首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
The stable water isotopes, 2H and 18O, can be useful environmental tracers for quantifying snow contributions to streams and aquifers, but characterizing the isotopic signatures of bulk snowpacks is challenging because they can be highly variable across the catchment landscape. In this study, we investigate one major source of isotopic heterogeneity in snowpacks: the influence of canopy cover. We measured amounts and isotopic compositions of bulk snowpack, throughfall, and open precipitation during seven campaigns in mid-winter 2018 along forest-grassland transects at three different elevations (1196, 1297, and 1434 m above sea level) in a pre-Alpine catchment in Switzerland. Snowpack storages under forest canopies were 67 to 93% less than in adjacent open grasslands. On average, the water isotope ratios were higher in the snowpacks under forest canopy than in open grasslands (by 13.4 ‰ in δ2H and 2.3 ‰ in δ18O). This isotopic difference mirrored the higher isotope values in throughfall compared with open snowfall (by 13.5 ‰ in δ2H and 2.2 ‰ in δ18O). Although this may suggest that most of the isotopic differences in snowpacks under forests versus in open grasslands were attributable to canopy interception effects, the temporal evolution of snowpack isotope ratios indicated preferential effluxes of lighter isotopes as energy inputs increased and the snowpack ripened and melted. Understanding these effects of forest canopy on bulk snowpack snow water equivalent and isotopic composition are useful when using isotopes to infer snowmelt processes in landscapes with varying forest cover.  相似文献   

2.
A study of partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and an adjacent pine plantation over a period of seven years, on a rainfall event basis. The following three issues are discussed: (1) the relationship between canopy storage capacity and interception of continuous events, (2) interception, throughfall, and stemflow, and (3) the effect on interception of thinning the pine plantation.
  • 1 The canopy storage capacity/interception interaction for the eucalypt forest was assessed by comparing a gravimetric estimate of canopy storage capacity with interception. The maximum possible value for canopy storage capacity was found to be a small proportion of interception for events of all sizes. This suggests that evaporation of intercepted water during the continuous events was responsible for most of the interception. This ‘within event’ evaporation appears to be responsible also for the net rainfall/gross rainfall estimate of canopy storage capacity being four times the gravimetric value. For the pines the regression estimate was more closely related to interception.
  • 2 Interception, throughfall, and stemflow of these forests were measured for four years. Data are presented for each year with overall average interception being 11-4 per cent of precipitation for the eucalypt forest and 18-3 per cent for the pine plantation. Topography and rainfall event type are considered in the comparison.
Species composition and tree type are considered when comparing these results with published studies from similar forest types in southeastern Australia. The periodic (annual) variations of interception in this and the other studies makes comparison difficult.
  • 3 The effect of thinning on the throughfall, stemflow, and interception in a Pinus radiata plantation is examined. Throughfall increased, interception decreased but not in proportion to the removed biomass; stemflow decreased on an area basis, but increased on a per tree basis. A positive relationshiip is established between interception and stemflow on the thinned plantation but not in the unthinned. Reasons for this are suggested. The results are compared to those reported from similar experiments in other forests.
  • 4 The periodic variations in interception and errors inherent in its estimation suggest that caution should be exercised when using average interception figures in water balance studies.
  相似文献   

3.
Analyses of the response by a weighing lysimeter in Kioloa State Forest during and after rainfall provided values of interception loss rate. The derived rates for time scales between 0.1 and 1.0mm h?1 were generally similar throughout storm events to losses determined from throughfall and stemflow observations. During post-rainfall periods of canopy drying, enhanced rates of lysimeter evaporation were consistent with micrometeorological determinations of the partitioning of available radiant energy, based on atmospheric gradients of humidity and temperature. Interception losses from the eucalypt forest, deduced from the lysimeter response, varied between 10 and 15 per cent of gross rainfall in three consecutive 12 month periods whereas the corresponding rainfall ranged between 590 and 1530 mm yr?1. Daytime losses accounted for about two-thirds of total interception loss with a similar fraction occurring during rain periods. Storage capacity of the evergreen forest canopy was inferred to be 0.35 mm. Hourly loss rates during rainfall ranged up to 0.8 mm h?1 but with decreasing mean values and variability with increasing time scale resulting in a monthly mean value computed for the total number of hours of rain of approximately 0.1 mm h?1. A preliminary analysis of loss rate in terms of storm windspeed and rainfall intensity explained about half of its variation in statistically derived relationships. Improved time resolution of the order of seconds was considered a prerequisite to the physical understanding of turbulent transport from saturated canopies. The small value of interception storage capacity was considered in relation to that for pine forest as a basis for explaining observed differences in interception behaviour between eucalypt forest and coniferous plantations in the same area. Large differences in interception losses between the Kioloa site and evergreen forest in the South Island of New Zealand and also eucalypt forest in Western Australia were attributed to dissimilar meteorological conditions at the various sites.  相似文献   

4.
While the hydrological balance of forest ecosystems has often been studied at the annual level, quantitative studies on the factors determining rainfall partitioning of individual rain events are less frequently reported. Therefore, the effect of the seasonal variation in canopy cover on rainfall partitioning was studied for a mature deciduous beech (Fagus sylvatica L.) tree over a 2‐year period. At the annual level, throughfall amounted to 71% of precipitation, stemflow 8%, and interception 21%. Rainfall partitioning at the event level depended strongly on the amount of rainfall and differed significantly (p < 0·001) between the leafed and the leafless period of the year. Therefore, water fluxes of individual events were described using a multiple regression analysis (ra2 > 0·85, n = 205) with foliation, rainfall characteristics and meteorological variables as predictor variables. For a given amount of rainfall, foliation significantly increased interception and decreased throughfall and stemflow amounts. In addition, rainfall duration, maximum rainfall rate, vapour pressure deficit, and wind speed significantly affected rainfall partitioning at the event level. Increasing maximum hourly rainfall rate increased throughfall and decreased stemflow generation, while higher hourly vapour pressure deficit decreased event throughfall and stemflow amounts. Wind speed decreased throughfall in the growing period only. Since foliation and the event rainfall amount largely determined interception loss, the observed net water input under the deciduous canopy was sensitive to the temporal distribution of rainfall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The partitioning of gross rainfall into throughfall, stemflow, and interception loss and their relationships with forest structure was studied for a period of four years (October 2002–September 2006) and two years (October 2005–September 2007) in seven experimental catchments of temperate rainforest ecosystems located in the Andes of south‐central Chile (39°37′S, 600–925 m a.s.l.). The amount of throughfall, stemflow, and interception loss was correlated with forest structure characteristics such as basal area, canopy cover, mean quadratic diameter (MQD), and tree species characteristics in evergreen and deciduous forests. Annual rainfall ranged from 4061 to 5308 mm at 815 m a.s.l. and from 3453 to 4660 mm at 714 m a.s.l. Throughfall ranged from 64 to 89% of gross rainfall. Stemflow contributed 0·3–3·4% of net precipitation. Interception losses ranged from 11 to 36% of gross rainfall and depended on the amount of rainfall and characteristics as well as on forest structure, particularly the MQD. For evergreen forests, strong correlations were found between stemflow per tree and tree characteristics such as diameter at breast height (R2 = 0·92, P < 0·01) and crown projection area (R2 = 0·65, P < 0·01). Stemflow per tree was also significantly correlated with epiphyte cover of trunks in the old‐growth evergreen forests (R2 = 0·29, P < 0·05). The difference in the proportion of throughfall and interception loss among stands was significant only during winter. The reported relationships between rainfall partitioning and forest structure and composition provide valuable information for management practices, which aimed at producing other ecosystem services in addition to timber in native rainforests of southern Chile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Since 1986 the multiple benefits of moso-bamboo forest, a special forest type found mainly in south China, have been investigated in a small 11.7 ha watershed in Fenyi County, Jiangxi Province. The mean annual precipitation in the study area is 1593.3 mm. For the 0–60 cm soil layer the average soil bulk density is 1.00 g/cm3, and the mean values for other soil properties are: total porosity 71.74%; non-capillary porosity 5.81%; and water retention capacity 430 mm. The maximum effective water retention capacity of 313 mm is 28% higher than that for Chinese fir (Cunninghamia lanceolata) plantations and natural broadleaved forest in the neighbouring area. The parameters f0, fc and k, in Horton's infiltration equation, measured using the double-ring method under drought conditions, are 29.10 mm/min, 8.28 mm/min and 0.2391, respectively. These infiltration properties are more favourable than those under nearby Chinese fir plantations. Compared with a Chinese fir plantation, the canopy interception ratio of moso-bamboo is lower, but the stemflow ratio is higher. The annual canopy interception ratio is 11.1%. Because of snowfall, the interception ratios in January, February and March are higher, with values of 12.1–17.2%, whereas during the period of leaf fall in April, May and June the interception ratios are lower with values of 9.2–9.5%. During the other months they are relatively constant. The annual stemflow ratio is 4.4%. Again, because of snowfall, the stemflow ratios in January, February and March are lower with values of 2.8–2.9%, whereas during the remaining months they are fairly constant. Runoff analysis shows that the annual runoff ratio in this research watershed is 54.8%, but the ratio for quick runoff, composed of direct runoff and surface runoff, is only 0.8%. The upper interflow ratio is 15% and the ratio for the slow runoff composed of deeper interflow and underflow is 39%. The moso-bamboo forest is very effective in reducing peak runoff and increasing low flows. The annual nutrient element inputs (kg/ha) to the moso-bamboo forest ecosystem associated with throughfall and stemflow are N 17.7, P 0.38, K 56.5, Ca 31.,4, Mg 4.8 and SiO2 26.2, respectively. All the measured element inputs, with the exception of P, are higher than those associated with precipitation in the open, where typical values are N 10.1, P 0.89, K 18.8, Ca 25.8, Mg 3.1 and SiO2 10.1. The annual outputs in streamflow are N 3.0, P 0.28, K 16.6, Ca 38.9, Mg 8.3 and SiO2 125.7, indicating that for N, P and K the moso-bamboo forest ecosystem is an accumulating system, whereas for Ca, Mg and SiO2 the reverse applies. All the pH values associated with precipitation in the open, throughfall, stemflow, surface runoff from runoff plots and streamflow in the research watershed vary between 6.45 and 7.60 and are close to neutral.  相似文献   

7.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub-daily and seasonal time scales in a humid boreal forest. This study relies on field-based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir-white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400-m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow-free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.  相似文献   

8.
Analyses were made of the concurrent canopy precipitation balances of a seed orchard pine and a mature forest eucalypt during protracted rainfalls selected for their representativeness of the range of variation encountered in the two canopy types at Tallanganda State Forest (ca. 990 m a.s.l.) in the Upper Shoalhaven Valley of southeastern New South Wales. Although their canopy storage capacities were widely different there was consistent interception behaviour in the pine and the eucalypt in all events. Detailed weather data and the time courses of interception loss provided circumstantial evidence for a varying and, at times, substantial influence of cloud or mist deposition on the canopy precipitation balances during rainfall that made a significant contribution to the variation in rainfall interception data. Mean evaporation rates from the saturated canopies during rainfall varied from ?0·02 mm hr?1 up to 0·68 mm hr?1 in the pine; and from ?0·04 mm hr?1 up to 0·13 mm hr?1 in the eucalypt. The implications of cloud-capture during rainfall for studies of rainfall interception in forests of southeastern Australia are discussed.  相似文献   

9.
In recent years, Moso bamboo (Phyllostachys pubescens) forests have rapidly expanded in Japan by replacing surrounding coniferous and/or broadleaved forests. To evaluate the change in water yield from forested areas because of this replacement, it is necessary to examine evapotranspiration for Moso bamboo forests. However, canopy interception loss, one of the major components of evapotranspiration in forested areas, has been observed in only two Moso bamboo forests in Japan with relatively high stem density (~7000 stems/ha). There are, in fact, many Moso bamboo forests with much lower stem density. Thus, we made precipitation (Pr), throughfall (Tf) and stemflow (Sf) observations for 1 year in a Moso bamboo forest with stem density of 3611 stems/ha and quantified canopy interception loss (Ic). Pr and Ic for the experimental period were 1636 and 166 mm, respectively, and Ic/Pr was 10%. The value was approximately the same as values for the other two Moso bamboo forests and lower than values for coniferous and broadleaved forests. On the other hand, Tf/Pr and Sf/Pr for our forest (86% and 4%, respectively) were approximately 10% of Pr larger and smaller than values for the other two Moso bamboo forests. These results suggest that the difference in stem density greatly affects precipitation partitioning (i.e. Tf/Pr and Sf/Pr) but does not greatly change Ic/Pr. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Rainfall interception in forests is influenced by properties of the canopy that tend to vary over small distances. Our objectives were: (i) to determine the variables needed to model the interception loss of the canopy of a lower montane forest in south Ecuador, i.e. the storage capacity of the leaves S and of the trunks and branches St, and the fractions of direct throughfall p and stemflow pt; (ii) to assess the influence of canopy density and epiphyte coverage of trees on the interception of rainfall and subsequent evaporation losses. The study site was located on the eastern slope of the eastern cordillera in the south Ecuadorian Andes at 1900–2000 m above sea level. We monitored incident rainfall, throughfall, and stemflow between April 1998 and April 2001. In 2001, the leaf area index (LAI), inferred from light transmission, and epiphyte coverage was determined. The mean annual incident rainfall at three gauging stations ranged between 2319 and 2561 mm. The mean annual interception loss at five study transects in the forest varied between 591 and 1321 mm, i.e. between 25 and 52% of the incident rainfall. Mean S was estimated at 1·91 mm for relatively dry weeks with a regression model and at 2·46 mm for all weeks with the analytical Gash model; the respective estimates of mean St were 0·04 mm and 0·09 mm, of mean p were 0·42 and 0·63, and of mean pt were 0·003 and 0·012. The LAI ranged from 5·19 to 9·32. Epiphytes, mostly bryophytes, covered up to 80% of the trunk and branch surfaces. The fraction of direct throughfall p and the LAI correlated significantly with interception loss (Pearson's correlation coefficient r = −0·77 and 0·35 respectively, n = 40). Bryophyte and lichen coverage tended to decrease St and vascular epiphytes tended to increase it, although there was no significant correlation between epiphyte coverage and interception loss. Our results demonstrate that canopy density influences interception loss but only explains part of the total variation in interception loss. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
A. Iroum  A. Huber 《水文研究》2002,16(12):2347-2361
For a 26 month period, between 1 February 1998 and 31 March 2000, total precipitation, throughfall, stemflow and interception losses were measured for two different forest covers, one a managed broadleaved native forest and the other a Pseudotsuga menziesii (Mirb.) Franco (Douglas fir) plantation. Regressions between throughfall and stemflow and total precipitation (P) for individual storms and forest covers were computed and also for values of interception losses (expressed as a percentage of P) and P for each forest cover and period of development of the forest vegetation. Results obtained demonstrate the importance of forest canopies in rainfall distribution processes and for the availability of water resources. Also, that these forests generate particular interception patterns not strongly associated with the variation in crown cover throughout the year. These patterns are more closely related to the characteristics of rainfall and meteorological conditions during the growing and dormant periods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
To investigate the impacts of the invasion by bamboo on fluxes of nutrients and pollutants, the nutrient/pollutant fluxes and canopy interactions, including neutralization of acidity, leaching and uptake of nitrogen (N), were characterized in conjunction with rainfall partitioning in a Moso‐bamboo (Phyllostachys pubescens) forest. Measurements of precipitation volume, pH, major ions, and silicate (SiO2) in rainfall, throughfall and stemflow were collected weekly in a Moso‐bamboo forest located in Munakata City, Western Japan for 1 year. Results showed that rainfall partitioning into stemflow was larger than that for other types of forest, which may be due to the properties of Moso‐bamboo forest structure, such as a straight and smooth culm. Inorganic N (NO3 + NH4+) and S (SO42−) fluxes of throughfall and stemflow were approximately 1·6 and 1·3 times higher than that of rainfall, respectively. Contribution of stemflow flux to inorganic N and S fluxes to the forest floor was high. This could be due to lower uptake of inorganic N through culm and a higher rainfall partitioning into stemflow than that for other types of forest. The Moso‐bamboo canopy neutralized rainfall acidity, reducing the fluxes of potentially acidifying compounds via throughfall and stemflow. Canopy leaching of K+ was distinctly higher than that of Mg2+ and Ca2+ and could be related to the high mobility of K+ in plant tissues. Cl and SiO2 were readily leached as for K+. The impact of the invasion by bamboo on nutrient cycling was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Spatio‐temporal patterns of throughfall (TF) have often been studied under forest canopies. Few reports, however, have been made on small‐scale TF variability in deciduous forest stands. In the present research, the spatial heterogeneity and temporal stability of TF under five individual persian oak trees (Quercus brantii var. Persica) was quantified. The research site was in the Zagros forests in western Iran, where mean annual precipitation and temperature are equal to 587.2 mm and 16.9 °C, respectively. Data from 23 rainfall events were aggregated to assess the spatial correlation of TF. Variograms for TF beneath two of the five trees reached a stable sill at the range of 5–6 m. The redistribution of TF within the canopy was highly variable in time, attributable to seasonal variation in canopy foliation and meteorological factors. As the length of the sampling period increased, the spatial variability of TF decreased and the temporal stability of the TF pattern increased. Time stability plots of TF normalized with respect to mean and variance showed a moderate general persistence for all individual trees. We conclude that single trees modify the spatial distribution of TF reaching the forest floors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The forest canopy can play a significant role in modifying the amount and isotopic composition of water during its passage throughout the near-surface critical zone. Here, partitioning of gross rainfall into interception, throughfall, and stemflow and its implications for the amount and isotopic composition of soil water was studied for red oak, eastern white pine, and eastern hemlock trees in a northern hardwood-conifer forest in south central Ontario, Canada. Stemflow production was greatest for red oak as a result of its upward-projecting branches and least for eastern white pine due to its horizontal branches and rougher bark. These stemflow contributions to the near-bole soil surface failed to produce consistently wetter soils relative to distal locations from the bole for all tree species. There was also no consistent evidence of isotopic enrichment of throughfall and stemflow relative to gross rainfall or of stemflow relative to throughfall for red oak or eastern hemlock. However, there was isotopic enrichment of both throughfall and stemflow for eastern white pine with increasing maximum atmospheric vapour pressure deficit, which may reflect the potential for evaporative fractionation as a result of retention and detention of water moving through the canopy by the rougher bark of this species. Dry soil conditions limited sampling of mobile soil water during the study, and there was no consistent evidence that either throughfall or stemflow fluxes controlled temporal changes in the isotopic signature of soil water beneath the tree. Thus, the potential for throughfall and stemflow fluxes in northern hardwood-conifer forests to modify the isotopic composition of water taken up by the tree via transpiration remains an open question.  相似文献   

15.
Understanding the isotopic composition of precipitation in a forested catchment is critical for ecohydrological studies. Changes in the water isotopes of rainfall were assessed during its passage through the canopy in throughfall, and the effect of different forest stands on the isotope composition of throughfall. In a cool temperate forest in Korea, rainfall and throughfall samples collected under Pinus densiflora (red pine), Castanea crenata (chestnut), Robinia pseudoacacia (black locust) and mixed stands (mix of these three species) were analysed for oxygen and hydrogen isotopes. Throughfall δ18O and δD were enriched compared to rainfall. A difference of δ18O and δD among throughfall may be related to the difference in interception–storage capacity of different species due to dissimilar canopy characteristics. Since isotopic composition of throughfall and rainfall are different due to canopy isotopic effects, use of rainfall isotopic signatures for ecohydrological studies in forested ecosystem can lead to biases.  相似文献   

16.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   

17.
Thinning of semi-arid forests to reduce wildfire risk is believed to improve forest health by increasing soil moisture. Increased snowpack, reduced transpiration and reduced rainfall interception are frequently cited mechanisms by which reduced canopy density may increase soil moisture. However, the relative importance of these factors has not been rigorously evaluated in field studies. We measured snow depth, snow water equivalent (SWE) and the spatial and temporal variation in soil moisture at four experimental paired treatment-control thinning sites in high elevation ponderosa pine forest northern Arizona, USA. We compared snow and soil moisture measurements with forest structure metrics derived from aerial imagery and 3-dimensional lidar data to determine the relationship between vegetation structure, snow and soil moisture throughout the annual hydrologic cycle. Soil moisture was consistently and significantly higher in thinned forest plots, even though the treatments were performed 8–11 years before this study. However, we did not find evidence that SWE was higher in thinned forests across a range of snow conditions. Regression tree analysis of soil moisture and vegetation structure data provided some evidence that localized differences in transpiration and interception of precipitation influence the spatial pattern of soil moisture at points in the annual hydrologic cycle when the system is becoming increasingly water limited. However, vegetation structure explained a relatively low amount of the spatial variance (R2 < 0.23) in soil moisture. Continuous measurements of soil moisture in depth profiles showed stronger attenuation of soil moisture peaks in thinned sites, suggesting differences in infiltration dynamics may explain the difference in soil moisture between treatments as opposed to overlying vegetation alone. Our results show limited support for commonly cited relationships between vegetation structure, snow and soil moisture and indicate that future research is needed to understand how reduction in tree density alters soil hydraulic properties.  相似文献   

18.
Recharge areas of the Guarani Aquifer System (GAS) are particularly sensitive and vulnerable to climate variability; therefore, the understanding of infiltration mechanisms for aquifer recharge and surface run‐off generation represent a relevant issue for water resources management in the southeastern portion of the Brazilian territory, particularly in the Jacaré‐Pepira River watershed. The main purpose of this study is to understand the interactions between precipitation, surface water, and groundwater using stable isotopes during the strong 2014–2016 El Niño Southern Oscillation event. The large variation in the isotopic composition of precipitation (from ?9.26‰ to +0.02‰ for δ18O and from ?63.3‰ to +17.6‰ for δ2H), mainly associated with regional climatic features, was not reflected in the isotopic composition of surface water (from ?7.84‰ to ?5.83‰ for δ18O and from ?49.7‰ to +33.6‰ for δ2H), mainly due to the monthly sampling frequency, and groundwater (from ?7.04‰ to ?7.76‰ for δ18O and from ?49.5‰ to ?44.7‰ for δ2H), which exhibited less variation throughout the year. However, variations in deuterium excess (d‐excess) in groundwater and surface water suggest the occurrence of strong secondary evaporation during the infiltration process, corresponding with groundwater level recovery. Similar isotopic composition in groundwater and surface water, as well as the same temporal variations in d‐excess and line‐conditioned excess denote the strong connectivity between these two reservoirs during baseflow recession periods. Isotopic mass balance modelling and hydrograph separation estimate that the groundwater contribution varied between 70% and 80%, however, during peak flows, the isotopic mass balance tends to overestimate the groundwater contribution when compared with the other hydrograph separation methods. Our findings indicate that the application of isotopic mass balance methods for ungauged rivers draining large groundwater reservoirs, such as the GAS outcrop, could provide a powerful tool for hydrological studies in the future, helping in the identification of flow contributions to river discharge draining these areas.  相似文献   

19.
Alpine shrub Quercus aquifolioides was selected to study the effects of shrub canopy on throughfall and phreatic water by analyzing the isotopic time series of precipitation, canopy throughfall and phreatic water and examining correlations among these series in Wolong Nature Reserve, Western China. Based on analysis of precipitation data in 2003, the local meteoric water line during the rainy season was δD = 8.28 × δ18O + 8.93, and the primary precipitation moisture in this region originated from the Pacific Ocean in the summer. Stable isotope analysis showed that the main supply of throughfall and phreatic water was from precipitation, and the shrub canopy has an important effect on the processes of rainwater transmuted into throughfall and phreatic water. Moreover, the differences of δD and δ18O values between rainwater and throughfall were relevant to rainfall. Due to interception of the shrub canopy, there had a response hysteresis of phreatic water to the various rainfall events, which was mostly 2 days, except that this hysteresis was ≤1 day when rainfall was >15 mm/day.  相似文献   

20.
Methods for measuring throughfall, stemflow and, hence, interception in the tropical rainforests of the Wet Tropics region of North Queensland, Australia, were tested at three sites for between 581 and 787 days. The throughfall system design was based on long troughs mounted beneath the canopy and worked successfully under a range of rainfall conditions. Comparison of replicated systems demonstrated that the methodology is capable of capturing the variability in throughfall exhibited beneath our tropical rainforest canopies. Similarly, the stemflow system design which used spiral collars attached to sample trees worked well under a range of rainfall conditions and also produced similar estimates of stemflow in replicated systems. Higher altitude rainforests (>1000 m) in North Queensland can receive significant extra inputs of water as the canopy intercepts passing cloud droplets. This additional source of water is referred to as ‘cloud interception’ and an instrument for detecting this is described. The results obtained from this gauge are compared with cloud interception estimates made using a canopy water balance method. This method is based on stemflow and throughfall measurements and provides an alternative means to fog or cloud interception gauge calibration techniques used in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号