and wind speed together reversed the trend in ET0 and led to the increase in ET0 since 1994. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Knowledge of exchanges of energy and water over terrestrial surfaces is the first step towards understand the ecohydrological mechanisms, particularly in water-limited ecosystems in dryland environments. However, patterns of energy exchange and evapotranspiration (ET) are not well understood in the oasis-desert ecotone, which plays an important role in protecting oases against the threat of desertification in arid regions of northwestern China. Here, the continuous measurements of surface energy fluxes were made using eddy covariance in conjunction with auxiliary measurements for 2 years (2014–2015) in an oasis-desert ecotone mainly covered by phreatophyte shrubs Haloxylon ammodendron, Nitraria tangutorum/sphaerocarpa, and Calligonum mongolicum in arid northwestern China. Based on the collated data for 2 years, statistical analysis on a 30-min time scale indicated that approximately 50% of daytime net radiation (Rn) in the ecotone was dissipated as H on average, and one-third of Rn was consumed by soil heat flux (G). Only 9% of Rn was consumed for latent heat flux (λE), which peaked in summer (21% in 2014 and 16% in 2015), corresponding to the highest rainfall season. Daily mean ET was approximately 1 mm days−1 during the growing season of the shrub species. Accumulated annual ET was 195 and 181 mm in 2014 and 2015, respectively, exceeding the corresponding precipitation (P) by approximately 87 and 77 mm, indicating that groundwater may be another important source of water for ET in the ecotone aside from rainfall. Results within provide valuable insights into the mechanisms responsible for sustaining energy and water balance in the ecotone, a potentially groundwater-dependent ecosystem. These results also offer a foremost ecohydrological implication for water and land resources management and ecotone conservation, such as avoiding heavy groundwater pumping for extensive agricultural irrigation use to sustain groundwater availability for these shrub species in the ecotone.  相似文献   

20.
Sustainable water management in semi-arid agriculture practices requires quantitative knowledge of water fluxes within the soil-vegetation-atmosphere system. Therefore, we used stable-isotope approaches to evaluate evaporation (Ea), transpiration (Ta), and groundwater recharge (R) at sites in Senegal's Groundnut basin and Ferlo Valley pasture region during the pre-monsoon, monsoon, and post-monsoon seasons of 2021. The approaches were based upon (i) the isothermal evaporation model (for quantifying Ea); (ii) water and isotope mass balances (to partition Ea and Ta for groundnut and pasture); and (iii) the piston displacement method (for estimating R). Ea losses derived from the isothermal evaporation model corresponded primarily to Stage II evaporation, and ranged from 0.02 to 0.09 mm d−1 in the Groundnut basin, versus 0.02–0.11 mm d−1 in Ferlo. At the groundnut site, Ea rates ranged from 0.01 to 0.69 mm d−1; Ta was in the range 0.55–2.29 mm d−1; and the Ta/ETa ratio was 74%–90%. At the pasture site, the ranges were 0.02–0.39 mm d−1 for Ea; 0.9–1.69 mm d−1 for Ta; and 62–90% for Ta/ETa. The ETa value derived for the groundnut site via the isotope approach was similar to those from eddy covariance measurements, and also to the results from the previous validated HYDRUS-1D model. However, the HYDRUS-1D model gave a lower Ta/ETa ratio (23.2%). The computed groundwater recharge for the groundnut site amounted to less than 2% of the local annual precipitation. Recommendations are made regarding protocols for preventing changes to isotopic compositions of water in samples that are collected in remote arid regions, but must be analysed days later. The article ends with suggestions for studies to follow up on evidence that local aquifers are being recharged via preferential pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号