首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
本文对喜马拉雅计划二期部分台站的远震波形数据进行接收函数提取,利用接收函数共转换点叠加方法获得阿拉善地块、鄂尔多斯地块以及银川—河套盆地下方0~80 km深度的速度间断面结构.结果表明:鄂尔多斯地块成层性好,地壳厚度为38~42 km,康拉德界面为18~22 km,阿拉善地区的Moho面深度为38~45 km.河套盆地地壳厚度约52 km,银川断陷盆地和贺兰山下方的Moho面最深为~55 km.鄂尔多斯西缘构造边界下方Moho面变化明显,且黄河断裂为深大断裂直接切割莫霍界面.根据本文的间断面成像结果我们进一步确定阿拉善地块与鄂尔多斯地块分属不同的大地构造单元.与此同时,我们推测贺兰山以西70~80 km范围内和鄂尔多斯地块西缘北段存在地壳增厚变形的可能.  相似文献   

2.
利用接收函数方法研究四川地区地壳结构   总被引:3,自引:0,他引:3  
采用接收函数反演和共转换点(CCP)偏移叠加成像方法,利用四川数字地震台网宽频带的52个区域固定地震台站和布设的两条52个宽频带流动地震观测台站的远震地震波形数据资料,对四川地区地壳结构进行研究。结果表明,四川地区的Moho面深度在青藏高原和四川盆地差异明显,在川西高原地区地壳厚度为52~68km,在川滇地块地壳厚度为50~60km,在中地壳内存在不连续的低速层分布;而在四川盆地地壳厚度为38~45km,地壳内没有低速层存在。Moho面深度从川西高原的60多公里至四川盆地的约40km,在二者的交界处龙门山断裂带下面,存在厚度约30km左右宽的下降过渡带,说明其下的Moho面可能受断层影响,结构比较复杂;在高原地区的上地壳界面和下地壳上界面比四川盆地的相应界面深;高原地区在中地壳的上部有不连续的低速层分布,在松潘—甘孜地块的上地壳下部存在向南东运动的脆性推覆体,在羌塘—理塘地块的上地壳下部存在向南东和南运动的脆性物质流动。  相似文献   

3.
汶川Ms8.0地震:地壳上地幔S波速度结构的初步研究   总被引:27,自引:11,他引:16       下载免费PDF全文
2008年5月12日我国四川省汶川地区发生了震惊世界的Ms8.0地震.历史上,同类地震在大陆内部极为罕见.该地震深部构造背景的研究对理解其成因极为重要.本文利用中国地震局地质研究所地震动力学国家重点实验室在川西地区布设的大规模密集流动宽频带地震台阵记录的远震P波波形数据和接收函数非线性反演方法,得到了沿北纬31°线的19个台站下方120 km深度范围内的S泼速度结构及台站下方地壳的平均泊松比.该观测剖面穿越了主震区,总长度约为420 km.我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异.上述三个地块的地壳结构特征口J以概括为:(1)四川盆地前陆壳幔界面向西侧倾斜井有较为明显的横向变肜,地壳厚度存在46~52 km的横向变化,中下地壳S波速度存在横向变化,地壳平均泊松比值较高(0.28~0.31),但在龙门山断裂带附近,显示了坚硬地壳的特征,地壳平均泊松比仪为0.2;(2)松潘-甘孜地块地壳厚度由西侧靠近鲜水河断裂的60 km,向东减薄为52 km,在14~50 km深度范围内存在S波速度2.75~3.15 km/s的楔状低速区,其厚度由西侧的~30 km向东逐渐减薄为~15 km,相应区域的地壳平均泊松比高达0.29~0.31;(3)鲜水河断裂西侧,川滇地块地壳结构相对简单,地壳厚度为58 km,并在26 km深度存在约10 km厚度的高速层,地壳内平均泊松比约为0.25;(4)汶川大震区在12~23 km深度上具有近乎4.0 km/s的S波高速结构,而其下方的地壳为低速结构,地壳平均泊松比0.31~0.32,汶川大震的余震序列主要分布在高速介质区域内.本文的结果表明松潘-甘孜地块的地壳相对软弱;而且并不仔在四川盆地向西侧的俯冲,我们认为在青藏高原东向挤压的长期作用下,四川盆地强硬地壳的阻挡作用可导致松潘-甘孜地块内部蓄积很大的应变能量以及上、下地壳存壳内低速层顶部边界的解耦,在龙门山断裂带附近形成上地壳的铲形逆冲推覆.汶川大地震及其邻近区域所具有的坚硬上地壳和四川盆地的阻挡作用为低应变率下的高慢度应力积累创造了必要条件,而松潘-甘孜地块长期变形积累的高应变能构成了孕育汶川大地震的动力来源.  相似文献   

4.
郯庐断裂带中段电性结构及其地学意义研究   总被引:8,自引:5,他引:3       下载免费PDF全文
郯庐断裂带是中国大陆东部一个重要的左行走滑断裂系,对于研究中国大陆的形成演化与构造格局有着十分重要的意义.阿拉善左旗—山东日照超宽频带大地电磁测深剖面在山东莒县附近穿越了郯庐断裂带中段,电性主轴分析结果表明断裂带附近构造走向大致为北东20°;反演电阻率模型表明剖面穿越处郯庐断裂带的宽度约为30 km,断裂带主体是两条切割深度大、陡倾的断裂,西侧断裂切割深度约为60 km,向西倾斜,断面陡立,倾角约为70°,东侧断裂切割深度大于80 km,但小于100 km,界面东倾,陡立,倾角约为60°~80°;这两条断裂都切穿了地壳,但未切穿岩石圈.郯庐断裂带东缘至剖面终端日照,整个地壳为高阻,与断裂带西侧地壳的电性结构差异明显,这表明郯庐断裂带是华北地块与胶辽朝地块的边界断裂.  相似文献   

5.
龙门山地区的深部构造研究对于龙门山断裂带的深部驱动机制有重要的意义,但由于天然地震太站分布较少,难以获得水平分辨较高覆盖整个龙门山地区的深部构造图像.本文利用最新中德合作在龙门山断裂带两侧布置的天然地震阵列式台站数据,获取了各个台站的接收函数波形数据.通过对H-K叠加方法的研究和改进,并应用到各个台站的实际接收函数数据分析上,获得了断裂带两侧以及沿断裂带的地壳厚度和平均速度比的分布,通过进一步插值形成了覆盖整个龙门山地区的水平分辨20Km的Moho面三维形态.综合对应的速度比和深部物质赋存状态关系的研究,获得以下结论:四川盆地属于平均厚度35~40km冷地壳,松潘和夹金山等山区地壳则属于厚45~50Km的热地壳.而沿断裂带变化比较明显,南段类似高原地区有热而厚的地壳,中段为40~45 km的正常地壳,个别地形突起处深约50 km.北段则逐渐向盆地的冷而薄的地壳过渡,厚度从43~40 km逐渐变化.Moho面的分布特征表明了龙门山断裂带的中部和南部的差异,并推测其间存在一个明显的Moho面异常突起带,与该过渡带的余震的缺失存在一定的关联.  相似文献   

6.
2008年5月12日我国四川省汶川地区发生了震惊世界的MS8.0地震.历史上,同类地震在大陆内部极为罕见.该地震深部构造背景的研究对理解其成因极为重要.本文利用中国地震局地质研究所地震动力学国家重点实验室在川西地区布设的大规模密集流动宽频带地震台阵记录的远震P波波形数据和接收函数非线性反演方法,得到了沿北纬31°线的19个台站下方120 km深度范围内的S波速度结构及台站下方地壳的平均泊松比.该观测剖面穿越了主震区,总长度约为420 km. 我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异.上述三个地块的地壳结构特征可以概括为:(1)四川盆地前陆壳幔界面向西侧倾斜并有较为明显的横向变形,地壳厚度存在46~52 km的横向变化,中下地壳S波速度存在横向变化,地壳平均泊松比值较高(0.28~0.31),但在龙门山断裂带附近,显示了坚硬地壳的特征,地壳平均泊松比仅为0.2;(2)松潘-甘孜地块地壳厚度由西侧靠近鲜水河断裂的60 km,向东减薄为52 km,在14~50 km深度范围内存在S波速度2.75~3.15 km/s的楔状低速区,其厚度由西侧的~30 km向东逐渐减薄为~15 km,相应区域的地壳平均泊松比高达0.29~0.31; (3)鲜水河断裂西侧,川滇地块地壳结构相对简单,地壳厚度为58 km,并在26 km深度存在约10 km厚度的高速层,地壳内平均泊松比约为0.25;(4)汶川大震区在12~23 km深度上具有近乎4.0 km/s的S波高速结构,而其下方的地壳为低速结构,地壳平均泊松比0.31~0.32,汶川大震的余震序列主要分布在高速介质区域内. 本文的结果表明松潘-甘孜地块的地壳相对软弱;而且并不存在四川盆地向西侧的俯冲.我们认为在青藏高原东向挤压的长期作用下,四川盆地强硬地壳的阻挡作用可导致松潘-甘孜地块内部蓄积很大的应变能量以及上、下地壳在壳内低速层顶部边界的解耦,在龙门山断裂带附近形成上地壳的铲形逆冲推覆.汶川大地震及其邻近区域所具有的坚硬上地壳和四川盆地的阻挡作用为低应变率下的高强度应力积累创造了必要条件,而松潘-甘孜地块长期变形积累的高应变能构成了孕育汶川大地震的动力来源.  相似文献   

7.
鄂尔多斯地块东南缘地带Moho深度变化特征研究   总被引:7,自引:2,他引:5       下载免费PDF全文
鄂尔多斯地块东南缘是主要的历史强震活跃区,曾经多次发生6级或以上的强烈地震,其边缘边界具有较强的地震活动性.本文利用该区域内分布的固定台站数据记录的大量远震体波波形资料,应用频率域反褶积方法提取远震P波接收函数,由H-κ方法测定了各台站下方的Moho深度和Vp/Vs值.研究结果表明:鄂尔多斯地块东南缘的Vp/Vs值介于1.6~1.9之间.东缘的Moho深度介于33.4~45 km之间,太原断陷盆地附近的Moho深度较浅,最浅处为33.4 km;东部北段的延怀盆地、蔚县盆地、阳原盆地和南段的临汾盆地附近Moho深度变化不大,平均深度为40 km.而在东缘东侧,因存在着山西断陷带,导致块体边缘的Moho深度要小于块体内部的Moho深度.块体南缘的Moho深度介于31.0~53.1 km之间,自东段向西段Moho深度逐渐变大,从渭河盆地附近的31.0 km增厚至秦岭造山带地段的53.1 km.总之,鄂尔多斯地块东南缘地带的Moho深度和Vp/Vs值分布具有明显的分块特征,块体内部结构比较稳定,东缘东段地壳结构相对一致,东缘东侧与西侧地壳深度具有明显的差异性,从山西断陷以东向西地壳厚度逐渐增厚,很好地对应了其地质构造特点.  相似文献   

8.
在喜马拉雅造山带的东缘,雅鲁藏布江缝合带在这里发生急剧转折,南迦巴瓦变质体快速隆起,然而关于东构造结的形成机制一直未有定论.利用围绕南迦巴瓦峰的48个宽频带地震台站记录的远震数据提取P波接收函数,采用改进的H-κ叠加方法和共转换点叠加方法综合研究了东构造结的地壳厚度、波速比分布和地壳结构特征.结果表明:研究区平均地壳厚度为64.03 km,大部分台站介于60.48~66.55 km范围;平均波速比为1.728,主要集中范围为1.696~1.742.东构造结地壳厚度横向变化剧烈,构造结西端和北端厚而中间薄,东构造结核部Moho面呈现上隆的构造形态,东西向上隆幅度约为6~7 km,南北向的上隆超过9~10 km.东构造结核部地壳上隆减薄可能由高密度、高波速的岩石圈撕裂残片拆沉到上地幔软流圈后重力失衡所致.平均波速比超过1.8的高值异常展布于东构造结的两侧,推测为环东构造结的壳内部分熔融体.东构造结地壳上隆减薄和壳内部分熔融的存在很可能均与幔源热物质的上涌有关,而软流圈地幔的上涌则可能由印度板片的撕裂引起.  相似文献   

9.
印度地壳与岩石圈地幔的俯冲前缘和俯冲形态,对认识高原构造变形、隆升机制有重要意义.本文基于青藏高原西缘分布的流动宽频带地震台站(TW-80测线和Y2台网)记录的远震波形数据,通过接收函数H-κ网格搜索与CCP叠加方法,对研究区地壳结构进行成像.结果显示:(1)研究区西侧北西—南东向剖面(剖面1,2),狮泉河逆冲断裂带以南,深度67~80 km范围内均观测到连续的Moho界面;40~55 km范围内存在另一组横向上可连续追踪的界面,其形态与之下Moho面横向变化趋势近乎平行;(2)研究区东侧剖面3下方,Moho面从南端喀喇昆仑断裂带下方向北逐渐加深,在雅鲁藏布江缝合带附近增至大约67 km,进入拉萨块体至台站WT20和WT03下方至最深75~80 km,然后向北有所抬升.基于成像结果和岩石学研究成果推测藏南块体下方,自西向东均存在俯冲印度板块下地壳的榴辉岩化现象,可以用来指示印度板块地壳尺度的俯冲前缘,其在青藏高原西部(约80°E)位于班公湖—怒江缝合带附近,向东逐步递减至拉萨块体中部.  相似文献   

10.
对INDEPTH Ⅲ台站的接收函数进行扫描,利用Moho界面产生的转换波和多次波的走时信息,估计台站下方的地壳平均波速比VP/VS和地壳厚度.结果显示:(1)沿着INDEPTH Ⅲ剖面,地壳厚度整体变化不大,均为65±5km,其中拉萨地块Moho界面埋深较羌塘地体要深约5~6km.结合其他研究资料,我们推断,在整个班公-怒江缝合带存在约10km的Moho错断,为拉萨地体北缘的地幔盖层向北俯冲到羌塘地体之下所致.(2)青藏高原地壳平均波速比整体都较高,可能与青藏高原地壳广泛存在的流体/部分熔融岩浆有关.拉萨地体北部异常高的地壳VP/VS可能与嘉黎-崩错右旋走滑断裂相关;而另一个泊松比异常区位于羌塘中北部(st36~st40),它可能是由热的地幔引起的壳内部分熔融所致.  相似文献   

11.
芦山与汶川地震之间存在约40 km的地震空区.震源区和地震空区的深部构造背景的研究对深入了解中强地震的深部孕育环境及地震空区的地震活动性具有重要科学意义.利用本小组布设的15个临时观测地震台以及21个芦山科考台站和21个四川省地震局固定台站记录的远震数据,用H-K叠加方法得到各个台站的地壳厚度和平均泊松比,并构建了接收函数共转换点(CCP)偏移叠加图像以及反演得到台站下方的S波速度模型.我们的结果揭示了震源区和地震空区地壳结构特征差异:(1)汶川震源区的地壳平均泊松比为~0.28;芦山震源区为~0.29;而地震空区处于泊松比变化剧烈的区域;(2)汶川地震与芦山地震的震源区以西下方的Moho面呈现深度上的突变(这与前人的研究成果基本一致),分别从~44 km突变到~59 km,~40 km突变到~50 km,而地震空区地壳平均厚度呈现渐变性变化;(3)地震空区Moho面下凹且具有低速的上地壳.综合一维S波速度结构和H-k以及CCP的初步结果,这可能显示汶川地震的发震断裂在深部方向上向西倾斜并形成切割整个地壳的大型断裂;芦山地震则可能是由于上、下地壳解耦引起的;而地震空区处于两种地震形成机制控制区域的过渡带中.  相似文献   

12.
根据西秦岭构造带及其周边地区117个宽频带地震台站的高质量波形数据, 利用远震P波接收函数的H-k叠加方法, 求得地壳厚度和平均波速比. 通过分析地壳厚度、 波速比及其关系和接收函数CCP叠加剖面, 研究了该区域的地壳结构特征. 结果表明, 研究区域内地壳结构差异大, 呈过渡带特征. 地壳厚度总体上呈北北西向分布, 自西南向东北逐渐减小. 羌塘块体地壳厚度为72 km, 渭河盆地附近为39 km. 西秦岭构造带的地壳厚度为42—56 km, 南北向莫霍界面平坦. 研究区域P波与S波波速比平均为1.74, 其中西秦岭构造带平均为1.72. 较低的波速比主要分布在西秦岭构造带、 祁连山块体、 松潘—甘孜地块北部以及香山—天景山断裂区域, 这可能是由于含长英质酸性岩组分的上地壳叠置增厚而导致的. 该区域缺少超高波速比, 表明这一区域发生岩浆底侵或上地壳熔融的可能性很小. 综合分析表明, 西秦岭构造带及邻区的地壳结构主要是由于青藏高原隆升并在向东北向扩张中受到周边块体的阻挡而引起的地壳构造变形所致. 西秦岭构造带的莫霍界面变化和波速比分布与该构造带经历碰撞地壳增厚后的伸展走滑运动有关.   相似文献   

13.
华北克拉通东部地壳和上地幔结构的接收函数研究   总被引:8,自引:4,他引:4       下载免费PDF全文
利用北京大学和早期中国科学院地质与地球物理研究所在华北克拉通东部地区布设的共34台宽频带地震仪记录的远震体波资料,获取P波接收函数和S波接收函数,再分别通过偏移成像和共转换点叠加(CCP)和倾斜叠加得到了华北克拉通东部横跨郯庐断裂带地区沿剖面的地壳和上地幔速度间断面分布.研究结果表明,鲁西隆起下方的莫霍面的深度要比华北盆地和青岛地区浅约5 km,形成类似屋顶状的莫霍面隆起.郯庐断裂带和聊考断裂带下方的莫霍面有明显的错断.岩石圈与软流圈的分界面(以下简称LAB)的深度从太行山山前的约100 km深度上升到鲁西隆起下方约60 km深,向东在青岛地区下方LAB深度进一步变浅.我们利用倾斜叠加计算台站下方波速比得到地壳内的泊松比变化,结果显示鲁西隆起泊松比值分布相对均匀,而青岛地区内泊松比变化剧烈,可能反应了该地区作为苏鲁大别超高压变质带的北缘经历了较为复杂的地质演化过程.  相似文献   

14.
南海西南次海盆与南沙地块的OBS探测和地壳结构   总被引:18,自引:9,他引:9       下载免费PDF全文
跨越南海西南次海盆南部陆缘和南沙地块中部的OBS973-1测线是南海南部首次采集的海底地震仪(OBS)广角反射与折射深地震测线,本文通过震相分析和走时正演拟合,获得了沿测线的二维纵波速度结构模型.模拟结果显示表层沉积物速度2.5~4.5 km/s,厚度1000~3000m,局部基底面起伏较大.结晶基底的速度从顶部的4....  相似文献   

15.
By using the teleseismic receiver function method, this paper analyzes the crustal thickness and v_P/v_S ratios beneath the 4 National seismic stations (KMI, TNC, CD2 and PZH) in the Sichuan-Yunnan area. This study gives the variance of Moho depths and velocity ratios of the 4 stations in different directions. The results show that the Moho depth beneath the Kunming station is around 50km, and the velocity ratio varies between 1.62 and 1.69. The thickness of crust and the velocity ratio do not change much with the direction. The crust beneath Tengchong station shows clear directivity, being 40.7km thick in the northeast and 49.7km thick in the southeast. The difference of the v_P/v_S values is remarkable between the two directions, reaching 0.2. The Chengdu station also has shallow Moho, about 40km, but is 8km deeper in the northeast and southwest and the velocity ratio has a change of 0.13 between the two directions. The crust beneath the Panzhihua station is stable. In all directions, the Moho depth is around 60km and the v_P/v_S ratio doesn't change significantly.  相似文献   

16.
伊舒断裂带北段是黑龙江省地震跟踪监测重点区域之一,具有较强的地震活动性,为主要历史强震发生区域。利用该区域4个固定地震台记录到的远震地震事件资料,采用频率域反褶积方法,提取远震P波接收函数,再利用Hκ叠加方法计算台站下方莫霍面深度和泊松比。结果表明:受太平洋板块俯冲作用的影响,块体间相互挤压,双鸭山地震台下方莫霍面发生了错断,并且一侧莫霍面叠置在另外一侧上方,鹤岗地震台西侧莫霍面上方存在1个速度间断面;区域内泊松比值较高,为0.266—0.277,反映了上地幔铁镁物质上涌到下地壳中。  相似文献   

17.
Receiver function of body wave under the 23 stations in Yunnan was extracted from 3-component broadband digital recording of teleseismic event. Thus, the S-wave velocity structure and distribution characteristics of Poisson's ratio in crust of Yunnan are obtained by inversion. The results show that the crustal thickness is gradually thinned from north to south. The crustal thickness in Zhongdian of northwest reaches as many as 62.0 km and the one in Jinghong of further south end is only 30.2 km. What should be especially noted is that there exists a Moho upheaval running in NS in the Chuxiong region and a Moho concave is generally parallel to it in Dongchuan. In addition, there exists an obvious transversal inhomogeneity for the S-wave velocity structure in upper mantle and crust in the Yunnan region. The low velocity layer exists not only in 10.0-15.0 km in upper crust in some regions, but also in 30.0-40.0 km in lower crust. Generally, the Poisson's ratio is on the high side, however it has a better co  相似文献   

18.
长白山—镜泊湖火山区地壳结构接收函数研究   总被引:9,自引:4,他引:9       下载免费PDF全文
利用71个远震的波形资料,用接收函数方法提取了布设在长白山—镜泊湖火山区的34个宽频带流动数字地震台站的接收函数,通过对接收函数反演,获得了台站下方的S波速度结构.研究结果表明,沈阳—敦化一线莫霍面深度32~33km,向西地壳厚度加厚,到长春附近地壳厚度约为36km.在天池火山口莫霍面深度为达38km,而镜泊湖火山口森林的莫霍面深度约为39km.总体看研究区的地壳厚度是南浅北深.长白山天池火山口附近地下10km左右有一明显的低速层存在;镜泊湖火山口森林附近30km也可能有低速体存在;研究发现莫霍面上S波速度梯度在火山口附近和远离火山口有明显区别.在火山口附近其莫霍面的S波速度梯度比非火山口地区的S波速度梯度明显小,说明火山口下与一般的地壳莫霍面结构有差别.研究发现沈阳—敦化一线两侧的莫霍面深度有较大变化,其位置与地表的敦化—密山断裂基本一致,说明敦化—密山断裂是研究区的一条非常重要的地质构造带.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号