首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In winter, lakes and lagoons at high altitudes or high latitudes have interesting hydrological cycles that differ from those in other seasons or in other regions, because water surfaces are covered with ice. Hydrological balances of lakes and lagoons are complex dynamic systems, and to elucidate them, isotopic tracers of water have been used as effective tools along with observations of precipitation, evaporation, inflows, and outflows. Here, to understand hydrological processes during freezing periods in the brackish Saroma‐ko Lagoon, Hokkaido, northern Japan, we examined horizontal and vertical distributions of salinity and isotope compositions of lagoon water and ice in 2005 and 2006. Horizontal and vertical gradients of salinity and isotope compositions were observed from the river mouth to the sea channel, and factors determining these distributions were considered. The mixing of freshwater and seawater and a freezing effect were presumed to be factors in relationships between salinity and isotopes and in relationships between surface waters and ice just above the water. A simple box model for water balance was constructed based on these putative factors to reproduce the distributions of salinity and isotope compositions of surface waters and ice. An evaluation of the model revealed that this hydrological system is controlled primarily by horizontal advection of the epilimnion, freshwater influx, and the ice growth rate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   

3.
Abstract

Water balance studies with stable water isotopes have rarely been conducted in remote and tropical wetland areas. As such, little is known regarding the water balance and groundwater–surface water interaction in the Pantanal, one of the largest and most pristine wetlands in the world. We applied MINA TrêS, a water balance model utilizing stable water isotopes (δ18O, δ2H) and chloride (Cl-) to assess the dry-season hydrological processes controlling groundwater–surface water interactions and the water balance of six floodplain lakes in the northern Pantanal, Brazil. Qualitatively, all lakes exhibited similarity in hydrological controls. Quantitatively, they differed significantly due to morphological differences in controlling groundwater inflow and lake volume. Our approach is readily transferable to other remote and tropical wetland systems with minimal data input requirements, which is useful in regions with sparse hydrometric monitoring.
Editor Z.W. Kundzewicz  相似文献   

4.
The use of stable isotopes is a practical tool in the study of the lake water budget. This is an one way to study the hydrological cycle in the large numbers of inland lakes on the Tibetan Plateau, in which the isotope record of the sediment is believed to reflect the climatic and environmental changes. The monitoring of stable isotopes of the precipitation, river and lake waters during 2004 in the inland Yamdruk‐tso basin, southern Tibetan Plateau, reveals the lake water δ18O is over 10‰ higher than the local precipitation. This high difference indicates strong isotope enrichment due to lake water evaporation. The simulation results based on the isotope technique show that the present lake water δ18O level corresponds to an average relative humidity of around 54–58% during evaporation, which is very close to the instrumental observation. The simulation results also show that the inland lakes on the Tibetan Plateau have a strong adjustability to the isotope shift of input water δ18O. On average, the isotope component in the inland lake water is to a large extent controlled by the local relative humidity, and can also be impacted by a shift of the local precipitation isotope component. This is probably responsible for the large consistence in the isotope component in the extensive inland lakes on the Tibetan Plateau. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Both the inflow and outflow of supra‐permafrost water to lakes play important roles in the hydrologic process of thermokarst lakes. The accompanying thermal effects on the adjacent permafrost are required for assessing their influences on the development of thermokarst lakes. For these purposes, the lake water level, temperature dynamics, and supra‐permafrost water flow of a lake were monitored on the Qinghai‐Tibet Plateau. In addition, the spatial and temporal variation of the active layer thickness and permafrost distribution around the lake were investigated by combining ground penetrating radar, electrical resistivity tomography, and borehole temperature monitoring. The results revealed that the yearly unfrozen supra‐permafrost water flow around the lake lasted approximately 5 months. The temperature and water level measurements during this period indicate that the lake water was recharged by relatively colder supra‐permafrost water from the north‐western lakeshore and was discharged through the eastern lakeshore. This process, accompanied by heat exchange with the underlying permafrost, might cause a directional difference of the active layer thickness and permafrost characteristics around the lake. Specifically, the active layer thickness variation was minimal, and the ice‐rich permafrost was found adjacent to the lakeshore along the recharge groundwater pathways, whereas a deeper active layer and ice‐poor permafrost were observed close to the lakeshore from which the warm lake water was discharged. This study suggests that the lateral flow of warm lake water can be a major driver for the rapid expansion of thermokarst lakes and provides clues for evaluating the relationships between the thermokarst expansion process and climate warming.  相似文献   

6.
Lacustrine groundwater discharge (LGD) and the related water residence time are crucial parameters for quantifying lake matter budgets and assessing its vulnerability to contaminant input. Our approach utilizes the stable isotopes of water (δ18O, δ2H) and the radioisotope radon (222Rn) for determining long‐term average and short‐term snapshots in LGD. We conducted isotope balances for the 0.5‐km2 Lake Ammelshainer See (Germany) based on measurements of lake isotope inventories and groundwater composition accompanied by good quality and comprehensive long‐term meteorological and isotopic data (precipitation) from nearby monitoring stations. The results from the steady‐state annual isotope balances that rely on only two sampling campaigns are consistent for both δ18O and δ2H and suggested an overall long‐term average LGD rate that was used to infer the water residence time of the lake. These findings were supported by the good agreement of the simulated LGD‐driven annual cycles of δ18O and δ2H lake inventories with the observed lake isotope inventories. However, radon mass balances revealed lower values that might be the result of seasonal LGD variability. For obtaining further insights into possible seasonal variability of groundwater–lake interaction, stable water isotope and radon mass balances could be conducted more frequently (e.g., monthly) in order to use the derived groundwater discharge rates as input for time‐variant isotope balances.  相似文献   

7.
Hydrological processes of lakes in the Tibetan Plateau are an important indicator of climate change. Due to the high elevation, inaccessibility and limited availability of historical observations, water budget evaluation of typical lake basins has been inadequate. In this study, stable isotopes are used to trace the multiple water sources contributing to two adjacent lakes on the north slope of the Himalayas, Gongmo‐tso and Drem‐tso. The two lakes have nearly the same elevation, lake area and climatic condition. However, the isotopic composition of the two lakes presents significant differences. Qualitative observations attribute the differences to hydrological discrepancies: Gongmo‐tso is a through‐flow lake, whereas Drem‐tso is a terminal lake. Quantitative analyses, including water and isotope mass balance modelling, clarify the fluxes and isotopic compositions among the various hydrological elements. The isotopic composition of input water, calculated as the summation of rainfall and upstream runoff, is estimated using the local meteoric water line (LMWL) combined with the time series of lake water isotope values. The isotopic composition of evaporation is calculated with a linear resistance model using local meteorological data. The results show that Drem‐tso is a closed lake in a hydrological steady state with relatively more enriched lake water isotope values resulting mainly from evaporation. In contrast, through‐flow accounts for more than 88% of the water input into Gongmo‐tso. The large amount of upstream runoff with lower isotopic composition and enrichment due to evaporation are the major contributions to the observed lake water isotope values. Isotopic modelling of the two neighbouring lakes is effective for isotopic and hydrological research in this region with limited in situ observations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Environmental isotopes (δ18O, δD and 3H) were used to understand the hydrodynamics of Lake Naini in the State of Uttar Pradesh, India. The data was correlated with the in situ physico‐chemical parameters, namely temperature, electrical conductivity and dissolved oxygen. The analysis of the data shows that Lake Naini is a warm monomictic lake [i.e. in a year, the lake is stratified during the summer months (March/April to October/November) and well mixed during the remaining months]. The presence of a centrally submerged ridge inhibits the mixing of deeper waters of the lake's two sub‐basins, and they exhibit differential behaviour. The rates of change of isotopic composition of hypolimnion and epilimnion waters of the lake indicate that the water retention time of the lake is very short, and the two have independent inflow components. A few groundwater inflow points to the lake are inferred along the existing fractures, fault planes and dykes. In addition to poor vertical mixing of the lake due to the temperature‐induced seasonal stratification, the lake also shows poor horizontal mixing at certain locations of the lake. The lake–groundwater system appears to be a flow‐through type. Also, a tritium and water‐balance model was developed to estimate the water retention time of well‐mixed and hydrologically steady state lakes. The model assumes a piston flow of groundwater contributing to the lake. The developed model was verified for (a) Finger Lakes, New York; (b) Lake Neusiedlersee, Austria; and (c) Blue Lake, Australia based on literature data. The predicted water retention times of the lakes were close to those reported or calculated from the hydrological parameters given in the references. On application of this model to Lake Naini, a water retention time of ~2 years and age of groundwater contributing to the lake ~14 years is obtained. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Lake eutrophication is a large and growing problem in many parts of the world, commonly due to anthropogenic sources of nutrients. Improved quantification of nutrient inputs is required to address this problem, including better determination of exchanges between groundwater and lakes. This first of a two‐part review provides a brief history of the evolution of the study of groundwater exchange with lakes, followed by a listing of the most commonly used methods for quantifying this exchange. Rates of exchange between lakes and groundwater compiled from the literature are statistically summarized for both exfiltration (flow from groundwater to a lake) and infiltration (flow from a lake to groundwater), including per cent contribution of groundwater to lake‐water budgets. Reported rates of exchange between groundwater and lakes span more than five orders of magnitude. Median exfiltration is 0.74 cm/day, and median infiltration is 0.60 cm/day. Exfiltration ranges from near 0% to 94% of input terms in lake‐water budgets, and infiltration ranges from near 0% to 91% of loss terms. Median values for exfiltration and infiltration as percentages of input and loss terms of lake‐water budgets are 25% and 35%, respectively. Quantification of the groundwater term is somewhat method dependent, indicating that calculating the groundwater component with multiple methods can provide a better understanding of the accuracy of estimates. The importance of exfiltration to a lake budget ranges widely for lakes less than about 100 ha in area but generally decreases with increasing lake area, particularly for lakes that exceed 100 ha in area. No such relation is evident for lakes where infiltration occurs, perhaps because of the smaller sample size. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Williams Lake, Minnesota is a closed‐basin lake that is a flow‐through system with respect to ground water. Ground‐water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore‐water samplers (peepers) were used to characterize solute fluxes at the lake‐water–ground‐water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore‐water depth profiles of the stable isotopes δ18O and δ2H were non‐linear where ground water seeped into the lake, with a sharp transition from lake‐water values to ground‐water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from δ2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore‐water calcium profiles to pore‐water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40–50 % of the calcium in Williams Lake is retained, the pore‐water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore‐water depth profiles of calcium and δ18O and δ2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake‐water–ground‐water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

11.
Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35‐year period. Shoreline erosion rates due to permafrost degradation ranged from < 0·2 m/year in very shallow lakes (0·4 m) up to 1·8 m/year in the deepest lakes (2·6 m). This pattern of thermokarst expansion masked detection of lake hydrologic change using remotely sensed imagery except for the shallowest lakes with stable shorelines. Changes in the surface area of these shallow lakes tracked interannual variation in precipitation minus evaporation (P ? EL) with periods of full and nearly dry basins. Shorter‐term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long‐term record for only shallow lakes. Our analysis suggests that grounded‐ice lakes are ice‐free on average 37 days longer than floating‐ice lakes resulting in a longer period of evaporative loss and more frequent negative P ? EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A process‐based model was developed, NICE‐LAKE (NIES (National Institute for Environmental Studies) Integrated Catchment‐based Ecohydrology), which includes interactions between surface water, canopy, unsaturated water, aquifer, lake and rivers, and used it to model the shallow eutrophic Lake Kasumigaura in Japan. By estimating the spatial distribution of the hydrological cycle, the model shows that groundwater withdrawal greatly affects groundwater distribution and seepage and indirectly influences lake water level. The simulated seepage agrees excellently with the budget‐derived value calculated from the observed groundwater level, lake level and isotope analyses. The model showed that groundwater seepage and groundwater concentrations are important contributors to the eutrophication of Lake Kasumigaura, an important contribution not recognized in previous studies of the lake. Groundwater entering the lake from the north side is contaminated with high concentrations of nitrate and ammonia from intensive pig and cattle raising and cultivated fields. The simulation showed that this high nitrogen load plays an important role in the eutrophication of the lake (the nitrogen load in inflowing groundwater is 30% of river inflow and 4 times that from wastewater treatment plants) in spite of government policies to prevent overland flow of nutrients into the lake. Our results show that NICE‐LAKE is a powerful tool for forecasting how the water quality of the lake will be affected by the (illegal) disposal of animal excreta in the surrounding open fields. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Integrating stable isotope tracers into rainfall‐runoff models allows investigation of water partitioning and direct estimation of travel times and water ages. Tracer data have valuable information content that can be used to constrain models and, in integration with hydrometric observations, test the conceptualization of catchment processes in model structure and parameterization. There is great potential in using tracer‐aided modelling in snow‐influenced catchments to improve understanding of these catchments' dynamics and sensitivity to environmental change. We used the spatially distributed tracer‐aided rainfall‐runoff (STARR) model to simulate the interactions between water storage, flux, and isotope dynamics in a snow‐influenced, long‐term monitored catchment in Ontario, Canada. Multiple realizations of the model were achieved using a combination of single and multiple objectives as calibration targets. Although good simulations of hydrometric targets such as discharge and snow water equivalent could be achieved by local calibration alone, adequate capture of the stream isotope dynamics was predicated on the inclusion of isotope data in the calibration. Parameter sensitivity was highest, and most local, for single calibration targets. With multiple calibration targets, key sensitive parameters were still identifiable in snow and runoff generation routines. Water ages derived from flux tracking subroutines in the model indicated a catchment where runoff is dominated by younger waters, particularly during spring snowmelt. However, resulting water ages were most sensitive to the partitioning of runoff sources from soil and groundwater sources, which was most realistically achieved when isotopes were included in the calibration. Given the paucity of studies where hydrological models explicitly incorporate tracers in snow‐influenced regions, this study using STARR is an important contribution to satisfactorily simulating snowpack dynamics and runoff generation processes, while simultaneously capturing stable isotope variability in snow‐influenced catchments.  相似文献   

14.
15.
Using lake Stechlin in northeastern Germany as an example of a small groundwater‐feed lake without surface inflows and outflows, we estimated the temporal scales and the variability ranges of the net groundwater contribution to the lake water budget. High‐resolution water level measurements by a bottom‐mounted pressure logger provided the background for the estimation of the total lake water budget. This method has demonstrated reliability for estimation of lake level variations during periods ranging from subdiurnal to perennial. The typical amplitudes of the synoptic‐to‐perennial variability characterizing the groundwater climate of lake Stechlin are estimated by comparing the two subsequent years 2006 and 2007; one of these years shows an extremely high, and the other an extremely low, annual precipitation–evaporation balance. The net groundwater flow, estimated as the difference between the total water budget and the precipitation–evaporation balance at the surface, revealed synoptic effects of lake water exfiltration into the groundwater aquifer following strong precipitation events. Perennial variations between wet and dry years superimposed seasonal oscillations. The probable origin of the latter is seasonality in the groundwater level on the watershed, although the exact amplitudes are subject to further quantification on account of seasonality in the evaporation estimation error. The results emphasize the non‐stationary behaviour of groundwater flow on timescales shorter than climatic ones. The analysis yielded a net quantitative relationship between groundwater flow and water balance at the lake surface: The water level changes in the lake due to evaporation and precipitation are damped to 60% because of the lake–groundwater exchange by means of intermittent infiltration and exfiltration events. Assuming the remaining 40% of the surface water budget may potentially result in perennial water level variability, we estimated an effect of the precipitation decrease on the lake water budget as predicted by the regional climate scenarios for the next century. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Water availability is one of the key environmental factors that control ecosystem functions in temperate forests. Changing climate is likely to alter the ecohydrology and other ecosystem processes, which affect forest structures and functions. We constructed a multi‐year water budget (2004–2010) and quantified environmental controls on an evapotranspiration (ET) in a 70‐year‐old mixed‐oak woodland forest in northwest Ohio, USA. ET was measured using the eddy‐covariance technique along with precipitation (P), soil volumetric water content (VWC), and shallow groundwater table fluctuation. Three biophysical models were constructed and validated to calculate potential ET (PET) for developing predictive monthly ET models. We found that the annual variability in ET was relatively stable and ranged from 578 mm in 2009 to 670 mm in 2010. In contrast, ET/P was more variable and ranged from 0.60 in 2006 to 0.96 in 2010. Mean annual ET/PET_FAO was 0.64, whereas the mean annual PET_FAO/P was 1.15. Annual ET/PET_FAO was relatively stable and ranged from 0.60 in 2005 to 0.72 in 2004. Soil water storage and shallow groundwater recharge during the non‐growing season were essential in supplying ET during the growing season when ET exceeded P. Spring leaf area index (LAI), summer photosynthetically active radiation, and autumn and winter air temperatures (Ta) were the most significant controls of monthly ET. Moreover, LAI regulated ET during the whole growing season and higher temperatures increased ET even during dry periods. Our empirical modelling showed that the interaction of LAI and PET explained >90% of the variability in measured ET. Altogether, we found that increases in Ta and shifts in P distribution are likely to impact forest hydrology by altering shallow groundwater fluctuations, soil water storage, and ET and, consequently, alter the ecosystem functions of temperate forests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The distribution of streamwater within ice‐covered lakes influences sub‐ice currents, biological activity and shoreline morphology. Perennially ice‐covered lakes in the McMurdo Dry Valleys, Antarctica, provide an excellent natural laboratory to study hydrologic–limnologic interactions under ice cover. For a 2 h period on 17 December 2012, we injected a lithium chloride tracer into Andersen Creek, a pro‐glacial stream flowing into Lake Hoare. Over 4 h, we collected 182 water samples from five stream sites and 15 ice boreholes. Geochemical data showed that interflow travelled West of the stream mouth along the shoreline and did not flow towards the lake interior. The chemistry of water from Andersen Creek was similar to the chemistry of water below shoreline ice. Additional evidence for Westward flow included the morphology of channels on the ice surface, the orientation of ripple marks in lake sediments at the stream mouth and equivalent temperatures between Andersen Creek and water below shoreline ice. Streamwater deflected to the right of the mouth of the stream, in the opposite direction predicted by the Coriolis force. Deflection of interflow was probably caused by the diurnal addition of glacial runoff and stream discharge to the Eastern edge of the lake, which created a strong pressure gradient sloping to the West. This flow directed stream momentum away from the lake interior, minimizing the impact of stream momentum on sub‐ice currents. It also transported dissolved nutrients and suspended sediments to the shoreline region instead of the lake interior, potentially affecting biological productivity and bedform development. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Daily river inflow time series are highly valuable for water resources and water environment management of large lakes. However, the availability of continuous inflow data for large lakes is still relatively limited, especially for large lakes situated within humid plain regions with tens or even hundreds of tributaries. In this study, we choose the fifth largest freshwater Lake Chaohu in China as our study area to introduce a new approach to reconstruct historical daily inflows at ungauged subcatchments of large lakes. This approach makes use of water level, lake surface rainfall, evaporation from the lake, and catchment rainfall observations. Rainfall–runoff relationship at a reference catchment was analysed to select rainfall input and estimate run‐off coefficient firstly, and the run‐off coefficient was then transferred to ungauged subcatchments to initially estimate daily inflows. Run‐off coefficient was scaled to adjust daily inflows at ungauged subcatchments according to water balance of the lake. This approach was evaluated using sparsely measured inflows at eight subcatchments of Lake Chaohu and compared with the commonly used drainage area ratio method. Results suggest that the inflow time series reconstructed from this approach consistent well to corresponding observations, with mean R2 and Nash–Sutcliffe efficiency values of 0.69 and 0.6, respectively. This approach outperforms drainage area ratio method in terms of mean R2 and Nash–Sutcliffe efficiency values. Accuracy of this approach holds well when the number of water‐level station being used decreased from four to one.  相似文献   

19.
In regions where aquifers sustain rivers, the location and quantification of groundwater discharge to surface water are important to prevent pollution hazards, to quantify and predict low flows and to manage water supplies. 222Rn is commonly used to determine groundwater discharge to rivers. However, using this isotopic tracer is challenging because of the high diffusion capacity of 222Rn in open water. This study illustrates how a combination of isotopic tracers can contribute to an enhanced understanding of groundwater discharge patterns in small rivers. The aim of this paper is to combine 222Rn and δ13CDIC to better constrain the physical parameters related to the degassing process of these tracers in rivers. The Hallue River (northern France) was targeted for this study because it is sustained almost exclusively by a fractured chalk aquifer. The isotopes 222Rn, δ13CDIC, δ2H and δ18O were analysed along with other natural geochemical tracers. A mass balance model was used to simulate 222Rn and δ13CDIC. The results of δ2H and δ18O analyses prove that evaporation did not occur in the river. The calibration of a numerical model to reproduce 222Rn and δ13CDIC provides a best‐fit diffusive layer thickness of 3.21 × 10?5 m. This approach is particularly useful for small rivers flowing over carbonate aquifers with high groundwater DIC where the evolution of river DIC reflects the competing processes of groundwater inflow and CO2 degassing. This approach provides a means to evaluate groundwater discharge in small ungauged rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Discharge of groundwater into lakes (lacustrine groundwater discharge, LGD) can play a major role in water balances of lakes. Unfortunately, studies often neglect this input path because of methodological difficulties in its determination. Direct measurements of LGD are labor‐consuming and prone to error. The present study uses both spatially variable hydraulic‐head data and meteorological data to estimate groundwater input by LGD and lake water output through infiltration. The study sites are two shallow, groundwater‐fed lakes without any surface inflows or outflows. Horizontally interpolated groundwater heads were combined with lake water levels to obtain vertical hydraulic gradients between the aquifer and the lake, which are separated by a thick layer of lake bed sediment which has a much lower hydraulic conductivity than the underlying aquifer. By fitting the hydraulic gradient to the results of a simple mass balance and considering the process of clogging, we were able to estimate the hydraulic conductivity of the lake bed sediments. We calculated groundwater inputs by LGD and lake water outputs by infiltration on an annual basis. Although our method requires several assumptions, the results are reasonable and provide useful information about the exchange between the aquifer and the lake, which can, for example, be used for the calculation of nutrient mass balances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号