首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
Changes in runoff and sediment loads to the Pacific Ocean from 10 major Chinese rivers are presented in this paper To quantitatively assess trends in runoff and sediment loads, a parameter called the "Trend Ratio T" has been defined in this paper. To summarize total runoff and sediment load from these rivers, data from 17 gauging stations for the duration 1955 to 2010 has been standardized, and the missing data have been interpolated by different approaches according to specific conditions. Over the observed 56-year study period, there is a quite stable change in total runoff. Results show that the mean annual runoff flux entering the Pacific Ocean from these rivers is approximately 1,425 billion cubic meters. It is found that all northern rivers within semi-arid and transitional zones including the Songhua, Liaohe, Haihe, Yellow and Huaihe rivers present declining trends in water discharge. Annual runoff in all southern rivers within humid zones including the Yangtze, Qiantang, Minjiang, Pearl and Lancang rivers does not change much, except for the Qiantang River whose annual runoff slightly increases. The annual sediment loads of all rivers show significant declining trends; the exceptions are the Songhua and Lancang rivers whose annual sediment loads have increasing trends. However, the mean annual sediment flux carried into the Pacific Ocean decreased from 2,026 million tonnes to 499 million tonnes over the 56-year period. During this time there were 4 distinct decreasing phases. The decrease in annual sediment flux is due to the integrated effects of human activity and climate change. The reduction in sediment flux makes it easy for reservoir operation; however, the decrease in sediment flux also creates problems, such as channel erosion, river bank collapse and the retreat of the delta area.  相似文献   

2.
In this paper, the changes in sediment transport over 51 years from 1955 to 2006 in the Kuye River in the Loess Plateau in China are assessed. Key factors affecting sediment yield and sediment transport, such as precipitation depth, discharge, and human activities are studied. To investigate the changes in sediment yield in this watershed, a trend analysis on sediment concentration, precipitation depth, and discharge is conducted. Precipitation depths at 2 Climate Stations (CSs), as well as discharge and sediment transport at 3 Gauging Stations (GSs) are used to assess the features of sediment transport in the Kuye River. The rtmoff modulus (defined as the annual average discharge per unit area, L/(s·km^2)) and the sediment transport modulus (defined as the annual suspended sediment transport per unit area, t/(yr km^2)) are introduced in this study to assess the changes in runoff and sediment yield for this watershed. The results show that the highest average monthly discharge during the study period in the Kuye River is 66.23 m^3/s in August with an average monthly sediment concentration of 88.9 kg/m^3. However, the highest average monthly sediment concentration during the study period in the Kuye River is 125.34 kg/m^3 and occurs in July, which has an average discharge of 42.6 m^3/s that is much less than the average monthly discharge in August. It is found that both the runoff modulus and sediment transport modulus at Wenjiachuan GS on the Kuye River has a clear downward trend. During the summer season from July to August, the sediment transport modulus at Wenjiachuan GS is much higher than those at Toudaoguai and Longmen GSs on the Yellow River. The easily erodible loess in the Kuye River watershed and the sparse vegetation are responsible for the extremely high sediment yield from the Kuye River watershed. The analyses of the grain size distribution of suspended load in the Kuye River are presented. The average monthly median grain size of suspended load in the Kuye River is largest in February and then decreases until June. In July, the average monthly median grain size of suspended load approaches another peak and decreases until September. Then, the median grain size of suspended load starts to increase until February of the following year. However, the average monthly median grain size of suspended load in the Yellow River at Toudaoguai and Longmen GSs is the smallest between early summer and late fall The median grain size in the Yellow River starts to increase in November and approaches the largest size in January.  相似文献   

3.
Based on long-term measurements at three gauging stations, Toudaoguai, Fugu and Hequ, and one meteorological station, this article discusses the features of discharge (Q) and sediment concentration (Cs) of a river reach of the Yellow River with a reservoir located in the Loess Plateau. The impacts of the local sub-watershed between Toudaoguai and Fugu gauging stations on sediment budget to the Yellow River have been analyzed. In addition, the deposition processes in the Tianqiao Reservoir have been investigated. Results show over 80% of the precipitation that falls in the local subwatershed is unable to contribute to the Yellow River runoff process. It is found that the annualmaximum sediment concentration is usually less than 30 kg/m^3 during flood seasons at Toudaoguai Gauging Station, but the sediment concentration varies dramatically at Fugu Gauging Station. About 35% of the sediment eroded in the sub-watersheds between Toudaoguai and Fugu gauging stationswas produced from the Huangfuchuan sub-watershed which has a drainage area accounting only for 10% of the drainage area between Toudaoguai and Fugu gauging stations. The Tianqiao Reservoir generally has deposition during the summer flood season, and scouring during the non-flood season.On average, over 85% of deposited sediment in the reservoir occurs in the 12 km long lower reservoir reach. The volume of annual deposition in the reservoir mainly depends on the volume of water from the local region between Hequ and Fugu gauging stations.  相似文献   

4.
《国际泥沙研究》2016,(3):212-219
In this paper, the site-specific impact of climate change on sediment yield has been assessed for the Naran watershed, Pakistan. Observed data has been gathered for period 1961–2010 and HaDCM3 GCM predictors of SRES scenarios A2 and B2 have been downloaded. Future precipitation and temperature time series have been statistically downscaled for time horizon 2011–2040 and 2041–2070. Downscaled data show both increasing and decreasing changes with respect to the observation. Potential sediment yield for future related to climate change has been simulated. The results show that the both snowy and monsoon seasonal stream discharges are expected to increase. This will lead to increase in annual sus-pended sediment yields. Percentage-wise, a less discharge and more sediment yield are expected during the early summer. The study concluded that the climate change and variability are influencing the watershed, and suspended sediment yield is likely to increase in the future.  相似文献   

5.
The Jialingjiang River basin is one of the main sediment contributing areas in the upper reaches of the Changjiang River. Great changes have taken place in the runoff and sediment discharge in recent years. Comparing the data of 1991-2003 with the data of 1954-1990, the annual runoff of the Jialingjiang River basin decreased by 23 %, and the suspended sediment transport decreased by 74% or 105 million tons. The main factors affecting the reduction include a decrease in rainfall, sediment detention of hydraulic structures, soil and water conservation activities, sedimentation and sand dredging in the river channel. Thorough investigation and analysis of the contribution of each factor to the sediment decrease at Beibei Station was determined for the first time. The following are the contributing percentages for each factor: a decrease in runoff accounted for 32.9%; soil and water conservation measures accounted for 16.4%; sediment detention of hydraulic structures accounted for 30.5%; sedimentation, river channel sand dredging, and other factors accounted for 20.2%. These findings are very important for forecasting the trend of inflow sediment discharge variation.  相似文献   

6.
In the past few years, the amount of sediment entering the Yellow River decreased significantly in areas with high and coarse sediment yield of the Loess Plateau. Some researchers considered that it was owing to the soil and water conservation project, while others believed that it was caused by the low precipitation. The observation data showed -2 that the ultimate sod erosion modulus m 1960s could reach 150,000 t km . However some experts preferred to believe that the ultimate soil erosion modulus in 1960s was wrong due to some uncertain mistakes. This paper quantitatively analyzed the spatial-temporal evolution pattern of sediment yield in areas with high and coarse sediment yield of the Loess Plateau over the past 50 years, by simulating the precipitation-runoff and soil erosion in 12 sample years with the digital watershed model. Some preliminary conclusions have been drawn as following: since the 1960s and 1970s, the rainstorm center had moved southward and the intensity of rainfall center became weaker and spread into dispersed rainfall distribution in areas with high and coarse sediment yield; the decrease of the amount of sediment entering the Yellow River was caused by the changes of rainfall type in recent years; the rainstorm of 1967 was concentrated in the re~ion nearby "Shenmu-Fugu" in Shaanxi Province, and the annual maximum transport modulus (150,000 t km-2 ) measured in Bullpen Ditch of the left bank tributary between "Shenmu" and "Fugu" in 1967 is reasonable.  相似文献   

7.
Data on sediment flux at three hydrologic stations from the 1950s to 2006 are utilized to study the decadal,annual,and monthly variations in suspended sediment load delivered from the Pearl River to the ocean.Results show that variations in sediment flux from three main tributaries,including the West River,the North River and the East River,are spatially non-uniform.Since nearly 90%of the suspended sediment load comes from the West River,its variation has dominated the overall tendency of sediment flux in the entire Pearl River.Although a significant decreasing trend exists in the annual variation of the total sediment flux,the decadal change can be divided into an increasing phase and a decreasing phase,with the turning point between the two phases in the late 1980s.From the 1950s to the 1980s,the average annual river sediment flux increased by 30.43%.However,sediment flux has decreased significantly since the 1990s,with the average sediment flux being 38.60%less in the 2000s than that in the 1950s.The current sediment flux is also 52.93%less than its peak in the 1980s. The monthly variation pattern of the suspended sediment load transport to the sea is more interesting. For the West River,all months show a decreasing trend,and for most months the reduction values are significant.However,for the East River the sediment load shows a decrease trend in the dry season and an increase trend in the wet season.The method of regression analysis was used to study the influence of precipitation in the variation on the sediment flux.It was found that the climate change is not the main driving force behind the variation in suspended sediment load.Before the 1990s, intensive land use destroyed the vulnerable ecosystem of the upper Pearl River,and speeded up the process of rocky desertification.Consequently,aggravated soil erosion caused an increase in suspended sediment load.However,sediment retention within reservoirs had begun to play a dominant role after the massive construction of large dams after 1990,and resulted in a decrease in the suspended sediment load delivered to the ocean.  相似文献   

8.
A case study on the responses of streamflow to climate change in the Toutun River basin was carried out based on data analysis of streamflow, precipitation, and temperatures during the past 50 years.Temporal series of the streamflow change in the Toutun River basin was analyzed and tested using the Mann-Kendall nonparametric test. Results revealed that the annual runoff of the Toutun River had been in a monotonic decreasing trend for the past 50 years. Compared with the 1950s and 1960s, the annual runoff in the 1990s decreased by 4.0×105 m3 and 7.2×105 m3. The precipitation did not show monotonic trend during the past 50 years, but the annual temperature increased by 1.12℃ since the 1950s. Further data analysis indicated that the monthly runoff of the Toutun River decreased significantly from August to October, with precipitation displaying the similar pattern of seasonal change. Analysis suggests that the reduction of streamflow in the Toutun River basin is possibly caused by the seasonal change of precipitation, especially the precipitation reduction in summer, and temperature increases.  相似文献   

9.
Sediment causes a serious problem in relation to dam function. A cooperative sediment sluicing operation has been under way since 2017 to prevent sediment from accumulating in dams in the Mimi River,Miyazaki, Japan. To achieve a smooth and stable operation, it is very important to determine the sediment source and a sediment transport system to maintain the dam’s function. In the current study, the source and transport of sediment from the Mimi River basin have been analyzed with X-ray diffracti...  相似文献   

10.
The Three Gorges Project is one of the largest hydro-projects in the world and has drawn many debates inside China and abroad. The major concern is that sediment load from the river basin may eventually fail the functions of the project for flood control and power generation. To reduce sedimentation in the reservoir, watershed management has been adopted. However, there is limited information regarding the effectiveness of various control measures such as terracing and afforestation on a watershed scale. The Jialing River, a main tributary of the Yangtze River, contributes approximately 25% of the total sediment load in the main river but only represents 8% of the whole basin area. There have been various land use patterns and extensive human activities for thousands of years in the Jialing River watershed. Based on analysis of the major factors affecting erosion in the Jialing River watershed, the main watershed management strategies (afforestation, farming and engineering practice) are illustrated, and their effects on the reduction of sediment and runoff are studied in detail. The sediment budget of the watershed shows that 1/3 of the sediment yield is trapped by the erosion control measures (afforestation and farming) on the slope, 1/3 is trapped by the reservoirs, ponds and dams within the watershed, and only about 1/3 is transported into the Yangtze River, which will affect the Three Gorges Project.  相似文献   

11.
《国际泥沙研究》2021,36(6):747-755
The magnitude and variation of the sediment loads transported by rivers have important implications for the functioning of river systems and changes in the sediment loads of rivers are driven by numerous factors. In this paper, the key drivers of changes in the sediment loads of the major rivers of China are identified by reviewing recent studies of changes in their sediment loads. Except for the Songhua River, which presents no clear tendency of change in runoff or sediment load, nearly all the major rivers of China are characterized by an apparent decline in annual sediment load. The total annual sediment load of major Chinese rivers transported to the coast decreased from 2.03 billion t/yr during the period 1955–1968 to 0.50 billion t/yr during the period 1997–2010. The primary drivers of changes in the sediment loads of the rivers are dam construction, implementation of soil and water conservation measures, catchment disturbance, agricultural practices, sand mining and climate change. Examples drawn from Chinese rivers are used to demonstrate the importance of these drivers. Construction of a large number of reservoirs in the Yangtze River basin represents the primary driver for the reduced sediment load of the Yangtze River. The implementation of soil and water conservation programmes is one of the key drivers for the sharp decline in the sediment load of the Yellow River. Catchment disturbance explains why the reduction of the sediment load of the Lancang-Mekong River at the Chiang Saen gauging station was much less than that at the Gajiu gauging station upstream. A reduction in sediment load resulting from the expansion of agricultural production may be the main driver for the reduced sediment load of the Huaihe River. The decrease in the sediment load of the Pearl River has been influenced by sand mining activities. Climate change is one of the key drivers responsible for the greatly reduced sediment load of the rivers in the Haihe River Basin.  相似文献   

12.
The annual changes of sediment deposition-scour on the riverbed in the Sanhuhekou-Toudaoguai Reach of the upper Yellow River during the years 1952-2010 were investigated based on runoff and sediment transport observations from the Sanhuhekou and Toudaoguai hydrological stations. Multiple influencing factors such as reservoir operations, tributary inflows, as well as runoff and sediment loads from the Shidakongdui area were analyzed. The results show that even though the sediment loads from the major sources, the Shidakongdui area as well as the upstream tributaries such as the Qingshui River and the Zuli River have reduced especially since the 2000 s as a result of enhanced water-soil conservation measures and improvement of vegetation cover, the study reach was still generally in a status of cumulative aggradation. This is mainly due to the joint operations of the Liujiaxia Reservoir and the Longyangxia Reservoir, which significantly reduced the annual runoff and sediment loads at the Sanhuhekou Crosssection. The reservoirs also remarkably altered the summer flood characteristics of the study reach, inducing the shape of the annual flow curve changing from a 'single-peak' into a 'doublepeak'. These alternations sharply decreased the sediment transport capacity of flooding in the summer flood season which yields more than 90% of the sediment loads, leading to an unbalanced relation between the water and sediment. In addition, the estimated incoming sediment coefficient of the Sanhuhekou Crosssection ranged from 0.003 to 0.014 kg s/m~6, of which 0.004 kg s/m~6 was suggested as a rough critical value to determine the scour or deposition status of the study reach.  相似文献   

13.
It is important to identify the non-stationarity in the relation between runoff and sediment load under the backdrop of the changing environment. This relation helps to further understand the mechanisms of runoff and sediment yield. A copula-based method was used to detect possible change points in the relation between runoff and sediment load in the Wei River Basin (WRB), China, where soil erosion is a very severe issue. The modified Mann-Kendall trend test method was applied to obtain the trends of runoff and sediment load spanning 1960–2010 at monthly and annual timescales. Finally, the causes of the identified non-stationarity of the relation between runoff and sediment load were roughly analyzed from the perspective of climate change and human activities. Results indicated that:(1) the runoff and sediment load in the Jinghe and Wei rivers were generally characterized by noticeably decreasing trends at both monthly and annual timescales;(2) both the Jinghe and Wei rivers had a common change point (2002), implying that the stationarity of the relation between runoff and sediment load in the Jinghe and Wei River was invalid; (3) human activities including increasing water consumption and growing application of soil conservation practices are dominant factors resulting in non-stationarity in the rela-tion between runoff and sediment load in the WRB. This study provides a new idea for identifying the non-stationarity of multivariate relation in the hydro-meteorological field under the background of the changing environment.  相似文献   

14.
Using the annual runoff series for the last 40 years from the Tarim River Basin, their periodic properties were analysed and their future trends predicted. Runoff data were collected at five hydrological gauging stations in the three main branches of the Tarim River. An extrapolation method and variance analysis were used to identify periods in annual runoff, and a trend superposition model to predict future changes. Results show that, there is a common period of 17 years in annual runoff changes for all three branches, with Hotan River showing an additional period of 10 years. Based on this trend, it is suggested that the annual runoff of the Tarim River should decrease in the period of 2006–2008, but increase in year 2009, and the flow may possibly begin to decrease significantly in year 2010. The long term trend of runoff in Tarim Basin has followed the global prediction of GCMs, i.e. began to increase in accordance with global increase of air temperature and precipitation in 1990. However, it has shown a local feature of uneven changes among the head streams in the same basin, which needs to be further investigated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Characteristics of annual runoff variation in major rivers of China   总被引:1,自引:0,他引:1  
The statistical properties of annual runoff in major rivers of China are studied based on the theory of stochastic process and technology of time series analysis. These properties include the characteristics of intra‐annual and inter‐annual variations of runoff, trends, abrupt changes and periodicities. The new findings from the intensive calculations and appropriate analysis of data in longer period are as follows: (i) compared with the nonuniformity of intra‐annual runoff before 1980, the nonuniformity of intra‐annual runoff in China generally decreased after 1980, except for Huaihe River and Songhua River; (ii) compared with the annual runoff before 1980, the annual runoff in China generally decreased after 1980 except for WangJiaba station in Huaihe River and Ha‐Erbin station in Songhua River; the frequency of continuous low flow and continuous high flow in Haihe River and the downstream of Yellow River is higher than those in other rivers in China; (iii) annual runoff shows a downward trend in major rivers of China especially in Haihe River, Liao River and the midstream and downstream of Yellow River; (iv) there exist certain abrupt changes of annual runoff in major rivers of China; the abrupt change‐points are different among different river basins; and (v) almost periodicities of annual runoff sequences in major rivers of China are generally 20 years below, that is, 3~7 and 12~20 years. The reasons for these changes are mainly caused by climate change and human activities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Due to the impacts of globe climate change and human activities, dramatic variations in runoff and sediment load were observed for the Yellow River. Analyses of nearly 65 years' data measured at main hydrologic-stations on the Yellow River from 1950 to 2014 indicated that, except for the Tangnaihai station in the head region, sharp downward trends existed in both the annual runoff and annual sedi-ment load according to the Mann–Kendal trend test;and their abrupt changes occurred in 1986 and in 1980, respectively, according to the rank sum test. Factors affecting the changes in the runoff and sediment load were very complicated. Results indicated that the reducing precipitation and the increasing water consumption were the main causes for the runoff decline, while the impoundment of the Longyangxia Reservoir and its combined operation with the Liujiaxia Reservoir exerted a direct bearing on the abrupt change in the annual runoff. In addition to the sediment load decrease associated with the runoff reduction, the reduced storm intensity, the conducted soil erosion control, and the constructed dam buildings all played an important role in the trends and abrupt changes of sediment load decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号