首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Mountain headwater catchments in the semi‐arid Intermountain West are important sources of surface water because these high elevations receive more precipitation than neighboring lowlands. This study examined subsurface runoff in two hillslopes, one aspen dominated, the other conifer dominated, adjacent to a first order stream in snow‐driven northern Utah. Snow accumulation, soil moisture, trenchflow and streamflow were examined in hillslopes and their adjacent stream. Snow water equivalents (SWEs) were greater under aspen stands compared to conifer, the difference increasing with higher annual precipitation. Semi‐variograms of shallow spatial soil moisture patterns and transects of continuous soil moisture showed no increase in soil moisture downslope, suggesting the absence of subsurface flow in shallow (~12 cm) soil layers of either vegetation type. However, a clear threshold relationship between soil moisture and streamflow indicated hillslope–stream connectivity, deeper within the soil profile. Subsurface flow was detected at ~50 cm depth, which was sustained for longer in the conifer hillslope. Soil profiles under the two vegetation types varied, with deep aspen soils having greater water storage capacity than shallow rocky conifer soils. Though SWEs were less under the conifers, the soil profile had less water storage capacity and produced more subsurface lateral flow during the spring snowmelt. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Snowmelt water supplies streamflow and growing season soil moisture in mountain regions, yet pathways of snowmelt water and their effects on moisture patterns are still largely unknown. This study examined how flow processes during snowmelt runoff affected spatial patterns of soil moisture on two steep sub‐alpine hillslope transects in Rocky Mountain National Park, CO, USA. The transects have northeast‐facing and east‐facing aspects, and both extend from high‐elevation bedrock outcrops down to streams in valley bottoms. Spatial patterns of both snow depth and near‐surface soil moisture were surveyed along these transects in the snowmelt and summer seasons of 2008–2010. To link these patterns to flow processes, soil moisture was measured continuously on both transects and compared with the timing of discharge in nearby streams. Results indicate that both slopes generated shallow lateral subsurface flow during snowmelt through near‐surface soil, colluvium and bedrock fractures. On the northeast‐facing transect, this shallow subsurface flow emerged through mid‐slope seepage zones, in some cases producing saturation overland flow, whereas the east‐facing slope had no seepage zones or overland flow. At the hillslope scale, earlier snowmelt timing on the east‐facing slope led to drier average soil moisture conditions than on the northeast‐facing slope, but within hillslopes, snow patterns had little relation to soil moisture patterns except in areas with persistent snow drifts. Results suggest that lateral flow and exfiltration processes are key controls on soil moisture spatial patterns in this steep sub‐alpine location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Climate change threatens water resources in snowmelt‐dependent regions by altering the fraction of snow and rain and spurring an earlier snowmelt season. The bulk of hydrological research has focused on forecasting response in streamflow volumes and timing to a shrinking snowpack; however, the degree to which subsurface storage offsets the loss of snow storage in various alpine geologic settings, i.e. the hydrogeologic buffering capacity, is still largely unknown. We address this research need by assessing the affects of climate change on storage and runoff generation for two distinct hydrogeologic settings present in alpine systems: a low storage granitic and a greater storage volcanic hillslope. We use a physically based integrated hydrologic model fully coupled to a land surface model to run a base scenario and then three progressive warming scenarios, and account for the shifts in each component of the water budget. For hillslopes with greater water retention, the larger storage volcanic hillslope buffered streamflow volumes and timing, but at the cost of greater reductions in groundwater storage relative to the low storage granite hillslope. We found that the results were highly sensitive to the unsaturated zone retention parameters, which in the case of alpine systems can be a mix of matrix or fracture flow. The presence of fractures and thus less retention in the unsaturated zone significantly decreased the reduction in recharge and runoff for the volcanic hillslope in climate warming scenarios. This approach highlights the importance of incorporating physically based subsurface flow in to alpine hydrology models, and our findings provide ways forward to arrive at a conceptual model that is both consistent with geology and hydrologic principles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Information on the main drivers of subsurface flow generation on hillslopes of alpine headwater catchments is still missing. Therefore, the dominant factors controlling the water table response to precipitation at the hillslope scale in the alpine Bridge Creek Catchment, Northern Italy, were investigated. Two steep hillslopes of similar size, soil properties and vegetation cover but contrasting topography were instrumented with 24 piezometric wells. Sixty‐three (63) rainfall‐runoff events were selected over three years in the snow‐free months to analyse the influence of rainfall depth, antecedent moisture conditions, hillslope topographic characteristics and soil depth on shallow water table dynamics. Piezometric response, expressed as percentage of well activation and water peak magnitude, was strongly correlated with soil moisture status, as described by an index combining antecedent soil moisture and rainfall depth. Hillslope topography was found to be a dominant control only for the convex‐divergent hillslope and during wet conditions. Timing of water table response depended primarily on soil depth and topographic position, with piezometric peak response occurring later and showing a greater temporal variability at the hillslope bottom, characterized by thicker soil. The relationship between mean hillslope water table level and standard deviation for all wells reflected the timing of the water table response at the different locations along the hillslopes. The outcomes of this research contribute to a better understanding of the controls on piezometric response at the hillslope scale in steep terrain and its role on the hydrological functioning of the study catchment and of other sites with similar physiographic characteristics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Precipitation runoff is a critical hillslope hydrological process for downslope streamflow and piedmont/floodplain recharge. Shimen hillslope micro‐catchment is strategically located in the central foothill region of Taihang Mountains, where runoff is crucial for water availability in the piedmont corridors and floodplains of north China. This study analyzes precipitation‐runoff processes in the Shimen hillslope micro‐catchment for 2006–2008 using locally designed runoff collection systems. The study shows that slope length is a critical factor, next only to precipitation, in terms of runoff yield. Regression analysis also shows that runoff is related positively to precipitation, and negatively to slope length. Soil mantle in the study area is generally thin and is therefore not as critical a runoff factor as slope length. The study shows a significant difference between overland and subsurface runoff. However, that between the 0–10 and 10–20 cm subsurfaces is insignificant. Runoff hardly occurs under light rains (<10 mm), but is clearly noticeable under moderate‐to‐rainstorm events. In the hillslope catchment, vertical infiltration (accounting for 42–84% of the precipitation) dominates runoff processes in subsurface soils and weathered granite gneiss bedrock. A weak lateral flow (at even the soil/bedrock interface) and the generally small runoff suggest strong infiltration loss via deep percolation. This is critical for groundwater recharge in the downslope piedmont corridors and floodplains. This may enhance water availability, ease water shortage, avert further environmental degradation, and reduce the risk of drought/flood in the event of extreme weather conditions in the catchment and the wider north China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Monitoring runoff generation processes in the field is a prerequisite for developing conceptual hydrological models and theories. At the same time, our perception of hydrological processes strongly depends on the spatial and temporal scale of observation. Therefore, the aim of this study is to investigate interactions between runoff generation processes of different spatial scales (plot scale, hillslope scale, and headwater scale). Different runoff generation processes of three hillslopes with similar topography, geology and soil properties, but differences in vegetation cover (grassland, coniferous forest, and mixed forest) within a small v‐shaped headwater were measured: water table dynamics in wells with high spatial and temporal resolution, subsurface flow (SSF) of three 10 m wide trenches at the bottom of the hillslopes subdivided into two trench sections each, overland flow at the plot scale, and catchment runoff. Bachmair et al. ( 2012 ) found a high spatial variability of water table dynamics at the plot scale. In this study, we investigate the representativity of SSF observations at the plot scale versus the hillslope scale and vice versa, and the linkage between hillslope dynamics (SSF and overland flow) and streamflow. Distinct differences in total SSF within each 10 m wide trench confirm the high spatial variability of the water table dynamics. The representativity of plot scale observations for hillslope scale SSF strongly depends on whether or not wells capture spatially variable flowpaths. At the grassland hillslope, subsurface flowpaths are not captured by our relatively densely spaced wells (3 m), despite a similar trench flow response to the coniferous forest hillslope. Regarding the linkage between hillslope dynamics and catchment runoff, we found an intermediate to high correlation between streamflow and hillslope hydrological dynamics (trench flow and overland flow), which highlights the importance of hillslope processes in this small watershed. Although the total contribution of SSF to total event catchment runoff is rather small, the contribution during peak flow is moderate to substantial. Additionally, there is process synchronicity between spatially discontiguous measurement points across scales, potentially indicating subsurface flowpath connectivity. Our findings stress the need for (i) a combination of observations at different spatial scales, and (ii) a consideration of the high spatial variability of SSF at the plot and hillslope scale when designing monitoring networks and assessing hydrological connectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

The Loess Plateau in China is overlain by deep and loose soil. As in other semi-arid regions, convective precipitation produces storms, typically of short duration, relatively high intensity and limited areal extent. Infiltration excess (Hortonian mechanism) of precipitation is conventionally assumed to be more prominent than saturation excess (Dunne mechanism) for storm runoff generation. This assumption is true at a point during the storm. However, the runoff generation mechanism is altered when the runoff is conditioned by a lateral redistribution movement of water, i.e. run-on, as the spatial scale increases. In the Loess Plateau, the effects of run-on may be significant, because of the deep and loose surface soil layer. In this study, the role of run-on for overland flow in the Upper Wei River basin, located in the Loess Plateau, is evaluated by means of a simple numerical model at the hillslope scale. The results show that almost all the Hortonian overland flow infiltrates into the soil along the flat hillslope and dry gully before it reaches the river channel. Most of the runoff is generated from the saturated soil near the river channel and from the subsurface. The run-on process takes much longer than the infiltration, facilitating rainfall–runoff modelling at a daily time step. A hydrological model is employed to investigate the characteristics of runoff generation in the Upper Wei River basin. The analysis shows that the subsurface flow contribution to total streamflow is more than 53% from October to March, while the overland flow contribution exceeds 72% from April to September.

Editor D. Koutsoyiannis; Associate editor Dawen Yang

Citation Liu, D.F., Tian, F.Q., Hu, H.C., and Hu, H.P., 2012. The role of run-on for overland flow and the characteristics of runoff generation in the Loess Plateau, China. Hydrological Sciences Journal, 57 (6), 1107–1117.  相似文献   

8.
Processes controlling streamflow generation were determined using geochemical tracers for water years 2004–2007 at eight headwater catchments at the Kings River Experimental Watersheds in southern Sierra Nevada. Four catchments are snow‐dominated, and four receive a mix of rain and snow. Results of diagnostic tools of mixing models indicate that Ca2+, Mg2+, K+ and Cl? behaved conservatively in the streamflow at all catchments, reflecting mixing of three endmembers. Using endmember mixing analysis, the endmembers were determined to be snowmelt runoff (including rain on snow), subsurface flow and fall storm runoff. In seven of the eight catchments, streamflow was dominated by subsurface flow, with an average relative contribution (% of streamflow discharge) greater than 60%. Snowmelt runoff contributed less than 40%, and fall storm runoff less than 7% on average. Streamflow peaked 2–4 weeks earlier at mixed rain–snow than snow‐dominated catchments, but relative endmember contributions were not significantly different between the two groups of catchments. Both soil water in the unsaturated zone and regional groundwater were not significant contributors to streamflow. The contributions of snowmelt runoff and subsurface flow, when expressed as discharge, were linearly correlated with streamflow discharge (R2 of 0.85–0.99). These results suggest that subsurface flow is generated from the soil–bedrock interface through preferential pathways and is not very sensitive to snow–rain proportions. Thus, a declining of the snow–rain ratio under a warming climate should not systematically affect the processes controlling the streamflow generation at these catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Twelve modified passive capillary samplers (M‐PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil‐water endmembers in the watershed. The seasonally integrated stable isotope composition (δ18O and δ2H) of soil‐meltwater collected with M‐PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow‐subsurface measurements. The M‐PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow‐subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M‐PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M‐PCAPS design appears to be a useful, robust methodology to quantify soil‐water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil‐meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first-order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated-soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.  相似文献   

12.
Few systematic studies of valley‐scale geomorphic drivers of streamflow regimes in complex alpine headwaters have compared response between catchments. As a result, little guidance is available for regional‐scale hydrological research and monitoring efforts that include assessments of ecosystem function. Physical parameters such as slope, elevation range, drainage area and bedrock geology are often used to stratify differences in streamflow response between sampling sites within an ecoregion. However, these metrics do not take into account geomorphic controls on streamflow specific to glaciated mountain headwaters. The coarse‐grained nature of depositional features in alpine catchments suggests that these landforms have little water storage capacity because hillslope runoff moves rapidly just beneath the rock mantle before emerging in fluvial networks. However, recent studies show that a range of depositional features, including talus slopes, protalus ramparts and ‘rock‐ice’ features may have more storage capacity than previously thought. To better evaluate potential differences in streamflow response among basins with extensive coarse depositional features and those without, we examined the relationships between streamflow discharge, stable isotopes, water temperature and the amplitude of the diurnal signal at five basin outlets. We also quantified the percentages of colluvial channel length measured along the stepped longitudinal profile. Colluvial channels, characterized by the presence of surficial, coarse‐grained depositional features, presented sediment‐rich, transport‐limited morphologies that appeared to have a cumulative effect on the timing and volume of flow downstream. Measurements taken from colluvial channels flowing through depositional landforms showed median recession constants (Kr) of 0.9–0.95, δ18O values of ≥?14.5 and summer diurnal amplitudes ≤0.8 as compared with more typical surface water recession constant values of 0.7, δ18O ≤ ?13.5 and diurnal amplitudes >2.0. Our results demonstrated strong associations between the percentage of colluvial channel length within a catchment and moderated streamflow regimes, water temperatures, diurnal signals and depleted δ18O related to groundwater influx. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Tropical montane cloud forests (TMCF) receive additional (‘occult’) inputs of water from fog and wind-driven rain. Together with the concomitant reduction in evaporative losses, this typically leads to high soil moisture levels (often approaching saturation) that are likely to promote rapid subsurface flow via macropores. Although TMCF make up an estimated 6.6% of all remaining montane tropical forest and occur mostly in steep headwater areas that are protected in the expectation of reduced downstream flooding, TMCF hillslope hydrological functioning has rarely been studied. To better understand the hydrological response of a supra-wet TMCF (net precipitation up to 6535 mm y−1) on heterogeneously layered volcanic ash soils (Andosols), we examined temporal and spatial soil moisture dynamics and their contribution to shallow subsurface runoff and stormflow for a year (1 July 2003–30 June 2004) in a small headwater catchment on the Atlantic (windward) slope near Monteverde, NW Costa Rica. Particular attention was paid to the partitioning of water fluxes into lateral subsurface flow and vertical percolation. The presence of a gravelly layer (C-horizon) at ~25 cm depth of very high hydraulic conductivity (geometric mean: 502 mm h−1) intercalated between two layers of much lower conductivity (7.5 and 15.7 mm h−1 above and below, respectively), controlled both surface infiltration and delayed vertical water movement deeper into the soil profile. Soil water fluxes during rainfall were dominated by rapid lateral flow in the gravelly layer, particularly at high soil moisture levels. In turn, this lateral subsurface flow controlled the magnitude and timing of stormflow from the catchment. Stormflow amount increased rapidly once topsoil moisture content exceeded a threshold value of ~0.58 cm3 cm−3. Responses were not affected appreciably by rainfall intensity because soil hydraulic conductivities across the profile largely exceeded prevailing rainfall intensities.  相似文献   

14.
We measured deuterium excess (d = δD ? 8δ18O) in throughfall, groundwater, soil water, spring water, and stream water for 3 years in a small headwater catchment (Matsuzawa, 0·68 ha) in the Kiryu Experimental Watershed in Japan. The d value represents a kinetic effect produced when water evaporates. The d value of the throughfall showed a sinusoidal change (amplitude: 6·9‰ relative to Vienna standard mean ocean water (V‐SMOW)) derived from seasonal changes in the source of water vapour. The amplitude of this sinusoidal change was attenuated to 1·3–6·9‰ V‐SMOW in soil water, groundwater, spring water, and stream water. It is thought that these attenuations derive from hydrodynamic transport processes in the subsurface and mixing processes at an outflow point (stream or spring) or a well. The mean residence time (MRT) of water was estimated from d value variations using an exponential‐piston flow model and a dispersion model. MRTs for soil water were 0–5 months and were not necessarily proportional to the depth. This may imply the existence of bypass flow in the soil. Groundwater in the hillslope zone had short residence times, similar to those of the soil water. For groundwater in the saturated zone near the spring outflow point, the MRTs differed between shallow and deeper groundwater; shallow groundwater had a shorter residence time (5–8 months) than deeper groundwater (more than 9 months). The MRT of stream water (8–9 months) was between that of shallow groundwater near the spring and deeper groundwater near the spring. The seasonal variation in the d value of precipitation arises from changes in isotopic water vapour composition associated with seasonal activity of the Asian monsoon mechanism. The d value is probably an effective tracer for estimating the MRT of subsurface water not only in Japan, but also in other East Asian countries influenced by the Asian monsoon. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Land‐use/cover change (LUCC), and more specifically deforestation and multidecadal agriculture, is one of the various controlling factors of water fluxes at the hillslope or catchment scale. We investigated the impact of LUCC on water pathways and stream stormflow generation processes in a subtropical region in southern Brazil. We monitored, sampled and analysed stream water, pore water, subsurface water, and rainwater for dissolved silicon concentration (DSi) and 18O/16O (δ18O) signature to identify contributing sources to the streamflow under forest and under agriculture. Both forested and agricultural catchments were highly responsive to rainfall events in terms of discharge and shallow groundwater level. DSi versus δ18O scatter plots indicated that for both land‐use types, two run‐off components contributed to the stream discharge. The presence of a dense macropore network, combined with the presence of a compact and impeding B‐horizon, led to rapid subsurface flow in the forested catchment. In the agricultural catchment, the rapid response to rainfall was mostly due to surface run‐off. A 2‐component isotopic hydrograph separation indicated a larger contribution of rainfall water to run‐off during rainfall event in the agricultural catchments. We attributed this higher contribution to a decrease in topsoil hydraulic conductivity associated with agricultural practices. The chemical signature of the old water component in the forested catchment was very similar to that of the shallow groundwater and the pore soil water: It is therefore likely that the shallow groundwater was the main source of old water. This is not the case in the agricultural catchments where the old water component had a much higher DSi concentration than the shallow groundwater and the soil pore water. As the agricultural catchments were larger, this may to some extent simply be a scale effect. However, the higher water yields under agriculture and the high DSi concentration observed in the old water under agriculture suggest a significant contribution of deep groundwater to catchment run‐off under agriculture, suggesting that LUCC may have significant effects on weathering rates and patterns.  相似文献   

16.
A small stream in the Great Plains of USA was sampled to understand the streamflow components following intense precipitation and the influence of water storage structures in the drainage basin. Precipitation, stream, ponds, ground-water and soil moisture were sampled for determination of isotopic (D, 18O) and chemical (Cl, SO4) composition before and after two intense rain events. Following the first storm event, flow at the downstream locations was generated primarily through shallow subsurface flow and runoff whereas in the headwaters region – where a pond is located in the stream channel – shallow ground-water and pond outflow contributed to the flow. The distinct isotopic signatures of precipitation and the evaporated pond water allowed separation of the event water from the other sources that contributed to the flow. Similarly, variations in the Cl and SO4 concentrations helped identify the relative contributions of ground-water and soil moisture to the streamflow. The relationship between deuterium excess and Cl or SO4 content reveals that the early contributions from a rain event to streamflow depend upon the antecedent climatic conditions and the position along the stream channel within the watershed. The design of this study, in which data from several locations within a watershed were collected, shows that in small streams changes in relative contributions from ground water and soil moisture complicate hydrograph separation, with surface-water bodies providing additional complexity. It also demonstrates the usefulness of combined chemical and isotopic methods in hydrologic investigations, especially the utility of the deuterium excess parameter in quantifying the relative contributions of various source components to the stream flow.  相似文献   

17.
The impacts of forest conversion on runoff generation in the tropics have received much interest, but scientific progress is still hampered by challenging fieldwork conditions and limited knowledge about runoff mechanisms. Here, we assessed the runoff generation, flow paths and water source dynamics of a pristine rainforest catchment in Costa Rica using end member mixing analysis (EMMA) and a Bayesian mixing model (MixSIAR). Geochemical tracer data collected over a 4-week field campaign were combined with tritium data used to assess potential deeper groundwater flow pathways to the perennial stream. The streamflow composition was best captured using three end-members, namely throughfall, shallow (5–15 cm) and deeper (15–50 cm) soil water. We estimated the end-member contributions to the main stream and two tributaries using the two mixing approaches and found good agreement between results obtained from EMMA and MixSIAR. The system was overwhelmingly dominated by near-surface sources, with little evidence for deeper and older groundwater as tritium-derived baseflow mean transit time was between 2.0 and 4.4 years. The shallow soil flow pathway dominated streamflow contributions in the main stream (median 39% and 49% based on EMMA and MixSIAR, respectively), followed by the deeper soil (32% and 31%) and throughfall (25% and 19%). The two tributaries had even greater shallow soil water contributions relative to the main stream (83% and 74% for tributary A and 42% and 63% for tributary B). Tributary B had no detectable deep soil water contribution, reflecting the morphology of the hillslope (steeper slopes, shallower soils and lower vegetation density compared to hillslope A). Despite the short sampling campaign and associated uncertainties, this study allowed to thoroughly assess runoff generation mechanisms in a humid tropical catchment. Our results also provide a first comparison of two increasingly used mixing models and suggest that EMMA and MixSIAR yield comparable estimates of water source partitioning in this tropical, volcanic rainforest environment.  相似文献   

18.
In this study, the Mean Transit Time and Mixing Model Analysis methods are combined to unravel the runoff generation process of the San Francisco River basin (73.5 km2) situated on the Amazonian side of the Cordillera Real in the southernmost Andes of Ecuador. The montane basin is covered with cloud forest, sub‐páramo, pasture and ferns. Nested sampling was applied for the collection of streamwater samples and discharge measurements in the main tributaries and outlet of the basin, and for the collection of soil and rock water samples. Weekly to biweekly water grab samples were taken at all stations in the period April 2007–November 2008. Hydrometric data, Mean Transit Time and Mixing Model Analysis allowed preliminary evaluation of the processes controlling the runoff in the San Francisco River basin. Results suggest that flow during dry conditions mainly consists of lateral flow through the C‐horizon and cracks in the top weathered bedrock layer, and that all subcatchments have an important contribution of this deep water to runoff, no matter whether pristine or deforested. During normal to low precipitation intensities, when antecedent soil moisture conditions favour water infiltration, vertical flow paths to deeper soil horizons with subsequent lateral subsurface flow contribute most to streamflow. Under wet conditions in forested catchments, streamflow is controlled by near surface lateral flow through the organic horizon. Exceptionally, saturation excess overland flow occurs. By absence of the litter layer in pasture, streamflow under wet conditions originates from the A horizon, and overland flow. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Linking quickflow response to subsurface state can improve our understanding of runoff processes that drive emergent catchment behaviour. We investigated the formation of non-linear quickflows in three forested headwater catchments and also explored unsaturated and saturated storage dynamics, and likely runoff generation mechanisms that contributed to threshold formation. Our analyses focused on two reference watersheds at the Coweeta Hydrologic Laboratory (CHL) in western North Carolina, USA, and one reference watershed at the Susquehanna Shale Hills Critical Zone Observatory (SHW) in Central Pennsylvania, USA, with available hourly soil moisture, groundwater, streamflow, and precipitation time series over several years. Our study objectives were to characterise (a) non-linear runoff response as a function of storm characteristics and antecedent conditions, (b) the critical levels of shallow unsaturated and saturated storage that lead to hourly flow response, and (c) runoff mechanisms contributing to rapidly increasing quickflow using measurements of soil moisture and groundwater. We found that maximum hourly rainfall did not significantly contribute to quickflow production in our sites, in contrast to prior studies, due to highly conductive forest soils. Soil moisture and groundwater dynamics measured in hydrologically representative areas of the hillslope showed that variable subsurface states could contribute to non-linear runoff behaviour. Quickflow generation in watersheds at CHL were dominated by both saturated and unsaturated pathways, but the relative contributions of each pathway varied between catchments. In contrast, quickflow was almost entirely related to groundwater fluctuations at SHW. We showed that co-located measurements of soil moisture and groundwater supplement threshold analyses providing stronger prediction and understanding of quickflow generation and indicate dominant runoff processes.  相似文献   

20.
In the Lainbach catchment, unconsolidated Pleistocene moraine sediments are widely distributed. Because of the great natural risk of floods, together with extreme loads of sediments, investigations of runoff production processes have been conducted in this area. At hillslope scale three test sites with different states of soil development and vegetation cover were instrumented with V‐shaped weirs, precipitation gauges and measurement devices for electrical conductivity (EC) of discharge water. The EC has been used as a geochemical tracer for hydrograph separation, since the statistical relationship between content of dissolved Ca2+, Mg2+ cations and EC is highly significant for different stages of runoff. This method allows hydrograph separation at high temporal resolution for both the rising and falling limb of the hydrograph. The following results of the investigations can be resumed. If relief conditions are similar, the effectiveness of runoff production decreases with an increasing density of vegetation cover. The runoff delivery ratio decreases as well as the peaks of runoff. In contrast, concentration times of hillslope catchments are equal, even if vegetation cover is of great density and soils are well developed. As a reason for the short reaction times, different runoff production processes have been detected. On bare ground, infiltration excess overland flow intensified by surface sealing processes is the main source for quick runoff. On hillslopes well covered by vegetation, translatory flow processes indicated by soil water with high solute contents force a rapid runoff reaction only a few minutes after rainfall has begun. It is to be assumed that translatory flow is a runoff production process typical for hillslopes covered by vegetation in a steep alpine relief. By means of the areal distribution of the topographic index, concentration of runoff production on a small part of the catchment has been demonstrated for hillslopes densely covered by vegetation. The investigations have shown that there is a lack of studies on runoff production processes in steep alpine relief, as well as a deficit of methods to quantify hydraulic properties of coarse‐grained soils with a wide grain size distribution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号