首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of macropores on soil freezing and thawing with infiltration   总被引:3,自引:0,他引:3       下载免费PDF全文
An understanding of heat transport and water flow in unsaturated soils experiencing freezing and thawing is important when considering hydrological and thermal processes in cold regions. Macropores, such as cracks, roots, and animal holes, provide efficient conduits for enhanced infiltration, resulting in a unique distribution of water content. However, the effects of macropores on soil freezing and thawing with infiltration have not been well studied. A one‐directional soil‐column freezing and thawing experiment was conducted using unsaturated sandy and silt loams with different sizes and numbers of macropores. During freezing, macropores were found to retard the formation of the frozen layer, depending on their size and number. During thawing, water flowed through macropores in the frozen layer and reached the underlying unfrozen soil. However, infiltrated water sometimes refroze in a macropore. The ice started to form at near inner wall of the macropore, grew to the centre, and blocked flow through the macropore. The blockage ice in the macropore could not melt until the frozen layer disappeared. Improving a soil freezing model to consider these macropore effects is required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Macropores are important preferential pathways for the migration of water and contaminants through the vadose zone. The objective of this study was to examine small‐scale preferential flow processes during infiltration in macroporous, low permeability soils. A series of tension infiltration tests were conducted using Brilliant Blue dye tracer at two field sites in southwestern Ontario, Canada. The maximum applied pressure head was varied for each test and the resulting dye stain patterns and macropore networks were characterized by excavation, mapping, photography, and image analysis. Worm burrows were the dominant macropore type, with average macropore densities exceeding 400 m?2 and peak densities of more than 750 m?2 at 30 cm depth at both sites. Flow in macropores became significant at infiltration pressures > ? 3 cm, with corresponding increases in infiltration rate, soil water content variability (spatially and temporally), and depth of dye staining. The results demonstrated clear evidence for partially saturated macropore flow under porewater tension conditions and the associated importance of macropore–matrix interaction in controlling this flow. Field observations of transient infiltration showed that film and rivulet flow along macropores yielded vertical flow velocities exceeding 40 m d?1. Simple calculations showed that film flow along the walls and corners of irregularly shaped macropores could explain the observed results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Infiltration into frozen soil is a key hydrological process in cold regions. Although the mechanisms behind point‐scale infiltration into frozen soil are relatively well understood, questions remain about upscaling point‐scale results to estimate hillslope‐scale run‐off generation. Here, we tackle this question by combining laboratory, field, and modelling experiments. Six large (0.30‐m diameter by 0.35‐m deep) soil cores were extracted from an experimental hillslope on the Canadian Prairies. In the laboratory, we measured run‐off and infiltration rates of the cores for two antecedent moisture conditions under snowmelt rates and diurnal freeze–thaw conditions observed on the same hillslope. We combined the infiltration data with spatially variable data from the hillslope, to parameterise a surface run‐off redistribution model. We used the model to determine how spatial patterns of soil water content, snowpack water equivalent (SWE), and snowmelt rates affect the spatial variability of infiltration and hydrological connectivity over frozen soil. Our experiments showed that antecedent moisture conditions of the frozen soil affected infiltration rates by limiting the initial soil storage capacity and infiltration front penetration depth. However, shallow depths of infiltration and refreezing created saturated conditions at the surface for dry and wet antecedent conditions, resulting in similar final infiltration rates (0.3 mm hr?1). On the hillslope‐scale, the spatial variability of snowmelt rates controlled the development of hydrological connectivity during the 2014 spring melt, whereas SWE and antecedent soil moisture were unimportant. Geostatistical analysis showed that this was because SWE variability and antecedent moisture variability occurred at distances shorter than that of topographic variability, whereas melt variability occurred at distances longer than that of topographic variability. The importance of spatial controls will shift for differing locations and winter conditions. Overall, our results suggest that run‐off connectivity is determined by (a) a pre‐fill phase, during which a thin surface soil layer wets up, refreezes, and saturates, before infiltration excess run‐off is generated and (b) a subsequent fill‐and‐spill phase on the surface that drives hillslope‐scale run‐off.  相似文献   

4.
5.
Markus Weiler   《Journal of Hydrology》2005,310(1-4):294-315
Simulating infiltration in soils containing macropores still provides unsatisfactory results, as existing models seem not to capture all relevant processes. Recent studies of macropore flow initiation in natural soils containing earthworm channels revealed a distinct flow rate variability in the macropores depending on the initiation process. When macropore flow was initiated at the soil surface, most of the macropores received very little water while a few macropores received a large proportion of the total inflow. In contrast, when macropore flow was initiated from a saturated or nearly saturated soil layer, macropore flow rate variation was much lower. The objective of this study was to develop, evaluate, and test a model, which combines macropore flow variability with several established approaches to model dual permeability soils. We then evaluate the INfiltration–INitiation–INteraction Model (IN3M) to explore the influence of macropore flow variability on infiltration behavior by performing a sensitivity analysis and applying IN3M to sprinkling and dye tracer experiments at three field sites with different macropore and soil matrix properties. The sensitivity analysis showed that the flow variability in macropores reduces interaction between the macropores and the surrounding soil matrix and thus increases bypass flow, especially for surface initiation of macropore flow and at higher rainfall intensities. The model application shows reasonable agreement between IN3M simulations and field data in terms of water balance, water content change, and dye patterns. The influence of macropore flow variability on the hydrological response of the soil was considerable and especially pronounced for soils where initiation occurs at the soil surface. In future, the model could be applied to explore other types of preferential flow and hence to get a generally better understanding of macropore flow.  相似文献   

6.
Preferential flow is known to influence hillslope hydrology in many areas around the world. Most research on preferential flow has been performed in temperate regions. Preferential infiltration has also been found in semi‐arid regions, but its impact on the hydrology of these regions is poorly known. The aim of this study is to describe and quantify the influence of preferential flow on the hillslope hydrology from small scale (infiltration) to large scale (subsurface stormflow) in a semi‐arid Dehesa landscape. Precipitation, soil moisture content, piezometric water level and discharge data were used to analyse the hydrological functioning of a catchment in Spain. Variability of soil moisture content during the transition from dry to wet season (September to November) within horizontal soil layers leads to the conclusion that there is preferential infiltration into the soils. When the rainfall intensity is high, a water level rapidly builds up in the piezometer pipes in the area, sometimes even reaching soil surface. This water level also drops back to bedrock within a few hours (under dry catchment conditions) to days (under wet catchment conditions). As the soil matrix is not necessarily wet while this water layer is built up, it is thought to be a transient water table in large connected pores which drain partly to the matrix, partly fill up bedrock irregularities and partly drain through subsurface flow to the channels. When the soil matrix becomes wetter the loss of water from macropores to the matrix and bedrock decreases and subsurface stormflow increases. It may be concluded that the hillslope hydrological system consists of a fine matrix domain and a macropore domain, which have their own flow characteristics but which also interact, depending on the soil matrix and macropore moisture contents. The macropore flow can result in subsurface flow, ranging from 13% contribution to total discharge for a large event of high intensity rainfall or high discharge to 80% of total discharge for a small event with low intensity rainfall or low discharge. During large events the fraction of subsurface stormflow in the discharge is suppressed by the large amount of surface runoff. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Most vegetated land surfaces contain macropores that may have a significant effect on the rate of infiltration of water under ponded conditions on the ground surface. Owing to the small-scale variations of the land topography (microtopography), only portions of the land area may get ponded during the process of overland flow. As the macropores transmit water at much higher rates than the primary soil matrix, higher macropore activation in ponded areas produces larger effective infiltration rates into the soil. Therefore, overland flow and infiltration into the macroporous vadose zone are interrelated. Representing the microtopographic variation of the land surface by a simple sine wave function, a method was developed to relate the ponding area to the average ponding depth which was determined by overland flow. A numerical model coupling overland flow and infiltration into the macroporous vadose zone was developed. Overland flow was simulated using the St. Venant equations with the inertia terms neglected. A single macropore model was used to simulate the infiltration into the macroporous vadose zone. The interaction between overland flow and the infiltration into the macroporous vadose zone was analyzed for a hypothetical watershed. The sensitivity analysis revealed that the interaction of macropore flow and overland flow is significant. For the conditions tested, the macropore flow and the overland flow were found to be more sensitive to the macroporosity and less sensitive to the microtopographic surface variation.  相似文献   

8.
9.
Abstract

A physically-based hillslope hydrological model with shallow overland flow and rapid subsurface stormflow components was developed and calibrated using field experiments conducted on a preferential path nested hillslope in northeast India. Virtual experiments were carried out to perform sensitivity analysis of the model using the automated parameter estimation (PEST) algorithm. Different physical parameters of the model were varied to study the resulting effects on overland flow and subsurface stormflow responses from the theoretical hillslopes. It was observed that topographical shapes had significant effects on overland flow hydrographs. The slope profiles, surface storage, relief, rainfall intensity and infiltration rates primarily controlled the overland flow response of the hillslopes. Prompt subsurface stormflow responses were mainly dominated by lateral preferential flow, as soil matrix flow rates were very slow. Rainfall intensity and soil macropore structures were the most influential parameters on subsurface stormflow. The number of connected soil macropores was a more sensitive parameter than the size of macropores. In hillslopes with highly active vertical and lateral preferential pathways, saturation excess overland flow was not evident. However, saturation excess overland flow was generated if the lateral macropores were disconnected. Under such conditions, rainfall intensity, duration and preferential flow rate governed the process of saturation excess overland flow generation from hillslopes.
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

10.
Preferential flow is of high relevance for runoff generation, transport of chemicals and nutrients, and the transit time distribution of water in the soil or watershed. However, preferential flow effects are generally ignored in lumped hydrological models. And even most physically‐based models ignore macropores and preferential flow features at the soil and hillslope scale. Keith Beven was never satisfied with this situation and he tried again and again to convince the scientific community to focus their research on the complex topic of macropore and preferential flow. Although he recognized how difficult it is to correctly include preferential flow in hydrological models, he made substantial progress defining and describing macropore flow and showing its relevance, developing models to simulate preferential flow, and in particular, the interaction between macropores and the soil matrix. In this short commentary, I reflect on these achievements and outline a vision for research in preferential flow experiments and modeling.  相似文献   

11.
Preferential flowpaths transport phosphorus (P) to agricultural tile drains. However, if and to what extent this may vary with soil texture, moisture conditions, and P placement is poorly understood. This study investigated (a) interactions between soil texture, antecedent moisture conditions, and the relative contributions of matrix and preferential flow and (b) associated P distributions through the soil profile when fertilizers were applied to the surface or subsurface. Brilliant blue dye was used to stain subsurface flowpaths in clay and silt loam plots during simulated rainfall events under wet and dry conditions. Fertilizer P was applied to the surface or via subsurface placement to plots of different soil texture and moisture condition. Photographs of dye stains were analysed to classify the flow patterns as matrix dominated or macropore dominated, and soils within plots were analysed for their water‐extractable P (WEP) content. Preferential flow occurred under all soil texture and moisture conditions. Dye penetrated deeper into clay soils via macropores and had lower interaction with the soil matrix, compared with silt loam soil. Moisture conditions influenced preferential flowpaths in clay, with dry clay having deeper infiltration (92 ± 7.6 cm) and less dye–matrix interaction than wet clay (77 ± 4.7 cm). Depth of staining did not differ between wet (56 ± 7.2 cm) and dry (50 ± 6.6 cm) silt loam, nor did dominant flowpaths. WEP distribution in the top 10 cm of the soil profile differed with fertilizer placement, but no differences in soil WEP were observed at depth. These results demonstrate that large rainfall events following drought conditions in clay soil may be prone to rapid P transport to tile drains due to increased preferential flow, whereas flow in silt loams is less affected by antecedent moisture. Subsurface placement of fertilizer may minimize the risk of subsurface P transport, particularily in clay.  相似文献   

12.
Widespread observations of ecohydrological separation are interpreted by suggesting that water flowing through highly conductive soil pores resists mixing with matrix storage over periods of days to months (i.e., two ‘water worlds’ exist). These interpretations imply that heterogeneous flow can produce ecohydrological separation in soils, yet little mechanistic evidence exists to explain this phenomenon. We quantified the separation between mobile water moving through preferential flow paths versus less mobile water remaining in the soil matrix after free-drainage to identify the amount of preferential flow necessary to maintain a two water world's scenario. Soil columns of varying macropore structure were subjected to simulated rainfall of increasing rainfall intensity (26 mm h−1, 60 mm h−1, and 110 mm h−1) whose stable isotope signatures oscillated around known baseline values. Prior to rainfall, soil matrix water δ2H nearly matched the known value used to initially wet the pore space whereas soil δ18O deviated from this value by up to 3.4‰, suggesting that soils may strongly fractionate 18O. All treatments had up to 100% mixing between rain and matrix water under the lowest (26 mm h−1) and medium (60 mm h−1) rainfall intensities. The highest rainfall intensity (110 mm h−1), however, reduced mixing of rain and matrix water for all treatments and produced significantly different preferential flow estimates between columns with intact soil structure compared to columns with reduced soil structure. Further, artificially limiting exchange between preferential flow paths and matrix water reduced bypass flow under the most intense rainfall. We show that (1) precipitation offset metrics such as lc-excess and d-excess may yield questionable interpretations when used to identify ecohydrological separation, (2) distinct domain separation may require extreme rainfall intensities and (3) domain exchange is an important component of macropore flow.  相似文献   

13.
Research shows that water repellency is a key hydraulic property that results in reduced infiltration rates in burned soils. However, more work is required in order to link the hydrological behaviour of water repellent soils to observed runoff responses at the plot and hillslope scale. This study used 5 M ethanol and water in disc infiltrometers to quantify the role of macropore flow and water repellency on spatial and temporal infiltration patterns in a burned soil at plot (<10 m2) scale in a wet eucalypt forest in south‐east Australia. In the first summer and winter after wildfire, an average of 70% and 60%, respectively, of the plot area was water repellent and did not contribute to infiltration. Macropores (r > 0·5 mm), comprising just 5·5% of the soil volume, contributed to 70% and 95%, respectively, of the field‐saturated and ponded hydraulic conductivity (Kp). Because flow occurred almost entirely via macropores in non‐repellent areas, this meant that less than 2·5% of the soil surface effectively contributed to infiltration. The hydraulic conductivity increased by a factor of up to 2·5 as the hydraulic head increased from 0 to 5 mm. Due to the synergistic effect of macropore flow and water repellency, the coefficient of variation (CV) in Kp was three times higher in the water‐repellent soil (CV = 175%) than under the simulated non‐repellent conditions (CV = 66%). The high spatial variability in Kp would act to reduce the effective infiltration rate during runoff generation at plot scale. Ponding, which tend to increase with increasing scale, activates flow through macropores and would raise the effective infiltration rates at larger scales. Field experiments designed to provide representative measurements of infiltration after fire in these systems must therefore consider both the inherent variability in hydraulic conductivity and the variability in infiltration caused by interactions between surface runoff and hydraulic conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Due to the extensive gullying from historically excessive erosion in the loess plateau of China, much of this region is being converted to native grass and shrub vegetation. Tunnel scour and mass wasting are important gully erosion processes resulting from preferential flow through macropores ( pores 〉 1 mm diameter). The objective of this study is to assess the changes with time in macropore flow characteristics of soils on the Loess Plateau following conversion to grass vegetation and the associated degree of mass wasting of gully faces. Ridge areas that had been revegetated for 1 year, 6 years, and 〉 15 years following tilling, and for 6 years following contour-ditching and the adjacent gully faces were characterized for their macropore and soil matrix properties on a 50 cm by 50 cm area. The total number of macropores increased from 11.6/m^2 to 39.6/m2 from 1 to 6 years and to 51.6/m2 after 15 years of revegetation following tillage. The macroporosity increased from 0.0008 m^3/m^3 to 0.0018 m^3/m^3 from 1 to 6 years of revegetation following tillage but the lowest macroporosity (0.0005 m3/m3) was 6 years of revegetation following contour-ditching. The contourditched area had the lowest infiltration rate (95 m/d) through the soil matrix (areas without macropores) with the tilled areas having similar infiltration rates regardless of the number of years of revegetation (averaged 146 m/d). Due to tunnel scour erosion of macropores during infiltration into the area revegetated for 1 year, pore diameters enlarged by more than 200% resulting in this condition having the highest individual macropore infiltration rates (7967 m/d). Macropores in all other areas were stable with no tunnel scour erosion of macropores. The total capacity for infiltration through macropores increased significantly with time following revegetation. The number of macropores on the gully faces was triple (92.8/m2) and the macroporosity quadruple (0.004 m3/m3) that of the ridge surfaces. The upper gully faces exhibited 1.1 slumps m^-1 for a total soil loss of 48622 kg per ha.  相似文献   

15.
Bypass flow in structured soils is dominated by soil hydrological processes, such as rain intensity, initial pressure head of the soil, surface storage of rain, horizontal contact area and absorption rate, and hydraulic conductivity of the soil matrix. This study was conducted to determine the relative impact of these processes in different soil types. A quasi 3-dimensional simulation model was used to calculate the effects of these soil hydrological input parameters on surface infiltration, macropore flow (with related horizontal absorption) and drainage. For light textured soils, surface infiltration was the most important term in the water balance. Heavy textured soils, in contrast, had drainage as the main term. In the latter soils bypass flow, when occurring, was almost equal to the amount of rain applied, indicating that absorption processes were strongly reduced. Lateral absorption on macropore walls was a minor fraction in the total mass balances, due to limited contact area and relatively weak diffusivity forces. Surface infiltration is a crucial parameter in bypass flow and is mainly dependent on rain intensity, initial pressure head and conductivity of the soil matrix. This requires measurement methods for hydraulic conductivity that specifically consider the effect of macropores.  相似文献   

16.
This paper uses a variety of multivariate statistical techniques in order to improve current understanding of the antecedent and rainfall controls on drainage characteristics for an agricultural underdrained clay site. Using the dataset obtained from a two‐year hillslope study at Wytham (Oxfordshire, UK) a number of patterns in the nature and style of drainage events were explored. First, using principal components analysis, a distinction was drawn between drainflow controlled by antecedent conditions and drainflow controlled by rainfall characteristics. Dimensional analysis then distinguished between two further types of drainflow event: antecedent limited events (ALE) and non‐antecedent limited events (NALE). These were drainflow events requiring a minimum antecedent hydraulic head to occur (ALE) and events that occurred in response to rainfall irrespective of the antecedent conditions, because the rainfall was either of high enough intensity or duration to prompt a response in drainflow (NALE). 2. The dataset also made possible a preliminary investigation into the controls on and types of macropore flow at the site. Principal components analysis identified that rainfall characteristics were more important than antecedent conditions in generating high proportions of macropore flow in drainflow. Of the rainfall characteristics studied, rainfall amount and intensity were the dominant controls on the amount of macropore flow, with duration as a secondary control. Two styles of macropore flow were identified: intensity‐driven and duration‐driven. Intensity‐driven events are characterized by rainfall of high intensity and short duration. During such events the amount of macropore flow is proportional to the rainfall intensity and the interaction between macropore and matrix flow is kinetically limited. The second style of macropore flow is characterized by long‐duration events. For these events the amount of macropore flow approaches a maximum value whatever the rainfall duration. This suggests that these events are characterized by an equilibrium interaction between macropores and matrix flow. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
This study was conducted to estimate macropore space, macropore flow and matrix flow in an experimental forest plot in the Ouachita Mountains of Arkansas. Lateral soil water fluxes and soil capillary potentials were observed in the isolated plot during applied rainfall experiments. Rainfalls were applied 17 times during the period 17 July to 10 October 1991. The subsurface hydrograph separation technique was used to estimate macropore space, macropore flux and matrix flux. The boundary between macropore and matrix flow was statistically determined by covariance analysis. The maximum estimated lateral macropore space was approximately 0.006 (cm3 cm?3). The maximum estimated lateral macropore and matrix flow were 0.042 and 0.00066 cm s?1, respectively. This report also emphasizes the need for further research on the hydrograph separation procedure for estimating macropores and macropore flow.  相似文献   

18.
An accurate prediction of solute infiltration in a soil profile is important in the area of environmental science, groundwater and civil engineering. We examined the infiltration pattern and monitored the infiltration process using a combined method of dye tracer test and electrical resistivity tomography (ERT) in an undisturbed field soil (1 m × 1 m). A homogeneous matrix flow was observed in the surface soil (A horizon), but a preferential flow along macropores and residual rock structure was the dominant infiltration pattern in the subsurface soil. Saturated interflow along the slopping boundaries of A and C1 horizons and of an upper sandy layer and a lower thin clay layer in the C horizon was also observed. The result of ERT showed that matrix flow started first in A horizon and then the infiltration was followed by the preferential flows along the sloping interfaces and macropores. The ERT did not show as much detail as the dye‐stained image for the preferential flow. However, the area with the higher staining density where preferential flow was dominant showed a relatively lower electrical resistivity. The result of this study indicates that ERT can be applied for the monitoring of solute transportation in the vadose zone. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

High-frequency monitoring was conducted to quantify the frequency and controlling factors of preferential flow (PF) in a monsoon-influenced sub-humid mountainous catchment (6.48 km2) of Northern China. Rainfall was measured using nine bucket raingauges. Soil moisture probes were set up at 12 sites to observe the PF. Overall, 129 rainfall events were identified during the years 2014–2016. The average PF occurrence was 41%, which increased to 71% during heavy rainfall events (>20 mm) revealing a strong influence of the amount and intensity of rainfall. The study also revealed that the PF increased with antecedent soil moisture. Soil moisture was much higher on flat sites compared to sloping sites, providing evidence that the topography has a strong influence on rainfall infiltration and runoff which, subsequently, influence soil moisture variation and the occurrence of PF. Our findings provide valuable insights into the hydrological processes for studies in regions with similar environmental conditions.  相似文献   

20.
The soil freeze–thaw controls the hydrological and carbon cycling and thus affects water and energy exchanges at land surface. This article reported a newly developed algorithm for distinguishing the freeze/thaw status of surface soil. The algorithm was based on information from Advanced Microwave Scanning Radiometer Enhanced (AMSR‐E) which records brightness temperature (Tb) in the afternoon and after midnight. The criteria and discriminant functions were obtained from both radiometer observations and model simulations. First of all, the microwave radiation from freeze–thaw soil was examined by carrying out experimental measurements at 18·7 and 36·5 GHz using a Truck‐mounted Multi‐frequency Microwave Radiometer (TMMR) in the Heihe River of China. The experimental results showed that the soil moisture is a key component that differentiates the microwave radiation behaviours during the freeze–thaw process, and the differences in soil temperature and emissivity between frozen and thawed soils were found to be the most important criteria. Secondly, a combined model was developed to consider the impacts of complex ground surface conditions on the discrimination. The model simulations quite followed the trend of in situ observations with an overall relation coefficient (R) of approximately 0·88. Finally, the ratio of Tb18·7H (horizontally polarized Tb at 18·7 GHz) to Tb36·5V was considered primarily as the quasi‐emissivity, which is more reasonable and explicit in measuring the microwave radiation changes in soil freezing and thawing than the spectral gradient. By combining Tb36·5V to indicate the soil temperature variety, a Fisher linear discrimination analysis was used to establish the discriminant functions. After being corrected by TMMR measurements, the new discriminant algorithm had an overall accuracy of 86% when validated by 4‐cm soil temperature. The multi‐year discriminant results also provided a good agreement with the classification map of frozen ground in China. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号