首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
川滇次级地块震源机制解类型与一致性参数   总被引:15,自引:3,他引:15       下载免费PDF全文
程万正  阮祥  张永久 《地震学报》2006,28(6):561-573
根据P波、S波的振幅并结合部分记录清晰的P波初动资料,求得1994——2005年川滇地区4个次级地块,即川青地块、雅江地块、川中地块和滇中地块2.5级以上有良好地震波记录的925次地震的震源机制解. 结合已取得的中强地震的震源机制解资料,研究了上述4个次级地块的应力场特征及震源断层的错动类型. 其P轴优势方位分布:川青地块为EW方向,雅江地块、川中地块、滇中地块为ESE或SE方位. 根据大量震源机制解资料, 编程计算了各地块的平均应力张量, 即主应力sigma;1, sigma;2, sigma;3的方向. 定义了单个震源机制解的力轴与平均应力张量的差异, 或称震源机制解的一致性参数, 进而分析了川滇4个次级地块的值和震源断层错动类型的分布及随时间的变化. 通过次级地块大量区域小震震源机制解的测定,可以给出动态应力场和震源断层错动方式的变化信息.   相似文献   

2.
本文整理了辽宁营口地区2011~2013年期间257个小震震源机制解数据,采用分区的方式利用震源机制解反演应力场的网格搜索法反演了该地区的平均应力场。反演的应力场结果显示:总区(辽宁营口地区)主压应力轴分布于北东东—南西西方向,主张应力轴分布于北北西—南南东方向,与前人研究的结果基本一致。B区(营口—海城断裂带和海城河断裂带区域)主压应力轴为北东东—南西西方向,主张应力轴为北北西—南南东方向,这与该地区的构造应力场方向相同。C区(金州断裂带区域)主压应力轴与主张应力轴方向均为北东东—南南西向。针对C区(金州断裂带区域)出现的这一异常情况,研究将地震震级M_L≥3.0的震源机制解数据从总的数据中重新挑了出来,并重新将它们分区进行反演,结果显示C区(金州断裂带区域)的主压应力轴与主张应力轴方向仍为北东东—南南西向。对C区(金州断裂带区域)出现的这一异常现象,本文从断裂带分布与孕震机理的角度进行了详细的研究分析,以期对其做出合理的解释。  相似文献   

3.
华南地区的小震震源机制与构造应力场   总被引:11,自引:2,他引:11  
本文利用、最大振幅比的方法,求出了华南六省200次小地震的震源机制解,发现该区现代构造应力场的主压应力轴的水平投影方向具有扇形分布特征,从该区的西部到东部,主压应力轴的水平投影方向为北南略偏东、北西和北西西方向;主张应力轴的水平投影方向具有弧形分布特征,沿着海岸线,从广西到福建,主张应力轴的方向为北西西、北东东和北北东方向,P轴和T轴的“平均”方向都基本水平。  相似文献   

4.
基于2009年1月至2017年11月首都圈地区发生的8 061个地震事件的23 293条P波初动极性数据,采用改进的格点尝试法计算了首都圈地区单次地震的震源机制解和小震综合断层面解。在初步分析这些数据的基础上,利用计算得到的单次地震的震源机制解和搜集到的已有历史地震的震源机制解数据,运用线性反演法对首都圈地区构造应力场的时空变化特征进行了研究。结果显示:① 研究区的地震震源机制解类型以走滑型为主,正断型次之,这些地震震源机制解的P轴方位大都为ENE向和近EW向,与该地区的构造应力场方向基本一致,仅有个别地震的P轴方位为NNW向;② 首都圈地区的构造应力场具有较好的一致性和连续性,最大主应力轴方位由西部的ENE向至东部的近EW向呈现顺时针旋转的趋势,应力类型整体上为走滑型,这与以往的研究结果相一致;③ 通过与已有研究结果相比较认为:京西北地区现今构造应力场是相对稳定的,最大主应力轴未呈明显改变;唐山地区和北京地区的构造应力场(最大主应力轴)在1976年唐山地震前后可能发生了变化,唐山地震后一年至今(1977—2017年)是否发生变化,依据现有的计算结果尚不得而知,需要更多的研究来进一步验证.   相似文献   

5.
根据三峡与邻近地区实际天然地震数据,利用GMT软件绘制出三峡地区两次地震的震源机制解。绘制出了三峡地区1964年以来地震震中分布情况,以及频率变化。震源机制解以及三峡与邻近地区断层资料显示出该地区受到西藏块体、四川盆地、川滇块体与鄂尔多斯地块的共同挤压作用,三峡及邻区的现今水平构造应力场的主压应力轴为北东东向,是喜马拉雅期构造应力场的继续。近东西向的向东移动显示出该地区可能为青藏高原地幔物质向东"逃逸"的通道之一。根据水库蓄水前后震源机制解资料反映的震源机制变化,认为蓄水对于三峡及邻区应力场在垂向上有一定的影响。  相似文献   

6.
北天山中东段中小地震震源机制解及应力场反演   总被引:3,自引:0,他引:3  
主要对北天山中东段中小地震震源机制解系统聚类和应力场反演。 结果表明, 研究区内中小地震震源断错性质主要以逆断层为主, 地震主破裂面基本沿NWW向或近EW向, 与该区域的NWW向构造带基本一致; 研究区内主压应力P轴近NS向, 倾角较小, 主张应力T轴倾角较大, 表明区域应力场主要受NS向水平挤压作用; 分区应力场反演结果显示, 研究区中、 西部最大主应力方向为近NS向, 与北天山西段构造应力场方向相一致。  相似文献   

7.
云南地区中小地震震源机制及构造应力场研究   总被引:21,自引:6,他引:21       下载免费PDF全文
利用云南数字地震台网记录的区域波形资料, 通过波形反演确定了发生在云南地区的33次中小地震的震源机制. 结果表明,在川滇菱形块体内部及边界附近的地震以走滑为主,由震源机制得到的主压应力方向从北到南由北北西-南南东方向转向近南北向,张应力轴方向则主要表现为北东东-南西西或北东 南西向;在青藏高原东部地区,主压应力方向从青藏高原内部向外成放射状展布,张应力方向大多与该地区的弧形构造平行. 在28N附近地区,主压应力轴和张应力轴方向都存在较大的变化,其分界线似与龙门山断裂向西南方向的延长线相对应. 川滇菱形块体之外的地震的主压应力轴和张应力轴方向与块体内部的方向存在一定的差异. 通过与哈佛大学中强地震震源机制结果的对比发现,云南地区中小地震震源机制的反演结果与强震震源机制的结果有较好的一致性,表明中小地震的震源机制可用于该地区区域构造应力场的研究.   相似文献   

8.
北天山地区中强地震震源机制解分析   总被引:3,自引:1,他引:2  
利用北天山地区历史上24次中强地震震源机制解,进行系统聚类及应力场反演分析.结果表明,北天山地区中强地震震源断错性质主要以倾滑逆断层为主.多数地震的主破裂面为NW向.与其附近地震构造走向基本一致.主压应力P轴方位近NS向,倾角较小;主张应力T轴倾角较大,显示出区域应力场主要受近NS向水平挤压作用.最大主应力方向从东到西呈现出NNE-Ns-NW的渐变过程.  相似文献   

9.
本研究利用CAP方法反演得到了2013—2017年辽宁地区19个3.5级以上地震的震源机制解.结果显示辽宁地区地震的震源机制以走滑类型为主,P轴和T轴方位分别集中在北东东和北北西方向,分别与区域构造应力场主压和主张应力方向一致.矩心深度结果反映辽宁地区在地壳内各个深度的位置都可能孕震,而以地壳中部最为活跃.灯塔地区地壳极浅部曾发生中等强度的地震,在地震减灾工作中需要引起注意.而盖州地区地壳底部仍有少量地震,显示其附近岩石仍具有脆性特性,且该处邻近一级块体边界,贯穿地壳的断层导致下地壳也有地震发生.震源机制结果显示区域构造应力场对辽宁地区大部分地震的发生有着主导作用,在局部地区复杂的断层构造也会对震源机制产生较大影响.  相似文献   

10.
对首都圈地区2002年1月~2010年6月619个ML≥2.0地震的震源机制解的基本特征进行了统计分析,并且依据区域构造特征将首都圈划分为3个区域,用聚类统计方法中的最长距离法对各分区的机制解进行了聚类分析,研究了各分区的构造应力张量特征。研究结果表明,首都圈地区震源机制解P轴方位的优势分布为NNE-NEE向,T轴方位的优势分布为NNW-NWW向,绝大多数地震震源处的应力场以水平作用为主,破裂以水平走滑为主。首都圈西部最大主压应力方位为NE75°,中部最大主压应力方位为NE62°,东部最大主压应力方位近EW向,区域构造应力场以水平向挤压为主要特征。  相似文献   

11.
Harvard Centroid Moment Tensor (CMT) solutions for earthquakes from 1977 to 2004 showed that the stress fields are obviously different in northwestern Sichuan sub-block (NWSSB), western parts of Central Yunnan sub-block (CYSB) and eastern part of CYSB. The characteristics of the mean stress fields in these three regions are obtained by fitting to CMT solutions. The stress state in NWSSB is characterized by its sub-horizontal tensile principal axis of stress (T axis) in roughly N-S direction and west dipping compressive principal axis of stress (P axis); the one in western part of CYSB is characterized by its ENE dipping T axis and sub-horizontal medium prin-cipal axis of stress (B axis) in roughly N-S direction; the one in eastern part of CYSB is characterized by its sub-horizontal P axis in roughly NNW-SSE direction and sub-horizontal T axis in roughly WSW-ENE direction. Finite element method simulation clearly shows that the Indian Plate imposes great extrusion on Sichuan-Yunnan rhombic block (SYRB) near Assam massif. The value of the simulated compressive principal stress decreases with the distance from Assam massif. The simulated directions of the T axes in SYRB form annular distribution encir-cling Assam. For a homogeneous elastic medium with free boundary conditions on the top and bottom surfaces as well as the displacement boundary conditions derived from the GPS observations on the lateral boundaries, the computation results are consistent with the Harvard CMT solutions in NWSSB and western part of CYSB, while inconsistent with the Harvard CMT solutions in eastern part of CYSB. The inconsistency in eastern part of CYSB can be reduced when it includes inhomogeneous elastic media. The stress states in NWSSB and western part of CYSB revealed by the Harvard CMT solutions are not local, which are mainly controlled by the boundary force on the whole region. On the other hand, the stress state in eastern part of CYSB given by the Harvard CMT solutions is local, which may be affected by local topography, material inhomogeneity, and the drag force underneath.  相似文献   

12.
日本本州及其邻近区域的应力状态以及弧后盆地的演化机制一直是人们所关注的问题.本文对2011年3月11日东日本大地震地震序列(2011年3月11日至2012年3月15日)的哈佛双力偶解进行了聚类分析,得到五种类型的震源机制解:与主震类型一致的低倾角逆断层型地震;主张应力方向垂直于日本海沟走向的正断层型地震;主张应力方向平行于日本海沟走向的正断层型地震;主压应力方向平行于日本海沟走向的逆断层型地震;包括走滑型地震在内的其他类型地震.东日本大地震地震序列中发生在弧前增生楔地震的震源机制解与大地震发生之前地震的震源机制解特征有显著区别,反映出该地区的应力状态与震前相比有较大改变.东日本大地震及其前震释放了附近区域的累积弹性应力,主震破裂区附近太平洋板块和其上覆板块接近完全解耦,降低了日本海盆地、中国东北地区的近东西向挤压应力水平.不过,整个本州岛东部区域太平洋板块和其上覆板块并没有完全解耦,但应力水平并不高.我们认为,日本海及中国东北应力水平的降低会使该区域的近东西向挤压型地震的危险性降低,而使NNE-SSW走向的走滑型地震活动性增强.同时,火山活动性也会增强.尤其是本州岛地区,存在近期火山爆发的可能性.东日本大地震地震序列的震源机制解特征还提示我们,日本海的应力状态及日本海的演化可能在一定程度上取决于太平洋板块和上覆板块的耦合状态.持续的弱耦合将不仅使得弧后大范围的地区保持岩浆上涌所必须的拉伸应力环境,而且还会因弧前隆起区发育大量正断层型地震而向深部提供促使岩浆生成所必须的水,因而造成日本海的再次扩张.  相似文献   

13.
伽师震源区中等强度地震矩张量反演及其应力场特征   总被引:12,自引:6,他引:6       下载免费PDF全文
使用区域数字地震台站记录的宽频带长周期波形资料,在时间域反演了1997~2004年伽师震源区52次中等强度地震的矩张量.反演结果揭示,在小尺度的伽师震源区内,震源机制解的P轴、T轴和N轴呈现出明显的分区特征.本文进一步把伽师震源区分为东区和西区,分别反演了东区与西区的应力场.应力场反演结果表明,东区的应力场主压应力轴走向为321°,基本水平.最大主张应力走向68°,倾角40°.截至2004年7月,伽师震源区西部的应力场一直较为稳定,最大主压应力方向为12°,最大主张应力方向282°,二者都基本水平,中等主应力轴基本直立.自西向东,伽师震源区最大主压应力轴逆时针旋转了49°,并且西区张应力的水平作用较为显著,东区压应力的水平作用显著.应力场的这种非均匀变化特征与GPS观测得到的地壳运动速率的空间分布以及塔里木盆地边界附近的地形地貌特征有很好的一致性.震源区深部结构的陡变以及位于震源区东部边界规模较大的NW走向的普昌断裂和色力布亚隐伏断裂可能对产生这种横向非均匀的局部应力场起了重要的作用.  相似文献   

14.
自GCMT目录收集2015年9月16日智利MW8.3地震震中周围深度在70 km以上的震源机制解, 应用MSATSI软件反演了该地震震中周围的应力场.反演结果显示, 主压应力轴方向的整体一致性较好, 张轴的非均匀性明显, 即大致以31.5°S为界, 南部处于EW向和NS向的双轴压缩状态, 以WE向挤压为主, 兼有NS向挤压, 拉张轴近乎垂直;北部压轴方位仍为近EW向, 但张轴方位旋转至近NS向.   相似文献   

15.
本文使用新疆区域数字地震台站记录的宽频带长周期数字波形资料,在时间域反演了2008年10月5日新疆乌恰6.8级地震的强余震及其周围先后发生的52次中等强度地震的矩张量解,结合Harvard大学在该区域的地震矩张量结果,研究了帕米尔东北缘的应力场分区特征.研究结果显示,位于印度板块向欧亚板块推挤的前缘及向北凸出的弧型构造的最北缘的卡兹克阿尔特弧形活动褶皱-逆断裂带,以逆冲推覆活动为主,并有部分走滑类型的地震,基本不存在正断层类型的地震;该弧型构造近东西走向的顶部(文中的西区)与其北西走向的东侧(文中的东区)的局部应力场最大主压应力方向不同,分别为NW、NNE方向,显示出在承受印度板块向欧亚板块俯冲作用的同时,东区也更多的受到了塔里木块体顺时针旋转作用的影响.位于帕米尔陆内俯冲和变形作用强烈、碰撞造成深源地震带东段的南区,地震以走滑错动为主, 逆断、正断层都有,显示出相对复杂的应力状态.位于帕米尔高原内部的西区和南区的应力场最大主压应力方向一致,由北向南,由最大主压应力轴接近水平,过渡为最大主张应力轴接近水平,一定程度揭示了板块俯冲的状态.结合南区和西区的地震深度差异及机制解中断层面的倾角,推测在中帕米尔的东部,由北向南的板块俯冲至150~170km深度,俯冲角度为60°左右.  相似文献   

16.
田建慧  罗艳 《地震》2019,39(2):110-121
本文收集了1976—2018年发生在中国大陆及其周边地区(15°~55°N, 65°~125°E)的4303个地震震源机制解, 分析了该区震源机制解和P、 T轴空间分布特征, 并使用这些震源机制解, 反演得到了中国大陆及周边地区二维构造应力场分布。 应力场反演结果表明, 云南大部、 青藏高原大部以及华北华南大部以走滑型应力性质为主, 印度洋板块与欧亚板块的强烈碰撞控制着中国西部地区, 大量的逆断型地震集中分布在青藏高原周缘和西域活动地块的天山地区。 青藏高原内部也存在正断型地震, 且应力场方向在26°N发生了很大的变化。 位于青藏高原东构造线以南的滇缅活动块体, 最大主压应力σ1方向在大致100°E发生突变, 由以西的NNE方向偏转到NNW方向。 中国东部的东北块体到华北块体再到华南块体, 最大主压应力方向有一个从NE向逐渐转变成EW向再变化到NW向的旋转趋势。 应力场总体结果表明, 中国东部应力场主要受到太平洋板块和菲律宾板块对欧亚大陆俯冲的作用, 中国西部主要受印度板块向北碰撞欧亚大陆的影响, 块体内部相互作用、 块体与断裂带相互作用也对应力场变化产生影响。  相似文献   

17.
Regionalcharacteristicsofstressfieldinthesouthernpartofthenorth-southseismicbeltinChinaanditsrelationwithplate movementJi-Ren...  相似文献   

18.
中国西部及邻区活动地块边界带现代构造应力场   总被引:8,自引:1,他引:7       下载免费PDF全文
利用哈佛全球矩心矩张量解数据和许忠淮认为1920mdash;1999年可靠的中国大陆震源机制解数据, 反演了中国西部及邻区活动地块边界带上现代构造应力场.通过对FMSI反演程序多次的输入和检验, 得到了边界带上的应力场.边界带上最大主压应力sigma;1轴绝大多数近水平. 在90deg;E以西的中国西部大陆及邻区, sigma;1轴水平方向基本上为近SN向;在青藏高原的东北部, sigma;1轴水平方向基本上为近NE向;在青藏高原的东南部, sigma;1轴水平方向绕喜马拉雅构造东端顺时针方向旋转.最小主压应力sigma;3轴倾角呈两极分布,西域地块区内活动地块边界带和青藏地块区内东北缘部分段sigma;3轴倾角较陡, 而青藏地块区内sigma;3轴倾角近水平, 所以西域地块区和青藏地块区内东北部相对于其它大部分青藏地块区, 有更多的逆冲地震.应力场在同一个边界带具有非均匀性. 北天山带、南天山带、西秦岭mdash;德令哈带、岷山mdash;龙门山带和安宁河mdash;小江带的非均匀性相对要小一些, 西昆仑带、海原mdash;祁连带、东昆仑带、玛尼mdash;玉树带、澜沧江带和滇西西边界带的非均匀性相对要大, 而喀喇昆仑mdash;嘉黎带和喜马拉雅带的非均匀性最显著.由于震源机制解数据的限制, 本文给出的是边界带上部分段的应力场.   相似文献   

19.
黄海及其邻近地区的Pn波速度与各向异性   总被引:12,自引:9,他引:3       下载免费PDF全文
利用中国东部地震台网和ISC 报告1980~2004年的地震走时数据,反演了黄海及其邻近地区的Pn波速度和各向异性,根据岩石层地幔的横向非均匀性分析了区域地质构造的深部特点.Pn波速度的变化与区域地质构造有一定的对应关系,黄海地区上地幔顶部的P波平均速度较高,没有发现明显的低速异常,表明上地幔顶部不存在大范围的地幔扰动.速度异常的分布表明,南黄海东部和西部有可能分属于不同的构造块体,其间的分界大致对应于南北走向的黄海东部断裂带,具有相对较低的Pn波速度.边界东、西两侧的Pn波各向异性存在明显的差异:南黄海西部Pn波的快波方向以北东—北北东方向为主,反映了海区内部扬子块体向北运动产生的构造变形;南黄海东部Pn波的快波方向为南北方向,与黄海东部断裂带的走向基本一致,说明黄海东部和西部之间存在一个深达岩石层地幔的南北向转换边界.结合相关资料估计黄海东部断裂带在中生代时期发生了右旋走滑运动,以响应中国东部郯庐断裂带的大规模左旋剪切以及南黄海扬子块体的向北嵌入.  相似文献   

20.
The composite stereographic projection of orientations of the compression and tension axes using thirty-nine fault-plane solutions of earthquakes from two active seismogenic sources of Nepal and adjoining areas were examined and the nature of stress pattern and their influence on tectonics in the region have been studied. The seismogenic source located in Eastern Nepal region, which has been the site of 1934 Bihar-Nepal great earthquake of M 8.4, is presently experiencing N-S to NE-SW directed compressive stresses. The inferred pattern of compression axes in Western Nepal region suggests a shallow compressive stress, dipping N-S to NE-SW. Approximately similar nature of the stress regime is observed in Western and Eastern regions of Nepal, separated by nearly 700 km; it shows N-S to NNE-SSW direction of compression and underthrusting of the Indian Plate beneath the Himalaya at a shallow angle. Present study indicates that the stress is being released along the strikes of some of the transverse faults present in the region since the compressive stress exerted by the northward movement of the Indian Plate is approximately perpendicular to the Himalayan collision belt. Unilateral stress pattern generated by the northward movement of the Indian Plate in the central part of the Himalaya reveals that the present day collision occurs roughly perpendicular to the local strike of the Himalaya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号