首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
CFC-11是评估全球海洋环流模式的一个重要工具,海水中溶解的CFC-11被用来分析全球海洋模式的通风模拟.本文在中国气象局国家气候中心发展的40层全球海洋环流模式(MOM4_L40)增加了示踪物CFC-11模块,然后利用该模式研究了CFC-11在全球海洋中的分布,并评估了模式的通风能力.对CFC-11的海表浓度、柱总含量以及大洋剖面的垂直浓度分布和渗透深度进行了分析,结果表明,与观测相比,模式较好地再现了CFC-11在海洋表面的水平分布特征,CFC-11主要储存区位于西北大西洋、副热带北太平洋及南大洋,其浓度分布与温度分布梯度相反.沿三个大洋的5个剖面的CFC-11垂直分布模拟也与观测基本吻合.模式模拟的CFC-11分布情况与全球平均经向流函数吻合,在南大洋模拟效果更加接近观测值,深海模拟效果较好,渗透深度接近观测.同时,模拟与观测相比也存在偏差.比如在北大西洋主要的存储区域,模式低估了CFC-11的吸收,这与高纬的CFC-11向低纬过度输送有关,可能是受温盐环流和强迫资料的影响.总体来说,MOM_L40模式模拟大洋吸收的CFC-11总量是理想的,通过模拟被动示踪物CFC-11很好地再现了海洋的通风能力.  相似文献   

2.
利用1950—2000年逐月观测的热带太平洋海表温度分别驱动NCAR CCM3全球大气环流模式以及该模式耦合SOM(Slab Ocean Model)混合层海洋模式进行长时间积分试验,将两组试验结果相减来研究热带太平洋外海气耦合作用对20世纪70年代中后期东亚夏季风年代际变化的可能影响.模拟结果表明:热带太平洋外的海气耦合作用使得孟加拉湾、南海附近存在反气旋环流异常,导致我国东部存在偏南风异常,从而引起东亚夏季风年代际增强.其中热带印度洋的年代际增暖对东亚夏季风年代际增强有一定影响.  相似文献   

3.
土壤湿度不仅是地表水循环的重要组成部分,而且对天气和气候也有重要影响,它的模拟误差严重阻碍了人们对水循环的认知.本文首先评估了1°×1°水平分辨率的全球陆面数据同化产品(Global Land Data Assimilation System,GLDAS)对青藏高原中部那曲地区和东部玛曲地区土壤湿度的模拟性能;鉴于GLDAS较粗的分辨率无法精细描述分析区域土壤湿度空间分布特征,于是我们基于通用陆面过程模式(Community Land Surface Model,Version 4.5),开展了高分辨率0.1°×0.1°的模拟,并对高分辨率模拟土壤湿度误差的原因进行了深入分析.结果表明:(1)GLDAS陆面数据同化产品和高分辨率陆面模式模拟结果都可以反映出土壤湿度的季节变化特征,但在非冻结期均存在不同程度的干偏差,尤其是在玛曲地区;(2)对比观测和模拟的土壤湿度发现,观测数据表现出强烈的空间异质性,而模拟结果呈现出的是空间均一性.按照模拟误差进行归类分组,对比模拟性能优劣的两组站点发现,模式物理过程不是模拟性能差异的主要因素,而两组站点间地表特征参数中的土壤质地和地形参数,以及驱动数据均没有体现出空间异质性,这可能是土壤湿度模拟结果没有表现出空间异质性的原因.  相似文献   

4.
LASG耦合气候系统模式FGCM-1.0   总被引:2,自引:0,他引:2       下载免费PDF全文
本文描述了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG)最新发展的一个耦合气候系统模式的基本性能. 该模式是在LASG灵活的全球耦合气候系统模式(英文缩写为FGCM)的初始版本FGCM-0的基础上发展而来的,是该系列耦合模式的第二个版本,即FGCM-1.0. FGCM-1.0通过一个通量耦合器将大气、海洋和海冰三个分量模式耦合在一起,其中海洋分量模式是LASG发展的一个涡相容分辨率(eddy-permitting)全球海洋环流模式,大气和海冰分量模式则为美国国家大气研究中心(NCAR)的大气环流模式CAM2和海冰模式CSIM4. 耦合模式完整地考虑了海气界面上的动量、热量和淡水通量交换,尽管在模式中没有使用任何形式的人为的通量调整或者通量距平方案,模式还是比较合理地模拟出基本的气候形态. 通过对该耦合模式长期积分结果的进一步分析发现,模式能够比较好地模拟出厄尔尼诺-南方涛动(ENSO)以及印度洋偶极子事件的基本特征;与FGCM系列耦合模式的最初版本FGCM-0相比,FGCM-1.0模拟的北赤道逆流(NECC)和ENSO循环更加真实.  相似文献   

5.
氚输入函数的构造与北太平洋氚分布的模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
使用一个开边界的北太平洋环流模式研究氚在北太平洋中的分布和输送. 首先, 选用全球同位素降水资料GNIP/ISOHIS, 用插值的方法构造模式区域1951~1997年的氚强迫函数. 之后将构造的氚强迫函数加为海表通量边界条件, 从零初始的氚分布积分环流模式47年. 将模拟结果与GEOSECS和WOCE的观测资料进行对比分析, 结果表明: 模式得到了与观测资料相符的经向梯度和次表层高值信号; 模拟出了北太平洋区域氚的总通量在1963年出现了明显的峰值, 氚的总储量在1975年后变化缓慢; 模式模拟的氚由高纬度海表进入, 经次表层输送向赤道方向转移, 与分析观测资料得出的结论是一致的. 但模拟结果在30°~40°N区域存在一定误差, 这种误差在模拟CFCs分布时也曾出现. 误差可能源于模式对这一区域物理过程描述的不足, 但在氚强迫函数构造过程中存在的不确定性因素也会影响模拟结果.  相似文献   

6.
提出了一种依据海洋伴随资料同化达到改进海洋观测方案的客观分析方法.针对一个"真实的海洋"进行不同空间断面(或对不同层次)的假设采样,分别将这些"不完备的观测"应用于Byran-Cox海洋环流模式的伴随系统,可以计算"不完备观测"同化以后的模式环流与"完备观测"资料同化(控制试验)得到的环流之间的距离--反演距离.由于海洋伴随资料同化所具有的局地修正效应和邻域修正效应,不同观测方案所对应的反演距离有着明显的差异.采用上述方法在一定观测代价下可以对大洋风生环流进行观测方案的优化分析.  相似文献   

7.
陆地碳循环是地球生物化学循环的重要组成部分,与人类福祉和可持续发展息息相关,但其模拟和观测都具有高度不确定性.融合模型和观测数据以减少陆地碳循环估计的不确定性、提高其可预测性,已成为陆地碳循环研究前沿.文章综述了陆地碳循环模型与观测各自不确定性的来源和特征,介绍了数据同化和参数估计这两类模型-数据融合方法的数学原理,其实质都是在考虑模型和观测各自误差的基础上,实现模型和观测信息的最优融合.文章进一步分析了陆地碳循环模型-数据融合的挑战和研究热点,重点讨论了真实和虚假的模型"异参同效"及其可识别性,地面通量观测与遥感观测代表性误差的估计,敏感性分析得到的参数后验概率分布对于确定模型误差矩阵的潜在作用,对日光诱导叶绿素荧光等新型遥感观测的同化,并指出把多源观测整合到一个协调一致的碳数据同化系统中绝非易事,然而这方面的突破是发展新一代全球碳数据同化系统的前提.论文最后指出,应用陆地碳循环数据同化,产出更高分辨率、更长时间序列、更可靠和一致的陆地碳循环再分析数据产品,对于准确估计全球和区域碳循环、实现碳管理和碳中和具有重要意义.  相似文献   

8.
本文利用NCEP/NCAR再分析资料,分析了1979~2008年北半球冬季哈得莱(Hadley)环流年际变化的特征,在此基础上,讨论了在观测海温驱动下大气环流模式的模拟结果.观测分析表明,近30年北半球冬季哈得莱环流年际变率的主导模态呈现出空间上的非均匀变化,哈得莱环流圈位于热带部分与其位于副热带部分的强度变化符号相反,这在表征其年际变化特征的另一指标——经向风垂直切变中亦有显著体现.大气环流模式AMIP积分试验结果表明,北半球冬季哈得莱环流强度的上述年际变化源于海温强迫.分析发现,热带中东太平洋和南印度洋暖海温距平强迫导致了哈得莱环流强度年际变化的主导模态呈现出空间上的非均匀变化.ElNio的局地作用和大气桥作用激发的太平洋局地哈得莱环流(30°S~30°N,150°E~90°W)和大西洋局地哈得莱环流(30°S~30°N,90°W~10°W)并非呈现出整体一致的变化,尽管二者纬向平均后分别使气候平均的哈得莱环流圈强度加强和减弱.ElNio遥强迫作用激发的西北太平洋反气旋(0°~30°N,100°E~150°E)使北半球Hadley环流圈强度减弱,ElNio和南印度洋暖海温距平共同强迫出的南印度洋反气旋(30°S~0°,60°E~100°E)使南半球Hadley环流圈的强度亦减弱.上述局地哈得莱环流的变化叠加后,因纬向平均的太平洋局地哈得莱环流强度在(副)热带部分的增强大(小)于纬向平均的大西洋局地哈得莱环流和西北太平洋、南印度洋局地哈得莱环流在(副)热带地区的减弱,结果使得哈得莱环流圈的强度在(副)热带部分偏强(弱);较之南半球,北半球强度变化稍强.因此,北半球冬季哈得莱环流年际变率的主导模态在空间上呈现出非均匀变化.  相似文献   

9.
边界层参数化方案及海气耦合对WRF模拟东亚夏季风的影响   总被引:2,自引:0,他引:2  
区域气候模式的边界层参数化方案很大程度上影响着陆地-海洋-大气间水汽、动量及热量的交换,该方案的不确定性会给模式结果带来明显误差.本文基于WRF区域气候模式中四种常用的边界层参数化方案(YSU,ACM2,BouLac和MYJ)分别对东亚夏季风进行模拟研究,分析了不同的边界层方案对东亚夏季风环流及降水模拟的影响.结果表明,局地湍流动能方案BouLac和MYJ对东亚夏季风的模拟结果相对于非局地闭合方案YSU和ACM2更接近于观测,前者能更好的模拟出中国东部中低空西南风气流和西太平洋副热带高压.对于东亚夏季风降水,无论是空间分布还是季节内演变,BouLac和MYJ方案都要明显优于YSU和ACM2.此外,通过对比YSU和BouLac两种方案的模拟结果,发现边界层方案对东亚夏季风的模拟在海洋区域的影响更为显著.造成不同方案模拟差异的主要原因是非局地方案YSU和ACM2的边界层垂直混合偏强,使得海表向上输送的潜热通量明显偏强,对流更活跃,导致降水偏多以及相应季风环流的异常偏差.进一步研究指出缺少海气反馈过程使得WRF模式由边界层方案引起的模拟误差在海洋区域更为突出,引入海气耦合可以减小海表热通量误差并明显改善东亚夏季风的模拟结果.  相似文献   

10.
江文滨  林缅 《地球物理学报》2011,54(6):1679-1689
本文采用POM(Princeton Ocean Model)模式,结合多波束测量得到的高分辨率地形数据,通过网格嵌套分级计算,得到了南海北部琼西南海域近40km2研究区内的水平网格分辨率达200 m的海底流场.通过数值试验,确定了内嵌模型的最佳侧面开边界条件.计算结果表明,本文所提出超高水平分辨率嵌套模式能够模拟复杂海...  相似文献   

11.
Global ocean circulation models usually lack an adequate consideration of high-latitude processes due to a limited model domain or insufficient resolution. Without the processes in key areas of the global thermohaline circulation, the characteristics and flow of deep and bottom waters cannot be modeled realistically. In this study, a high-resolution (~20 km) ocean model focused on the Weddell Sea sector of the Southern Ocean is combined with a low-resolution (2° × 2°) global ocean model applying the state estimation technique. Temperature, salinity, and velocity data on two Weddell Sea sections from the regional model are used as constraints for the large-scale model in addition to satellite altimetry and sea-surface temperatures. The differences between the model with additional constraints and without document that the Weddell Sea circulation exerts significant influence on the course of the Antarctic Circumpolar Current with consequences for Southern Ocean water mass characteristics and the spreading of deep and bottom waters in the South Atlantic. Furthermore, a warming trend in the period 1993–2001 was found in the Weddell Sea and adjacent basins in agreement with float measurements in the upper Southern Ocean. Teleconnections to the North Atlantic are suggested but need further studies to demonstrate their statistical significance.  相似文献   

12.
Mean annual rates of tritium input into the ocean averaged over 5° latitude bands are presented for the major oceans, for the period 1952–1975. The rates are obtained by converting tritium concentrations in marine precipitation into net oceanic tritium input, by means of a hydrological model. The tropospheric tritium pattern is specified on the basis of available observations, and climatological means from the literature are used for the rates of evaporation and precipitation and for the relative humidity in ship's height, that enter the model. Tritium input by water vapor exchange exceeds that by precipitation about three-fold. Tritium input by river runoff and by net tropospheric tritium outflow from the continents is also accounted for. This contribution is small except for the northern Indian Ocean and the North Atlantic.The inputs have hemispheric maxima near 50° latitude. The northern hemisphere inputs were strongly peaked in 1963–1964, whereas temporal changes in the southern hemisphere were much more gradual. By 1972, about 75% of the total oceanic input had been received by the northern ocean. For the Pacific, the computed total input agrees with the actual tritium inventory within the limits of uncertainty (about ±20%). The global tritium inventory is estimated at 1.9 GCi in 1972, which corresponds to an average tritium yield of 0.9 kg tritium per megaton TNT equivalent of nuclear fusion.  相似文献   

13.
The oceanic pathways connecting the Pacific Ocean to the Indian Ocean are described using a quantitative Lagrangian method applied to Eulerian fields from an ocean general circulation model simulation of the Indonesian seas. The main routes diagnosed are in good agreement with those inferred from observations. The secondary routes and the Pacific recirculation are also quantified. The model reproduces the observed salt penetration of subtropical waters from the South Pacific, the homohaline stratification in the southern Indonesian basins, and the cold fresh tongue which exits into the Indian Ocean. These particular water mass characteristics, close to those observed, are obtained when a tidal mixing parameterization is introduced into the model. Trajectories are obtained which link the water masses at the entrance and at the exit of the Indonesian throughflow (ITF), and the mixing along each trajectory is quantified. Both the ITF and the Pacific recirculation are transformed, suggesting that the Indonesian transformation affects both the Indian and Pacific stratification. A recipe to form Indonesian water masses is proposed. We present three major features of the circulation that revisit the classical picture of the ITF and its associated water mass transformation, while still being in agreement with observations. Firstly, the homohaline layer is not a result of pure isopycnal mixing of the North Pacific Intermediate Water and South Pacific Subtropical Water (SPSW) within the Banda Sea, as previously thought. Instead, the observed homohaline layer is reproduced by the model, but it is caused by both isopycnal mixing with the SPSW and a dominant vertical mixing before the Banda Sea with the NPSW. This new mechanism could be real since the model reproduces the SPSW penetration as observed. Secondly, the model explains why the Banda Sea thermocline water is so fresh compared to the SPSW. Until now, the only explanation was a recirculation of the freshwater from the western route. The model does not reproduce this recirculation but instead shows strong mixing of the SPSW within the Halmahera and Seram Seas, which erodes the salinity maximum so that its signature is not longer perceptible. Finally, this work highlights the key role of the Java Sea freshwater. Even though its annual net mass contribution is small, its fresh salinity contribution is highly significant and represents the main reason why the Pacific salinity maxima are eroded.  相似文献   

14.
A numerical model for the global tsunamis computation constructed by Kowalik et al. (2005), is applied to the tsunami of 26 December, 2004 in the World Ocean from 80°S to 69°N with spatial resolution of one minute. Because the computational domain includes close to 200 million grid points, a parallel version of the code was developed and run on a Cray X1 supercomputer. An energy flux function is used to investigate energy transfer from the tsunami source to the Atlantic and Pacific Oceans. Although the first energy input into the Pacific Ocean was the primary (direct) wave, reflections from the Sri Lankan and eastern shores of Maldives were a larger source. The tsunami traveled from Indonesia, around New Zealand, and into the Pacific Ocean by various routes. The direct path through the deep ocean to North America carried miniscule energy, while the stronger signal traveled a considerably longer distance via South Pacific ridges as these bathymetric features amplified the energy flux vectors. Travel times for these amplified energy fluxes are much longer than the arrival of the first wave. These large fluxes are organized in the wave-like form when propagating between Australia and Antarctica. The sources for the larger fluxes are multiple reflections from the Seychelles, Maldives and a slower direct signal from the Bay of Bengal. The energy flux into the Atlantic Ocean shows a different pattern since the energy is pumped into this domain through the directional properties of the source function. The energy flow into the Pacific Ocean is approximately 75% of the total flow to the Atlantic Ocean. In many locations along the Pacific and Atlantic coasts, the first arriving signal, or forerunner, has lower amplitude than the main signal which often is much delayed. Understanding this temporal distribution is important for an application to tsunami warning and prediction.  相似文献   

15.
全球大洋混合层深度的计算及其时空变化特征分析   总被引:5,自引:0,他引:5       下载免费PDF全文
本文利用2005-2009年的全球网格化Argo数据,分别采用温度判据和密度判据计算了全球大洋混合层深度(Mixed Layer Depth, MLD),讨论了障碍层(Barrier Layer, BL)和补偿层(Compensated Layer, CL)对混合层深度计算的影响,得到了合成的混合层深度,并研究了其时空变化特征. 研究表明:(1)在赤道西太平洋(10°S -5°N,150°E-150°W),孟加拉湾,热带西大西洋(10°N-20°N,30°W-60°W)是障碍层高发区域. 冬季的北太平洋副热带区域(30°N附近)以及东北大西洋(40°N-60°N,0°-30°W)是补偿层发生的区域. (2) 在各个半球的夏季MLD都比较浅,在各个半球的冬季MLD则普遍比较深. 北太平洋和北大西洋的MLD的分布和变化比较相似,印度洋MLD受季风影响显著,呈现半年周期变化. 太平洋和大西洋的MLD 的经向分布大致呈现出"两端深,中间浅"的拱形特点. (3)混合层深度距平场EOF第一模态时间变化为周期的年信号,北太平洋和北大西洋、南大洋(尤其是南极绕流区)都是MLD变化剧烈的海域,第二模态显示全球大洋混合层深度距平存在着一个半年的变化周期.  相似文献   

16.
The densities of seventeen samples of seawater from GEOSECS stations 27 (North Atlantic) and 217 (North Pacific) have been measured with a vibrating flow densimeter at 25°C. The densities of the deep samples were found to be 5 ± 1.5and16 ± 3.6ppm greater, for the North Atlantic and North Pacific, respectively, than predicted by the equation of state of Millero, Gonzalez and Ward (1976) derived for seawaters of constant relative composition. The results are in good agreement with the density anomalies predicted by Brewer and Bradshaw (1975) on the basis of the observed increase of dissolved silica, alkalinity and total carbon dioxide in oceanic deep waters. The application of these corrections results in an agreement with the Millero, Gonzalez and Ward (1976) equation of state to ±4 ppm.  相似文献   

17.
Energy Decay of the 2004 Sumatra Tsunami in the World Ocean   总被引:1,自引:0,他引:1  
The catastrophic Indian Ocean tsunami generated off the coast of Sumatra on 26 December 2004 was recorded by a large number of tide gauges throughout the World Ocean. This study uses gauge records from 173 sites to examine the characteristics and energy decay of the tsunami waves from this event in the Indian, Atlantic and Pacific oceans. Findings reveal that the decay (e-folding) time of the tsunami wave energy within a given oceanic basin is not uniform, as previously reported, but depends on the absorption characteristics of the shelf adjacent to the coastal observation site and the time for the waves to reach the site from the source region. In general, the decay times for island and open-ocean bottom stations are found to be shorter than for coastal mainland stations. Decay times for the 2004 Sumatra tsunami ranged from about 13 h for islands in the Indian Ocean to 40–45 h for mainland stations in the North Pacific.  相似文献   

18.
An intermediate ocean-atmosphere coupled model is developed to simulate and predict the tropical interannual variability. Originating from the basic physical framework of the Zebiak-Cane(ZC) model, this tropical intermediate couple model(TICM) extends to the entire global tropics, with a surface heat flux parameterization and a surface wind bias correction added to improve model performance and inter-basin connections. The model well reproduces the variabilities in the tropical Pacific and Indian basins. The simulated El Ni?o-Southern Oscillation(ENSO) shows a period of 3–4 years and an amplitude of about 2°C, similar to those observed. The variabilities in the Indian Ocean, including the Indian Ocean basin mode(IOBM) and the Indian Ocean Dipole(IOD), are also reasonably captured with a realistic relationship to the Pacific. However, the tropical Atlantic variability in the TICM has a westward bias and is overly influenced by the tropical Pacific. A 47-year hindcast experiment using the TICM for the period of 1970–2016 indicates that ENSO is the most predictable mode in the tropics. Skillful predictions of ENSO can be made one year ahead, similar to the skill of the latest version of the ZC model, while a "spring predictability barrier" still exists as in other models. In the tropical Indian Ocean, the predictability seems much higher in the west than in the east. The correlation skill of IOD prediction reaches 0.5 at a 5-month lead, which is comparable to that of the state-of-the-art coupled general circulation models. The prediction of IOD shows a significant "winter-spring predictability barrier", implying combined influences from the tropical Pacific and the local sea-air interaction in the eastern Indian Ocean. The TICM has little predictive skill in the equatorial Atlantic for lead times longer than 3 months, which is a common problem of current climate models badly in need of further investigation.  相似文献   

19.
Concentrations of lead were measured in a surface transect and at two vertical profile stations (15°N and 20°S) in the Central Pacific. These measurements complement similar measurements made earlier in the North Pacific at 33°N and in the Northwest Atlantic at 34°N [1,2], as well as recent measurements of eolian lead input fluxes near each of these locations [3]. The new transect of surface water concentrations of lead corroborates previous measurements, which decrease from 13 ng/kg at 30°N to 4 ng/kg at 17°S in the Central Pacific [4]. This transect gradient is shown to overlie a similar geographic gradient of subsurface maximum concentrations of lead in the three Pacific vertical profile stations, decreasing from 14 ng/kg at 33°N to 11 ng/kg at 14°N to 2.5 ng/kg at 20°S. Lead concentrations at each of those locations exhibit maxima at 400 m, decreasing concentrations to 2500 m and approximately concentrations of 0.8–1.1 ng/kg below that depth. The subsurface maximum at the northwest Atlantic profile station (36 ng/kg at 34°N) is also congruent with surface water lead concentrations which decrease from 806 ng/kg to 32 ng/kg in an offshore transect from Rhode Island to 34°N, 66°W [5], and the shape of the Atlantic profile is congruent with those in the Pacific. There is a positive correlation between the magnitudes of eolian lead input fluxes and the magnitudes of the upper water maxima in lead concentration profiles at corresponding locations as follows: South Pacific easterlies 3 ng/cm2 yr vs. 2.5 ng/kg; North Pacific easterlies 6 ng/cm2 yr vs. 11 ng/kg; North Pacific westerlies 50 ng/cm2 yr vs. 14 ng/kg; and North Atlantic westerlies 170 ng/cm2 yr vs. 36 ng/kg.This relationship enables one to view the anthropogenic perturbations of the marine lead cycle on a global scale, since the industrial origin of eolian and seawater lead has been established by correlations between geographic patterns of industrial lead emissions to the atmosphere and isotopic ratios of industrial leads [3] and by geographic patterns of Pb/silicate-dust ratios and lead isotopic ratios in ocean surface waters [3–5]. These new data coupled with earlier biogeochemical data indicate that surface water concentrations of lead in the North Pacific and North Atlantic are now conservatively estimated to be 8 to 20-fold greater and those in the South Pacific are 2-fold greater than natural concentrations because of industrial emissions of lead to the atmosphere.  相似文献   

20.
New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average εNd(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean,εNd(0) ? ?12 ± 2; Indian Ocean,εNd(0) ? ?8 ± 2; Pacific Ocean,εNd(0) ? ?3 ± 2. These values are considerably less than εNd(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of143Nd between the Pacific and Atlantic Oceans corresponds to ~106 atoms143Nd per gram of seawater. The correspondence between the143Nd/144Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography.Distinctive differences in εNd(0) values are observed in the Atlantic Ocean between deep-ocean water associated with North Atlantic Deep Water and near-surface water. This suggests that North Atlantic Deep Water may be relatively well mixed with respect to Nd isotopic composition whereas near-surface water may be quite heterogeneous, reflecting different sources for surface waters relative to deep water. This suggests that it may be possible to distinguish the sources of water masses within an ocean basin on the basis of Nd isotopic composition.The Nd isotopic variations in seawater are used to relate the residence time of Nd and mixing rates between the oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号