首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
This paper is a review of research works concerning the nutrient transportation, transformation and exchange between water, sediment and biota in the lakes from the middle and lower reaches of the Yangtze River conducted in the context of project entitled "The Processes and Mechanism of Lake Eutrophication in Middle and Lower Reaches of Yangtze River". All the lakes from this area are shallow lakes. According to the typical lake site research, the lakes from the middle and lower reaches of Yangtze River have a higher baseline of nutrition in the history. Normally the trophic status of these lakes can be categorized into medium-trophic or eutrophic. Human activities have been enhanced during the last decades, which speed up the lake eutrophic process. Lake eutrophication control needs to reduce not only the external nutrient inputs from watershed but also the internal loading from the sediments. Investigations revealed that the lake sediments in this area are considerablly high in nutrition in which at most about 30% of phosphorus exists in the form of bio-available in the sediment. The surface sediment will exert great effects on the nutrient exchange between water-sediment interface via adsorption and release of nutrient. The nutrient release from the sediment in these shallow lakes is mainly in two ways, i.e. in the undisturbed condition the nutrient is released through diffusion created by the nutrient gradient from sediment to overlying water; whereas in disturbed condition, the nutrient release is determined by the hydrodynamic forcing intensity and the sediment resuspension. Metallic elements such as the iron, manganese and aluminium and the aerobic-anaerobic ambience will affect the release of nutrients. The disturbed release will increase the total nutrients in the water column significantly in the short period. At the beginning of sediment resuspension, the dissolved nutrient concentration will increase. This increase will be damped if the ferric oxide and aluminium are rich in sediment because of the adsorption and flocculation. This means that the lakes have capability of eliminating the nutrient loadings. Investigations for the lakes from middle and down stream of Yangtze River have suggested that most lakes have the self-cleaning capability. Dredging the control of the internal loading, therefore, is only applicable to the small lakes or undisturbed bays which normally are situated nearby the city or town and rich in organic materials in the sediment. In addition, the strong reduction condition and weak aeration of these lakes and bays make these small lakes and bays release much more bio-available nutrient and without much self-eliminating capability. Moreover, eutrophication induced algal bloom in these lakes will change the pH of water, which further induces the increase in the nutrient release. In turn, the increase in nutrient release promotes the growth of phytoplankton and results in severe algal bloom. For the heavily polluted water, research suggests that the biomass of bacteria and alkaline phosphatase activity will be higher corresponding to the higher concentration of nutrients, which accelerates the nutrient recycling between water, sediment and biota. Quick recycling of nutrient, in turn, promotes the production and biomass growth of microorganism and leads to more severe eutrophication. Further research work should focus on the nutrient transformation mechanism and the effects of microbial loop on the eutrophication.  相似文献   

2.
Spatiotemporal variations of P species and adsorption behavior in water column, interstitial water, and sediments were investigated in the large shallow eutrophic Lake Chaohu. Ortho-phosphate (Ortho-P) and total phosphorus (TP) concentrations were significantly higher in the western part than in the eastern part of the lake, due to different nutrient inputs from the surrounding rivers. Moreover, paniculate phosphorus (PP) concentration was in a similar spatial pattern to Ortho-P and TP concentrations, and also showed significantly positive correlation with the biomass of Microcystis, indicating more uptake and store of phosphorus by Microcystis than by other algae. Increase of pH and intensive utilization of P by phytoplankton were the main factors promoting P (especially Fe-P) release from the sediment to interstitial water during the cyanobacterial blooms in Lake Chaohu. Spatial dynamics in TP concentration, P species and adsorption behavior of the sediment, coupled with the statistical analyses, suggested that the spatial heterogeneity of P contents in the sediment was influenced by various factors, e.g. human activities, soil geochemistry and mineral composition. In spite of similar TP contents in the sediments, increase in proportion of Fe-P concentration in the sediment may result in a high risk of P release.  相似文献   

3.
The investigation and continuous monitoring with an innovative iron oxide embedded cellulose acetate membrane (FeO/CAM) on the concentrations of biologically available phosphorus (BAP) were conducted in the Meiliang Bay of the Taihu Lake during summer in 2004. The results showed that the concentrations of dissolved (FeO-DP), particulate (FeO-PP) and total bioavailable phosphorus (FeO-P) had similar horizontal distribution. The BAP concentrations were the highest in those estuaries in the northern bay. With the decrease of the distance to the estuary or long shore, there was little difference between BAP concentrations in an open lake area. During the observation period, algal blooms occurred in most waters of the northern bay, which was reflected from the high concentrations of chlorophyll a (Chl-a). While they were not highest in the estuarine waters of those major rivers, this is the case for the BAP concentrations. The concentrations of Chl-a had a significantly positive correlation with those of bioavailable phosphorus in the open area of the Meiliang Bay. With the sediment resuspension induced by wind and wave, BAP concentrations increased in a short-term, indicating that the riverine P inputs mainly contribute to the concentrations of BAP in the estuarine water while internal P release was the major source of BAP in the open lake area. In the eutrophic shallow lake, the blooms of alga may cause pH increase and further result in internal P release. The above results showed that the new membrane of FeO/CAM can be used to monitor the concentrations of BAP and provide the scientific justifications for the control strategy of the lake eu-trophication.  相似文献   

4.
Forms of phosphorus in sediments from 25 lakes in the middle and lower reaches of Yangtze River were analyzed by the sequential extraction procedure. Contents and spatial distrubution of algal available phosphorus (AAP) in sediments of Lake Taihu, the third largest freshwater lake of China, were also studied. Relationships between phosphorus forms in sediment and macrophytes coverage in sample sites, as well as phosphorus forms in sediments and chlorophyal contents in lake water were discussed. Exchangeable form of phosphorus (Ex-P) in surface sediments was significantly positive correlative to total phosphorus (IP), dissolved total phosphorus (DTP) and soluble reactive phosphorus (SRP) contents in the lake water. Bioavailable phosphorus (Bio-P) contents in sediments from macrophytes dominant sites were significantly lower than that in no macrophyte sites. In Lake Taihu, Ex-P content in top 3 cm sediment was highest. However, content of ferric fraction phosphorus (Fe-P) was highest in 4 - 10 cm. Bioavalilble phosphorus (Bio-P) contents in surface sediments positively correlated to Chlorophyll a contents in water of Lake Taihu with significant difference. Therefore, contents of Bio-P and AAP could be acted as the indicators of risks of internal release of phosphorus in the shallow lakes. It was estimated that there were 268.6 ton AAP in top 1 cm sediments in Lake Taihu. Sediment suspension caused by strong wind-induced wave disturbance could carry plenty of AAP into water in large shallow lakes like Lake Taihu.  相似文献   

5.
Based on laboratory culture of harmful alga on iron and phosphorus uptake, and the study of accu-mulation of iron-phosphorus in cores and release of iron and phosphorus from surficial sediments collected in the Pearl River Estuary, the reasons of the high frequency of phytoplankton bloom therein are discussed. The results show that Fe starvation can make algal growth rate slow down and the peak of cell number decrease. Fe and P contents in algal cell bear a significant correlation and the molar ratio of P:Fe is ~356:1, suggesting that algal uptake of Fe and P is synergistic. Total Fe and total P in sediments are positively correlated and Fe-P is the main species of inorganic sedimentary P. Through continuous leaching with agitation, 34.26%―80.21% of exchangeable P and 4.04%―22.52% of ex-changeable Fe are released from surficial sediments, implying that the accumulation of Fe-P in sedi-ments is available for providing nutrients (P and essential Fe) for the demand of phytoplankton bloom. These factors might be responsible for a higher frequency of red tides than other marine regions.  相似文献   

6.
The sediment macro-distribution patterns and their evolutionary characteristics in the South China Sea (SCS) are discussed based on a quantification of the sediment mass from the be- ginning of seafloor spreading in the Oligocene to the Present. Above the pre-Oligocene base, the total sediment mass for the whole SCS is estimated to be 1.44×1016 t, with the highest average accumulation rate of ~22 g·cm-2·ka-1 in the Oligocene. Having no large abyssal fans but fast accumulation in sedimentary basins on the continental shelf and slope, the SCS shows quite different sedimentary characters not only from the open ocean but also from small backarc basins along the marginal West Pacific, apparently controlled by the coupling between local tectonics and global climate changes.  相似文献   

7.
To show the relative availability of nitrogen, phosphorus and silica for diatoms as well as non-siliceous algae in phytoplankton communities triangular diagrams are most appropriate. Triangular diagrams for TN-TP-SRSi show the nutrient ratios TN:TP, SRSi:TN and SRSi:TP in proportion to each other at the same time.Comparison of waters, grouped according to their limnological characteristics, indicate that these groups have also different seasonal dynamics of TN, TP and SRSi in proportion to each other. From these groups, which include meso-eutrophic and hypertrophic, shallow and deep, polymictic and dimictic lakes,only the group of "flushed, hypertrophic polymictic lakes" has a high seasonal dynamic of the ratios of all three macronutrients. Moreover the relative availability of TN:TP-ratios changes from > 16:1 in spring to <16:1 in summer. Significant changes in phytoplankton structure are associated with this high dynamic of the nutrient ratios. Considerable changes in the share of cyanobacteria to diatom biomass during summer are synchronised with a powerful modification of the relative availability of TN-TP-SRSi as illustrated by the triangular diagrams.For practical purposes trophic situations are most commonly evaluated from concentrations of a single nutrient or a nutrient ratio, such as N:P. However, a complex assessment would often be more appropriate. In this context triangular diagrams have the benefit of synoptically presenting relative nutrient availability for phytoplankton communities as a whole.  相似文献   

8.
Estimation of internal nutrient release in large shallow Lake Taihu, China   总被引:17,自引:2,他引:17  
Based on field investigation of wave, sediment suspension and the changes in nutrient concentration of the water column in Lake Taihu, China, we proposed two release models to quantify nutrient release under static and dynamic conditions, respectively. Under static conditions, nutrient release from sediments to the overlying water mainly depends on chemical diffusion induced by concentration gradient, in which the nutrient release is controlled by the temperature, dissolved oxygen concentration in the sediment-water interface, oxidation-reduction potential and the concentration difference between porewater and overlying water. Under dynamic condition (or disturbed condition), both dissolved and particulate nutrients in sediments are released into the water column because of wind-induced sediment suspension. The amount of nutrient release under dynamic conditions is larger than that under the static condition. The release of dissolved nutrients, however, does not increase because the wind induced turbulence made oxidation of metallic elements such as Fe (ferric iron), Mn which are capable of precipitating soluble reactive phosphate (SRP). Under dynamic conditions, therefore, the release of total phosphorus (TP) increases dramatically but the release of SRP is close to those under static conditions. In sediments of Lake Taihu, high Fe content leads to a high ratio of Fe to P contents in sediments (Fe:P ratio). Under dynamic conditions, therefore, nutrient release is controlled by the intensity of disturbance, sediment consolidation and nutrient content in sediments. As for dissolved nutrients, especially SRP, the release is also controlled by the intensity of dynamic re-oxidation, Fe content in sediments and nutrient concentration gradient between porewater and overlying water. Based on these two release modes, the release flux in Lake Taihu has been estimated. In the static condition (i.e. laboratory experimental condition), total release of NH4 -N for whole lake is ca. 10,000 ton/a, and PO43--P is ca. 900 ton/a. In the dynamic condition, nutrient release following sediment suspension was estimated according to three different intensities of wind forcing which were defined as "calm" (wind speed is less than 2 m/s), "gentle" (wind speed is greater than 2 m/s and less than 6 m/s) and "gust" (wind speed is greater than 6 m/s). The release rate in the condition of "calm" was estimated in terms of the nutrient release in the laboratory experimental static condition; whereas the release rate in conditions of "gentle" and "gust" was estimated in terms of measurement during sediment resuspension conducted in flume experiments. With the observation of wind velocity and frequency in 2001, each type of wind forcing took the frequency of 12%, 82% and 6% for "calm", "gentle" and "gust", respectively. The yearly release of nitrogen was 81,000 ton and phos- phorus was 21,000 ton, which is about 2-6 folds of annual external loading, respectively.  相似文献   

9.
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL-1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL-1>TP>0.035 mgL-1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplank-ton might be the vital regulating factor. When TP<0.035 mgL-1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.  相似文献   

10.
Retrogressive erosion is a high-speed erosion process that usually occurs during the rapid release of stored water in reservoirs built on sandy rivers.Retrogressive erosion has been utilized in the practice of reservoir sedimentation control,but accurate prediction of the bed deformation process by numerical models has rarely been reported.The current study presents a one-dimensional morphodynamic model for simulating the evolution process of retrogressive erosion induced by high-velocity flows on steep slopes.The governing equations apply a Cartesian coordinate system with a vertically oriented z axis.The bed surface gradient and friction terms in the flow equations include correction factors to take account of the effects of high slope on flow movement.The net vertical sediment flux term in the sediment transport and bed deformation equations is calculated using an equation of erosion velocity.Particularly,this equation is based on an empirical relation between the sediment entrainment rate and the Shields parameter in contrast to the traditional sediment transport capacity,and the critical Shields parameter is modified by taking into account the permeability of the sediment layer and the stability of particles on a slope.The feedback of scoured sediment on the flow movement is considered by additional terms in the governing equations.Flume experiments of retrogressive erosion in literature were simulated to validate the model.The temporal variations of the longitudinal profiles of the free surface and channel bed and the sediment transport rate were well predicted.The algorithm calculating sediment entrainment in the proposed model also was validated for an experiment measuring entrainment rate from the literature.More importantly,it was found that the morphodynamic model using the sediment transport capacity equation predicts the trend of cumulative erosion contrary to the measurements,while results of the proposed model can follow a similar trend with the observed data in the retrogressive erosion process.  相似文献   

11.
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.  相似文献   

12.
生物操纵与非经典生物操纵的应用分析及对策探讨   总被引:8,自引:2,他引:6       下载免费PDF全文
刘恩生 《湖泊科学》2010,22(3):307-314
分析了生物操纵(biomanipulation)和非经典生物操纵(non-traditional biomanipulation)理论的原理、应用条件及局限性,提出了在局部水体治理湖泊富营养化的对策.分析认为:生物操纵的核心内容是利用浮游动物控制藻类;但浮游动物不能有效控制丝状藻类和形成群体的蓝藻水华;我国的大型浅水湖泊浮游动物数量一般并不多,对浮游植物摄食压力不大;在浅水湖泊,浮游动物摄食藻类后很快分解、释放又进入物质循环,因此不能治理湖泊富营养化;浮游动物是浮游植物和鱼类等经济水生动物之间重要的营养通道,过分追求保护浮游动物是值得思考和研究的问题.而非经典生物操纵的核心内容是利用鱼类直接控制蓝藻水华;当鲢、鳙鱼达到阈值密度可以控制蓝藻水华,但很难控制所有藻类和降低N、P治理湖泊富营养化.在局部水体治理湖泊富营养化的对策是:把鱼类控藻、水生植被恢复和局部水域生态系统重建相结合,形成具有利用与控制蓝藻生产鱼类、吸收氮磷净化水质功能的"水质生物调控单元".  相似文献   

13.
Spatiotemporal variations of P species and adsorption behavior in water column, interstitial water, and sediments were investigated in the large shallow eutrophic Lake Chaohu. Orthophosphate (Ortho-P) and total phosphorus (TP) concentrations were significantly higher in the western part than in the eastern part of the lake, due to different nutrient inputs from the surrounding rivers. Moreover, particulate phosphorus (PP) concentration was in a similar spatial pattern to Ortho-P and TP concentrations, and also showed significantly positive correlation with the biomass of Microcystis, indicating more uptake and store of phosphorus by Microcystis than by other algae. Increase of pH and intensive utilization of P by phytoplankton were the main factors promoting P (especially Fe-P) release from the sediment to interstitial water during the cyanobacterial blooms in Lake Chaohu. Spatial dynamics in TP concentration, P species and adsorption behavior of the sediment, coupled with the statistical analyses, suggested that the spatial heterogeneity of P contents in the sediment was influenced by various factors, e.g. human activities, soil geochemistry and mineral composition. In spite of similar TP contents in the sediments, increase in proportion of Fe-P concentration in the sediment may result in a high risk of P release.  相似文献   

14.
Periodical algal blooms result in deposition and release of phosphorus (P) from the sediment into the water. Therefore, during seasonal changes when algal particles begin to settle to the bottom, understanding the behavior and distribution characteristics of the P in sediment is the most important key to manage the water quality of the Saemangeum Reservoir. In this study, the variation of water quality and sediment composition including chlorophyll-a (Chl-a) and P was investigated to determine the interaction between water and sediment. The study focused primarily on algal particle sedimentation that affects the P release and mineralization of sediment. The Chl-a concentration in water showed a sharp decline in October when the algae began to die in the fall, and afterward the concentration of chemical oxygen demand (COD) and total P (TP) in the sediment increased due to the sedimentation of decaying algal particles in November. During the same period of time, the readily bio-available P (RAP) in the sediment showed a drastic increase in the upper region where the Chl-a concentration of water was high. In sequence, the high RAP zone shifted from the upper region to the lower region in the early winter. The RAP shift was considered to be derived from the physical flow of the overlying water from which the decomposing algae settled on the surface of the sediment. The Saemangeum Reservoir was constructed recently; therefore, all the types of inorganic P fractions except soluble reactive phosphorus (SRP) that exist on the bottom surface of the lake and the marsh's sediment layer were not sufficient to significantly influence the overlying water. On the other hand, the released P from the algae was distinct and sensitive to the seasonal change. In conclusion, the algal particle sedimentation was important to control eutrophication rather than P release from the mineralized inorganic P of the sediment surface layer in the Seamangeum Reservoir.  相似文献   

15.
城市湖泊富营养化问题日趋严峻,以往对水华的研究多集中于大型自然淡水湖库,而对小型城市浅水湖泊的水华动态相对较少.以宁波月湖为研究对象,探讨水华暴发期间浮游植物变化特征及与影响因子之间的关系,以期判别影响城市湖泊水华的主控因子.月湖水华期间营养盐水平处于中富营养至极端富营养之间,此次共检出浮游植物8门61属,藻种组成以绿藻门(51.79%)和硅藻门(21.43%)为主,各点位浮游植物生长主要受水温、光照驱动,经历了隐藻门→硅藻门→绿藻门→蓝藻门的演替.水华种为雷氏衣藻(Chlamydomonas reinhardtii),总藻密度最高达到1.55×108 cells/L,水华暴发后各点位衣藻属比例升高(最高达到81.10%),群落结构呈现单一化特征.通过Pearson相关性分析和RDA分析发现衣藻属生长与水温、pH、总磷浓度均呈显著正相关,春季气温回升、天气持续晴好,城市浅水湖泊高营养盐负荷、水体流动性差等特点为带鞭毛的衣藻属提供了适宜的生存条件,在环境条件均适宜的情况下拥有最大生长潜力的衣藻属在营养盐、光照等竞争中生长速率明显优于其他藻种,从而发生绿藻水华.  相似文献   

16.

This paper is a review of research works concerning the nutrient transportation, transformation and exchange between water, sediment and biota in the lakes from the middle and lower reaches of the Yangtze River conducted in the context of project entitled “The Processes and Mechanism of Lake Eutrophication in Middle and Lower Reaches of Yangtze River”. All the lakes from this area are shallow lakes. According to the typical lake site research, the lakes from the middle and lower reaches of Yangtze River have a higher baseline of nutrition in the history. Normally the trophic status of these lakes can be categorized into medium-trophic or eutrophic Human activities have been enhanced during the last decades, which speed up the lake eutrophic process. Lake eutrophication control needs to reduce not only the external nutrient inputs from watershed but also the internal loading from the sediments. Investigations revealed that the lake sediments in this area are considerablly high in nutrition in which at most about 30% of phosphorus exists in the form of bio-available in the sediment. The surface sediment will exert great effects on the nutrient exchange between water-sediment interface via adsorption and release of nutrient. The nutrient release from the sediment in these shallow lakes is mainly in two ways, i.e. in the undisturbed condition the nutrient is released through diffusion created by the nutrient gradient from sediment to overlying water; whereas in disturbed condition, the nutrient release is determined by the hydrodynamic forcing intensity and the sediment resuspension. Metallic elements such as the iron, manganese and aluminium and the aerobic-anaerobic ambience will affect the release of nutrients. The disturbed release will increase the total nutrients in the water column significantly in the short period. At the beginning of sediment resuspension, the dissolved nutrient concentration will increase. This increase will be damped if the ferric oxide and aluminium are rich in sediment because of the adsorption and flocculation. This means that the lakes have capability of eliminating the nutrient loadings. Investigations for the lakes from middle and down stream of Yangtze River have suggested that most lakes have the self-cleaning capability. Dredging the control of the internal loading, therefore, is only applicable to the small lakes or undisturbed bays which normally are situated nearby the city or town and rich in organic materials in the sediment. In addition, the strong reduction condition and weak aeration of these lakes and bays make these small lakes and bays release much more bio-available nutrient and without much self-eliminating capability. Moreover, eutrophication induced algal bloom in these lakes will change the pH of water, which further induces the increase in the nutrient release. In turn, the increase in nutrient release promotes the growth of phytoplankton and results in severe algal bloom. For the heavily polluted water, research suggests that the biomass of bacteria and alkaline phosphatase activity will be higher corresponding to the higher concentration of nutrients, which accelerates the nutrient recycling between water, sediment and biota. Quick recycling of nutrient, in turn, promotes the production and biomass growth of microorganism and leads to more severe eutrophication. Further research work should focus on the nutrient transformation mechanism and the effects of microbial loop on the eutrophication.

  相似文献   

17.
2010年10月-2011年9月在太湖梅梁湾围隔内研究了改性当地土壤絮凝除藻及其对水质改善的应急和长期效果,并结合室内实验研究了该技术防控底泥再悬浮和减少底泥二次污染的长效机制.现场围隔实验结果表明,改性当地土壤除藻30 min后,TN、NO3--N、NH4+-N、TP、PO34--P和Chl.a的去除率分别为66%、57%、60%、93%、92%和98%;长期监测结果表明,与对照区域相比,围隔内的TN、NH4+-N、NO3--N、TP和PO34--P在处理后11个月内的平均值分别降低了39.83%、52.30%、48.53%、18.75%和60.00%.室内再悬浮实验结果表明,改性土壤和沙子抗再悬浮能力较未改性土壤分别提高了3和5倍.室内柱培养结果表明改性土壤絮凝除藻和沙土覆盖相结合可有效提高表层沉积物-水界面的氧化还原电位和溶解氧,使沉积物向水体的TP和TN通量从源逆转成汇,PO34--P和NH4+-N通量大幅度降低.改性土壤技术在利用絮凝除藻快速改善水质后,可通过改性沙/土分层底泥调控分别达到对藻絮体再悬浮的物理控制和营养盐再释放的化学控制,通过将亚表层底泥中的藻细胞分解并被沉水植物根系吸收,可实现对底泥中水华蓝藻复苏和水体富营养化的长效生态控制.  相似文献   

18.
环太湖河流进出湖水量及污染负荷(2000-2002年)   总被引:22,自引:5,他引:22  
翟淑华  张红举 《湖泊科学》2006,18(3):225-230
天然水域,尤其是富营养的浅水湖泊,沉积物中磷的释放是蓝藻水华发生、形成和持续生长的重要因素.分析沉积物中磷的赋存形态转化及其潜在生态效应,有助于理解沉积物中磷的迁移转化过程及其与湖泊富营养化之间的关系.本文综述国内湖泊水域中磷的主要形态、来源和转化过程以及其生物有效性的研究进展.重点讨论了近5年来中国东部浅水湖泊沉积物磷的形态分析、转化和生物有效性评估的现状,以及沉积物中磷形态与浅水湖泊富营养化之间的潜在联系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号