首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
芦山7.0级地震序列的震源位置与震源机制解特征   总被引:7,自引:0,他引:7       下载免费PDF全文
基于中国国家和四川区域数字地震台网记录,采用HypoDD方法精确定位了四川芦山ML2.0级以上地震序列的震源位置,采用CAP方法反演了36次ML4.0级以上地震的最佳双力偶震源机制解,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数,从而综合分析了芦山地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,7.0级主震的震源位置为30.30°N、102.97°E,初始破裂深度为15 km左右,震源矩心深度为14 km左右,最佳双力偶震源机制解的两组节面分别为走向209°/倾角46°/滑动角94°和走向23°/倾角44°/滑动角86°,可视为纯逆冲型地震破裂,绝大多数ML4.0级以上余震的震源机制也表现出与主震类似的逆冲破裂特征.ML2.0级以上余震序列发生在主震两侧,集中分布的长轴为30 km左右,震源深度主要集中在5~27 km,ML3.5级以上较大余震则集中分布在9~25 km的深度上,并揭示出发震断层倾向北西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向207°/倾角50°/滑动角92°,绝大多数余震发生在断层面附近10 km左右的区域.综合地震序列分布特征、主震震源深度和已有破裂过程研究结果,可以推测主震破裂过程自初始点沿断层的两侧扩展破裂,南侧破裂比北侧稍长,滑动量主要集中在初始破裂点附近,可能没有破裂到地表.综合本文研究成果、地震烈度分布和现有的科学考察结果,初步推测发震构造为龙门山山前断裂,也不排除主震震中东侧还存在一条未知的基底断裂发震的可能性.  相似文献   

2.
2012年6月30日新疆维吾尔自治区新源-和静县交界发生MS6.6地震,该地震是2010年青海玉树7.1级地震和2013年4月20日四川芦山7.0级地震之间中国大陆发生的最大的地震.本文基于新疆数字地震台网记录的此次地震序列震相资料,分别用绝对和相对定位方法联合对其进行重新定位,重新定位后余震展布为NW向,主震位置为43.429°N,84.755°E,深度为21.8 km.基于新疆地震台网记录6.6级地震波形数据,本文用CAP方法反演了震源机制解和震源深度.结果显示:MS6.6地震震源机制解:节面Ⅰ走向39°,倾角46°,滑动角12°,节面Ⅱ走向301°,倾角81°,滑动角135°;震源深度为21 km,与利用地震震相到时确定的主震震源深度基本一致.主震震源机制解的节面Ⅱ与伊犁盆地北缘断裂走向和倾角基本一致,综合精确定位余震展布和伊犁盆地北缘断裂性质分析认为,新源-和静MS6.6地震发震构造是伊犁盆地北缘断裂,震源深度为21 km左右,是一个高角的内陆倾滑地震.  相似文献   

3.
运用CAP方法反演2018年9月4日新疆伽师MS5.5地震及MS≥3.0余震的震源机制解,计算得出伽师MS5.5地震的震源机制解为:节面Ⅰ:走向48°,倾角83°,滑动角3°;节面Ⅱ:走向318°,倾角87°,滑动角173°;主压应力P轴方位角为3°,倾角为3°,主张应力T轴方位角273°,倾角为7°;矩震级为MW5.3。使用双差定位法对主震及余震共计129个MS≥1.5地震进行重新定位,并对震源机制解和重定位结果进行综合分析,发现此次重定位地震结果与CAP方法反演结果的展布方向一致,地震集中分布在NEE向,因此认为节面I是此次地震的主破裂面;重定位后NS、EW和UD方向的平均相对误差分别为0.25、0.23及0.09 km,平均走时残差为0.026 s,震源深度集中分布在5~15 km。此次地震及其余震附近地表无明显的断层出露,所以初步判定2018年新疆伽师MS5.5地震可能受控于柯坪断裂带附近的隐伏断裂。  相似文献   

4.
2015年7月3日皮山6.5级地震发震构造初步研究   总被引:11,自引:1,他引:10       下载免费PDF全文
李金  王琼  吴传勇  向元 《地球物理学报》2016,59(8):2859-2870
基于新疆区域数字地震台网记录,采用CAP(Cut and Paste)方法反演了2015年7月3日皮山6.5级主震和部分MS3.6以上余震的震源机制解和震源深度;采用HypoDD方法重新定位了序列中ML2.5以上地震序列的震源位置,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数.基于上述研究,综合分析了皮山6.5级地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,利用CAP方法得到的最佳双力偶机制解节面I:走向280°/倾角60°/滑动角90°;节面Ⅱ:走向100°/倾角30°/滑动角90°,矩心深度19 km,表明该地震为一次逆冲型地震事件.大部分MS3.6以上余震震源机制与主震具有一定的相似性.双差定位结果显示,ML2.5以上的余震序列主要分布在主震的西南方向,深度主要分布在0~15 km范围内,余震分布显示出与发震构造泽普隐伏断裂一致的倾向南西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向104°/倾角34°/滑动角94°,该结果与主震震源机制解中节面Ⅱ的滑动角较为接近,绝大多数余震发生在断层面附近10 km左右的区域.根据本研究得到的震源机制、精定位结果以及利用小震分布和区域应力场拟合得到的断层面的参数,结合震源区地质构造情况,初步给出了此次皮山6.5级地震的发震模式.  相似文献   

5.
赵博  高原  黄志斌  赵旭  李大虎 《地球物理学报》2013,56(10):3385-3395
2013年4月20日发生了四川芦山MS7.0地震,主震中位于青藏地块与华南地块结合部的龙门山断裂带南端.本研究用双差定位法对芦山地震主震及余震序列进行重新定位,得到主震位置为(30.29°N,102.97°E,17.82 km)及4100多次余震重新定位结果.利用GSN/IRIS台网和国家台网及四川省区域台网的波形数据对主震及部分余震进行了震源机制解反演.结果表明,主震为一次逆冲地震,根据余震序列分布确定发震断层面走向为200°,震源机制解断层倾角为45°.基于震源断层面解和断层滑动方向,采用力轴张量计算法得到了研究区域的平均主压应力方向约为N112°E.  相似文献   

6.
2017年8月8日在青藏高原东缘四川省九寨沟县发生M7.0级强烈地震,极震区烈度达Ⅸ度,但无明显地表破裂,一定程度上限制了发震构造的确定和后续地震危险性判定.本文基于截止至2017年8月14日的地震资料,采用多阶段定位方法,对主震及余震进行了重新定位,同时,利用CAP波形反演方法,获得了M7.0主震与13次ML ≥ 4.0级余震的震源机制解和震源矩心深度,进而初步分析了本次地震的发震构造.结果显示,九寨沟M7.0地震的矩震级MW6.4,震源矩心深度5 km,表明主震发生在上地壳浅部,与2003年伊朗巴姆(Bam)MW6.5地震特征极为相似;12次ML ≥ 4.0级余震的震源矩心深度6~12 km,显示这些余震发生在主震下部,仅1次例外.重新定位后的余震震中呈NW-SE向窄带展布,位于近NS向的岷江断裂与近EW向的东昆仑断裂带东端分支塔藏断裂所夹持的区域,余震带长轴长约38 km,主震位于余震带中部.根据余震震中分布、主震及余震震源机制解等,推测本次九寨沟M7.0地震及其余震的主发震构造为位于岷江断裂与塔藏断裂之间的树正断裂.震源机制解揭示,树正断裂呈左旋走滑,走向约152°,近SE,倾向SW,倾角约70°,该断裂应属于东昆仑断裂东端的分支断裂之一,或与东南侧的虎牙断裂构成统一断裂系.  相似文献   

7.
利用地震科学探测台阵在云南、 贵州地区的17个流动台站的地震记录, 采用双差定位法对2012年9月7日云南彝良MS5.7和MS5.6地震及其余震序列(ML≥1.0)进行重定位. 在获得精确的震源位置后, 采用CAP法反演了MS≥4.0地震的震源机制解. 结果显示, 彝良MS5.7主震位于(27.509°N, 103.971°E), 震源深度为9.7 km, 震源机制解节面Ⅰ走向251°、 倾角66°、 滑动角150°, 节面Ⅱ走向354°、 倾角63°、 滑动角27°; 彝良MS5.6主震位于(27.563°N, 104.034°E), 震源深度为10.0 km, 震源机制解节面Ⅰ走向235°、 倾角39°、 滑动角147°, 节面Ⅱ走向352°、 倾角70°、 滑动角56°. 反演结果显示断层的几何形态、 余震分布特征、 震源机制解特征及构造应力场等均有很好的一致性. 综合断层的运动学特征、 地震活动规律和地质构造背景, 推测彝良地震的发震断裂为昭通断裂带的前缘断裂, 即NE走向的石门断裂. 导致震区受灾严重的主要原因是由于彝良地震震源深度较浅, 能量释放多发生在地壳浅部所致.   相似文献   

8.
翟亮  张晓东  王伟君 《地震学报》2019,41(3):314-328
为确定2017年8月9日精河MS6.6地震的发震构造,本文使用双差定位方法对发震时刻至2017年10月震源区所发生的余震进行了精定位,同时利用CAP波形反演方法,得到了主震的震源机制解,同时使用GPAT方法反演得到了部分余震的震源机制解,并基于两者对本次地震的发震构造予以分析。结果显示:精定位后主震位于(44.27°N,82.85°E),震源深度为17 km;主震最佳双力偶解对应的节面Ⅰ的走向为260°、倾角为51°、滑动角为84°,节面Ⅱ的走向为89.5°、倾角为39.4°、滑动角为97.4°;余震序列位于主震东侧,并向东展布约30 km,在3—18 km深度范围内均有分布,其优势方向为近EW向,次优势方向为SW向。结果表明,本次地震是一次逆冲型地震,通过反演得到的大量小震震源机制解的结果与主震震源机制解结果相一致。结合余震震中分布、主震及余震的震源机制解以及震源区的地质构造,本文推断近EW走向具有逆冲性质的库松木楔克山前断裂为精河主震的发震构造。   相似文献   

9.
2022年1月8日青海省海北州门源县发生MS6.9地震,震后产生了长约22 km的地表破裂带,青海、甘肃和宁夏等多地震感强烈。本文基于区域地震台网资料,通过多阶段定位方法对门源MS6.9地震早期序列(2022年1月8日至12日)进行了重定位,并利用gCAP方法反演了主震和MS≥3.4余震的震源机制和震源矩心深度,计算了现今应力场体系在门源MS6.9地震震源机制两个节面产生的相对剪应力和正应力。结果表明:门源MS6.9地震的初始破裂深度为7.8 km,震源矩心深度为4 km,地震序列的优势初始破裂深度主要介于7—8 km之间,而MS≥3.4余震的震源矩心深度为3—7 km;该地震序列的震源深度剖面显示震后24个小时内的地震序列长度约为25 km,与地表破裂带的长度大体一致,整体地震序列长度约为30 km,其中1月8日MS6.9主震和MS5.1余震位于余震区西段,1月12日MS5.2余震位于余震区东段。2022年1月8日门源MS6.9主震的震源机制解节面Ⅰ为走向290°、倾角81°、滑动角16°,节面Ⅱ为走向197°、倾角74°、滑动角171°,根据余震展布的总体趋势估计断层面走向为290°,表明此次地震为近乎直立断层面上的一次左旋走滑型事件;MS≥3.4余震的震源机制解显示这些地震主要为走滑型地震,P轴走向从余震区西段到东段之间大体呈现NE向到EW向的变化。现今应力场体系在门源MS6.9主震震源机制解节面Ⅰ上产生的相对剪应力为0.638,而在节面Ⅱ上的相对剪应力为0.522,表明这两个节面均非构造应力场的最大释放节面,这与2016年门源MS6.4地震逆冲型震源机制为构造应力场的最优释放节面有着明显差异。结合地质构造、震源机制和余震展布,2022年1月8日门源MS6.9主震的发震构造可能为冷龙岭断裂西段,其地震断层错动方式为左旋走滑。根据重定位结果、震级-破裂关系以及剪应力结果,本文认为门源地区存在一定的应力积累且应力未得到充分释放,该地区仍存在发生强震的危险。   相似文献   

10.
2018年9月4日新疆伽师发生M_S 5.5地震,震源区周边发生过数次的强震,且各震中位置相近,大致为10 km左右.由于地震观测报告给出的初始定位误差较大,余震分布较为离散,且震源区沉积层较厚,无断层出露,伽师地震的发震断层与前两次强震是否存在关联仍不清楚.本研究主要利用CAP方法对伽师地震M_S≥3.5的余震震源机制解进行解算,并利用双差定位方法对伽师地震序列进行重定位.结果表明,伽师地震主震震源机制解为节面Ⅰ走向:226°,倾角90°,滑动角0°;节面Ⅱ走向:136°,倾角90°,滑动角-180°;本次地震为走滑型地震事件,主震震源深度为10 km,余震震源机制解与主震较为一致,P轴作用近似NS向,与区域构造应力场相同.根据双差定位结果显示,余震的优势分布方向为北东向,震源深度集中在5~15 km.由余震分布特征和震源机制解,认为此次地震断层面应为节面Ⅰ,与1997年和2003年的伽师强震属于不同的发震构造.根据相关地质及地震资料分析,推测此次地震发震断层为震源区下方的隐伏断裂,此断裂很可能即为与羊达曼断裂正交的北东向隐伏直立断层,伽师地震的发生与帕米尔、南天山以及塔里木盆地的相对形变速率和升降幅度有关.  相似文献   

11.
Using the digital broadband seismic data recorded by Xinjiang network stations, we obtained focal mechanism of the July 3 Pishan, Xinjiang, MS6.5 earthquake with generalized Cut and Paste(gCAP)inversion method. The strike, dip and rake of first nodal plane are 97°, 27°, 51°, and the second nodal plane are 318°, 70°, 107°. The centroid depth and moment magnitude are calculated to be 12km and 6.4. Combining with the distribution of aftershocks, we conclude that the first nodal plane is the seismogenic fault, and the main shock presents a thrust earthquake at low angle. We relocated 1014 earthquakes using the double-difference algorithm, and finally obtained 937 relocated events. Our results show that the earthquake sequences clearly demonstrate a unilateral extension about 50km nearly in NWW direction, and are mainly located above 25km depth, especially the small earthquakes are predominately located at the shallow parts. Furthermore, the focal depth profile shows a southwestward dipping fault plane at the main shock position, suggesting listric thrust faulting, which is consistent with the dip of the mainshock rupture plane. The spatial distribution of aftershocks represents that the Tarim block was thrust under the West Kunlun orogenic belt. In addition, the dip angle of the fault plane gradually increases along the NWW direction, possibly suggesting a gradual increase of strike-slip component during the NWW rupturing process. From above, we conclude that the Pishan MS6.5 earthquake is the result of Tibet plateau pushing onto the Tarim block from south to north, which further confirms that the continuous collision of India plate and Eurasia plate has strong influence on the seismic activity in and around the Tibet plateau.  相似文献   

12.
Based on the digital waveforms of Xinjiang Seismic Network, the Hutubi MS6.2 earthquake sequence (ML ≥ 1.0) was relocated precisely by HypoDD.The best double-couple focal mechanisms of the main shock and aftershocks of ML ≥ 4.0 were determined by the CAP method. We analyzed the characteristics of spatial distribution, focal mechanisms and the seismogenic structure of earthquake sequence. The results show that the main shock is located at 43.775 9°N, 86.363 4°E; the depth of the initial rupture and centriod is about 15.388km and 17km. The earthquake sequence extends unilaterally along NWW direction with an extension length of about 15km and a depth ranging 5~15km. The characteristics of the depth profiles show that the seismogenic fault plane dips northward and the faulting is dominated by thrusting. The nodal planes parameters of the best double-couple focal mechanisms are:strike 292°, dip 62° and rake 80° for nodal plane I, and strike 132°, dip 30° and rake 108° for nodal plane Ⅱ, indicating that the main shock is of thrust faulting. The dip of nodal planeⅠis consistent with the dip of the depth profile, which is inferred to be the fault plane of seismogenic fault of this earthquake. According to the comprehensive analysis of the relocation results, the focal mechanism and geological structure in the source region, it is preliminarily inferred that the seismogenic structure of the Hutubi MS6.2 earthquake may be a backthrust on the deeper concealed thrust slope at the south of Qigu anticline. The earthquake is a "folding" earthquake taking place under the stress field of Tianshan expanding towards the Junggar Basin.  相似文献   

13.
Based on the phase report of Xinjiang Seismic Network, the Hutubi MS6.2 earthquake sequence ML ≥ 1.0 was relocated by the HypoDD method. The results show that the aftershocks were distributed along NE and NW direction. The aftershocks were in the depths of 5~15km. In addition, by using the digital waveforms of Xinjiang Seismic Network, the best double-couple focal mechanism of the main shock and some aftershocks of MS ≥ 3.8 were determined by the CAP method. Based on the above studies, the source depth, focal mechanism and aftershock distribution of the Hutubi MS6.2 earthquake were analyzed and the seismogenic structure was discussed. The nodal plane parameters of the best double-couple focal mechanism are strike 144°, dip 26°, rake 118°, and strike 293°, dip 67°, rake 77°, respectively. The moment magnitude MW is about 5.9, with centroid depth of 15.2km. These show that the main shock was a thrust type. Most focal mechanism solutions of the aftershocks were shown as a thrust type, which are similar to the main shock. It is speculated that the possible seismogenic fault of this earthquake is the Huorgosi-Manas-Tugulu Fault.  相似文献   

14.
郭志  高星  路珍 《地震学报》2020,42(3):245-255
采用双差重定位和W震相波形反演方法分析 “地震编目系统” 和中国地震台网中心提供的地震观测报告及区域地震波形数据,对2019年四川长宁地震序列进行了重定位,反演获取了M>4.5地震的震源机制解。地震序列重定位结果显示,长宁地震序列沿NW优势方向呈条带状分布,集中分布于5—10 km深度范围,且发震断层面呈高倾角。震源机制反演结果表明,2019年6月17日四川长宁MS6.0主震的两个可能发震断层面参数分别为:节面Ⅰ走向12°,倾角50°,滑动角139°;节面Ⅱ走向131°,倾角59°,滑动角48°,最优矩心深度为7.5 km,矩震级MW5.74。此外几个M>4.5余震的震源机制也基本与主震类似,均为以逆断为主外加少量走滑的地震破裂事件。综合分析长宁地震序列的重定位、震源机制反演结果以及震中和附近区域的地质构造背景信息推断,本次长宁主震的发震破裂面呈NW?SE走向,发震断层为长宁—双河背斜东北翼发育的逆冲断层。   相似文献   

15.
刘建明  李金  姚远  聂晓红  滕海涛 《地震》2020,40(1):52-61
基于新疆区域数字地震台网震相观测报告, 采用双差定位方法对2019年新疆疏附MS5.1地震序列ML≥1.0地震进行重定位, 采用CAP波形反演方法, 获得了主震的震源机制解和震源矩心深度, 进而综合分析了本次地震可能的发震构造。 结果表明, 疏附5.1级地震震源位置为39.59°N, 75.57°E, 初始破裂深度为18 km, 震源矩心深度为18 km。 重定位后的地震序列呈两个优势方向展布, 分别为NEE向和NE向分支, NEE向为主要的余震优势分布区域, 呈长约13 km窄带状分布在喀什断裂附近。 另一条优势分布为沿NE向长度约9 km, 这可能与喀什断裂阶区有关。 深度剖面显示, 地震震源深度主要集中分布在8~20 km。 沿NEE走向深度剖面显示, 疏附5.1级地震破裂于深部, 余震沿优势分布的震源深度自SWW向NEE呈现逐渐加深的变化特征。 垂直于震中优势分布的深度剖面显示, 本次地震发震断层面倾向为N倾。 震源机制解显示本次地震断错类型为逆冲型, 结合震源深度剖面特征推断节面Ⅰ为本次地震的发震断层面。 综合地震序列空间分布特征、 震源机制以及震源区地质资料, 推测此次地震的发震构造可能为喀什断裂, 余震向浅部扩展。  相似文献   

16.
The Wulong MS5.0 earthquake on 23 November 2017, located in the Wolong sap between Wenfu, Furong and Mawu faults, is the biggest instrumentally recorded earthquake in the southeastern Chongqing. It occurred unexpectedly in a weak earthquake background with no knowledge of dramatically active faults. The complete earthquake sequences offered a significant source information example for focal mechanism solution, seismotectonics and seismogenic mechanism, which is helpful for the estimation of potential seismic sources and level of the future seismic risk in the region. In this study, we firstly calculated the focal mechanism solutions of the main shock using CAP waveform inversion method and then relocated the main shock and aftershocks by the method of double-difference algorithm. Secondly, we determined the seismogenic fault responsible for the MS5.0 Wulong earthquake based on these calculated results. Finally, we explored the seismogenic mechanism of the Wulong earthquake and future potential seismic risk level of the region. The results show the parameters of the focal mechanism solution, which are:strike24°, dip 16°, and rake -108° for the nodal plane Ⅰ, and strike223°, dip 75°, and rake -85° for the nodal plane Ⅱ. The calculations are supported by the results of different agencies and other methods. Additionally, the relocated results show that the Wulong MS5.0 earthquake sequence is within a rectangular strip with 4.7km in length and 2.4km in width, which is approximately consistent with the scales by empirical relationship of Wells and Coppersmith(1994). Most of the relocated aftershocks are distributed in the southwest of the mainshock. The NW-SE cross sections show that the predominant focal depth is 5~8km. The earthquake sequences suggest the occurrence features of the fault that dips northwest with dip angle of 63° by the least square method, which is largely consistent with nodal planeⅡof the focal mechanism solution. Coincidentally, the field outcrop survey results show that the Wenfu Fault is a normal fault striking southwest and dipping 60°~73° by previous studies. According to the above data, we infer that the Wenfu Fault is the seismogenic structure responsible for Wulong MS5.0 earthquake. We also propose two preliminary genetic mechanisms of "local stress adjustment" and "fluid activation effect". The "local stress adjustment" model is that several strong earthquakes in Sichuan, such as M8.0 Wenchuan earthquake, M7.0 Luzhou earthquake and M7.0 Jiuzhaigou earthquake, have changed the stress regime of the eastern margin of the Sichuan Basin by stress transference. Within the changed stress regime, a minor local stress adjustment has the possibility of making a notable earthquake event. In contract, the "fluid activation effect" model is mainly supported by the three evidences as follows:1)the maximum principle stress axial azimuth is against the regional stress field, which reflects NWW-SEE direction thrusting type; 2)the Wujiang River crosscuts the pre-existing Wenfu normal fault and offers the fluid source; and 3)fractures along the Wenfu Fault formed by karst dissolution offer the important fluid flow channels.  相似文献   

17.
On August 8, 2017, Beijing time, an earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, Sichuan Province, with the epicenter located at 33.20°N 103.82°E. The earthquake caused 25 people dead, 525 people injured, 6 people missing and 170000 people affected. Many houses were damaged to various degrees. Up to October 15, 2017, a total of 7679 aftershocks were recorded, including 2099 earthquakes of M ≥ 1.0. The M7.0 Jiuzhaigou earthquake occurred in the northeastern boundary belt of the Bayan Har block on the Qinghai-Tibet Plateau, where many active faults are developed, including the Tazhong Fault(the eastern segment of the East Kunlun Fault), the Minjiang fault zone, the Xueshan fault zone, the Huya fault zone, the Wenxian fault zone, the Guanggaishan-Daishan Fault, the Bailongjiang Fault, the Longriuba Fault and the Longmenshan Fault. As one of the important passages for the eastward extrusion movement of the Qinghai-Tibet Plateau(Tapponnier et al., 2001), the East Kunlun fault zone has a crucial influence on the tectonic activities of the northeastern boundary belt of Bayan Kala. Meanwhile, the Coulomb stress, fault strain and other research results show that the eastern boundary of the Bayan Har block still has a high risk of strong earthquakes in the future. So the study of the M7.0 Jiuzhaigou earthquake' seismogenic faults and stress fields is of great significance for scientific understanding of the seismogenic environment and geodynamics of the eastern boundary of Bayan Har block. In this paper, the epicenter of the main shock and its aftershocks were relocated by the double-difference relocation method and the spatial distribution of the aftershock sequence was obtained. Then we determined the focal mechanism solutions of 24 aftershocks(M ≥ 3.0)by using the CAP algorithm with the waveform records of China Digital Seismic Network. After that, we applied the sliding fitting algorithm to invert the stress field of the earthquake area based on the previous results of the mechanism solutions. Combining with the previous research results of seismogeology in this area, we discussed the seismogenic fault structure and dynamic characteristics of the M7.0 Jiuzhaigou earthquake. Our research results indicated that:1)The epicenters of the M7.0 Jiuzhaigou earthquake sequence distribute along NW-SE in a stripe pattern with a long axis of about 35km and a short axis of about 8km, and with high inclination and dipping to the southwest, the focal depths are mainly concentrated in the range of 2~25km, gradually deepening from northwest to southeast along the fault, but the dip angle does not change remarkably on the whole fault. 2)The focal mechanism solution of the M7.0 Jiuzhaigou earthquake is:strike 151°, dip 69° and rake 12° for nodal plane Ⅰ, and 245°, 78° and -158° for nodal plane Ⅱ, the main shock type is pure strike-slip and the centroid depth of the earthquake is about 5km. Most of the focal mechanism of the aftershock sequence is strike-slip type, which is consistent with the main shock's focal mechanism solution; 3)In the earthquake source area, the principal compressive stress and the principal tensile stress are both near horizontal, and the principal compressive stress is near east-west direction, while the principal tensile stress is near north-south direction. The Jiuzhaigou earthquake is a strike-slip event that occurs under the horizontal compressive stress.  相似文献   

18.
2014年11月22日康定M6.3级地震序列发震构造分析   总被引:18,自引:5,他引:13       下载免费PDF全文
2014年11月22日在NW向鲜水河断裂带中南段四川康定县发生M6.3级地震,11月25日在该地震震中东南约10km处再次发生M5.8级地震.基于中国国家数字地震台网和四川区域数字地震台网资料,采用多阶段定位方法对本次康定M6.3级地震序列进行了重新定位;利用gCAP(generalized Cut And Paste)矩张量反演方法获得了M6.3和M5.8级地震的震源机制解与矩心深度,分析了本次地震序列的发震构造,并结合历史强震破裂时空分布和2001年以来小震重新定位结果,对鲜水河断裂带中段强震危险性进行了初步探讨.获得的主要结果如下:(1)M6.3级主震震中位于101.69°E、30.27°N,震源初始破裂深度约10km,矩心深度9km;M5.8级地震震中位于101.73°E、30.18°N,初始破裂深度约11km,矩心深度9km.gCAP矩张量反演结果揭示这两次地震双力偶分量占主导,M6.3级地震的最佳双力偶解节面Ⅰ走向143°/倾角82°/滑动角-9°,节面Ⅱ走向234°/倾角81°/滑动角-172°.M5.8级地震最佳双力偶解节面Ⅰ走向151°/倾角83°/滑动角-6°,节面Ⅱ走向242°/倾角84°/滑动角-173°.依据余震分布长轴展布与断裂走向,判定节面Ⅰ为发震断层面,M6.3和M5.8级地震均为带有微小正断分量的左旋走滑型地震.(2)序列中重新定位的459个地震平均震源深度约9km,地震主要集中分布在6~11km深度区间,余震基本发生在M6.3和M5.8级地震震源上部.依据余震密集区展布范围,推测本次康定地震的震源体尺度长约30km、宽约4km、深度范围约6km.M6.3级主震震源附近的余震稀疏区可能是一个较大的凹凸体(asperity),在主震中能量得以充分释放.(3)最初3天的余震主要分布在M6.3级地震NW侧;而M5.8级地震之后的余震主要集中在其震中附近.M6.3级地震以及最初3天的绝大部分余震发生在倾角约82°近直立的NW走向色拉哈断裂上;M5.8级地震与其后的多数余震发生在倾角约83°近直立的NW走向折多塘断裂北端走向向北偏转部位,M5.8级地震可能是M6.3级地震触发相邻的折多塘断裂活动所致.(4)康定M6.3与M5.8级地震发生在鲜水河断裂带乾宁与康定之间的色拉哈强震破裂空段,本次地震破裂尺度较小,尚不足以填补该强震空段.色拉哈段以及相邻的乾宁段7级地震平静时间均已超过其平均复发周期估值,未来几年存在发生7级地震的危险.康定M6.3级地震序列基本填补了震前存在于塔公与康定之间的深部小震空区,未来强震发生在塔公至松林口段深部小震稀疏区内的可能性很大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号