首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
正自从Langston提出接收函数以来,随着地震观测台网越来越密集,利用地震台阵观测研究构造带下方速度结构取得了重要进展,很多学者利用接收函数研究地壳上地幔速度结构。虽然P波接收函数可以获得地壳上地幔结构,但由于莫霍面和壳内间断面多次反射震相的干扰,单纯考虑Ps转换震相难以精确地确定岩石圈边界。Farra和Vinnik利用类似提取P波接收函数的方法得到Sp转换震相的S波接收函数。相比P波接收函数,由于S波接收函数不受间断面多次反射震相的干扰,因而在岩石圈—软  相似文献   

2.
远震接收函数方法从远震P波波形中提取出台站下方主要速度间断面的信息,是研究地壳、上地幔结构的有效方法。该方法通过拟合转换波波形来约束间断面深度和横波速度。传统的接收函数线性反演方法强烈依赖于初始模型的选取,其反演结果存在较大的不确定性,为此新的基于非线性的反演方法逐渐发展起来,另外,接收函数与面波联合反演以及S波接收函数方法的提出也在一定程度上降低了反演结果的非唯一性。接收函数方法在大陆区地壳结构的研究中得到了广泛运用,但对于海区和岛礁区的研究却非常缺乏,本文回顾了国内外一些岛礁区的接收函数研究实例,介绍了西沙群岛琛航岛的天然地震观测及其结果,探讨了接收函数方法在岛礁区地壳结构研究中的应用前景。  相似文献   

3.
远震P波波形数据中包含了大量的地震台站下方地壳和上地慢速度间断面所产生的PS转换波及其多次反射波的信息,由此提取的接收函数是了解地壳上地慢速度精细结构的重要步骤之一。本介绍了目前在提高接收函数结果的稳定性和精度方面的研究进展,包括石油勘探中一些成熟的地震反射处理方法逐步渗透到接收函数的研究领域。这些处理方法以前所未有的分辨率展示了地壳上地幔结构的横向非均匀性。  相似文献   

4.
接收函数方法及研究进展   总被引:8,自引:4,他引:8  
远震P波波形数据中包含了大量在台站下方地壳上地幔速度间断面所产生的P-S转换波及其多次反射波的信息,是研究台站下方局部区域S速度分布理想的震相,由此产生的接收函数方法是反演台站下方S波速度结构的有效手段。接收函数方法可以通过波形反演拟合接收函数的径向分量,对观测台站下方地球介质的S波速度结构进行估计,也可以通过偏移叠加获得的接收函数道集(地震剖面图)追踪速度间断面。这种方法避免了对天然地震震源及其附近结构混响效应等复杂因素的影响,对S波速度的垂向分布敏感,垂向分辨率高。由于宽频带流动地震台阵的发展,用此方法还可获得研究区域速度结构的横向变化,横向分辨能力主要取决于台站的间距。本文回顾20年来接收函数研究的进展,探讨了方法研究的发展趋势,介绍了对地壳-上地幔结构的部分研究结果。  相似文献   

5.
接收函数方法及其新的进展   总被引:7,自引:2,他引:7  
远震P波波形数据中包含了大量地震台站下方地壳和上地幔速度间断面所产生的PS转换波及其多次反射波的信息,由此提取的接收函数是了解地壳上地幔速度细结构的重要步骤手段之一.最近几年,接收函数和面波联合反演方法获得了较大的成功,两种分别对两种波形进行拟合,对反演的速度结构提供了有效的约束.地震勘探中的一些成熟技术被引进接收函数的数据处理,使其可用于地壳和上地幔主要速度界面的侧向变化研究.为增强接收函数的信噪比,将不同事件提取的接收函数进行分类,按方位角进行叠加,可以反应一些速度界面的横向变化.接收函数方法可用于PS转换震相的剪切波分裂研究.泊松比是推测地球内部物质构成的有效参数之一.接收函数方法分离出的转换波为获取泊松比提供了一条行之有效的便捷途径,单一的地震台远震记录中转换波可以估计点位下面地壳Vp/Vs值.另一方面,一些最新的反演技术被引入接收函数的反演.例如,格子收索方法力图解决接收函数反演中的不稳定性和非唯一性问题,格子搜索设计比较容易地结合先验约束并保证搜索是全空间的,避免了使用任何初始模型.该方法能保证在格子的间隔和参数的限度内获得全局最小,该方法被用于中东、南美及临近地区的深部结构.相邻算法是基于计算几何的概念而构建的一种非线性反演方法.该方法避免了此前一些方法(遗传算法、模拟退火)的一些缺陷,如大量样本的舍弃、过多参数的引进等,该算法对我国的五大连池和腾冲火山区的深部结构的反演,以及滇西地区的深部动力学研究获得了良好的效果.  相似文献   

6.
增强接收函数偏移图像的垂向分辨率意味着提高参与叠加的接收函数的频率,但是采用高频接收函数通常伴随着对接收函数质量和参考速度模型的更高要求.通过叠加处理可去除部分接收函数中的随机噪声干扰,但同一台站的接收函数之间经常存在难以通过简单叠加消除的噪声信号.压制接收函数随机噪声的干扰可加强成像效果和提高图像分辨率,对推进叠加偏移成像质量的提高有重要的实际意义.本文利用在川西地区布设的31个流动台站所记录的远震波形数据,使用曲波变换去噪后信噪比增强的接收函数进行共转换点叠加(CCP),获得沿北纬31°线下方800km深度范围内速度间断面图像.研究结果表明:(1)对接收函数进行曲波变换去噪,可压制随机噪声,增强转换震相的追踪性,提高数据信噪比;(2)通过去噪处理,大幅提高接收函数用于偏移成像的主频率;(3)偏移结果确认了接收函数反演得到的松潘和川滇块体下方具有厚度约10~20km的过渡性Moho的认识;(4)上地幔过渡带的结果预示在龙门山断裂带以西的小范围内有可能存在下地壳或上地幔物质的拆沉.  相似文献   

7.
朱洪翔  田有  刘财  冯晅 《地球物理学报》2018,61(9):3664-3675
接收函数方法被广泛地应用于地壳上地幔结构的研究中,H-κ叠加方法是其中最常用的方法之一.对于布设在基岩区台站计算的接收函数,H-κ叠加方法可以准确地估计台站下方地壳厚度和平均波速比,但是对于沉积盆地地区计算的接收函数,由于低速沉积层内会产生多次波混响,干扰甚至覆盖接收函数中莫霍面的转换波和多次波震相,从而影响H-κ叠加结果的准确性.为准确估计沉积盆地地区地壳结构,本文提出使用预测反褶积方法去除接收函数中低速沉积层内多次波混响,其中预测步长由接收函数归一化自相关函数获得,物理意义为沉积层内S波双程走时.合成接收函数和实测接收函数试验表明,本文提出的预测反褶积方法可以有效地去除沉积层多次波混响,并结合改进的H-κ叠加方法可以准确地估计沉积层下覆地壳厚度和平均波速比.相比于其他去除接收函数多次波混响的方法,本文提出的预测反褶积方法具有参数设定简单、运算量小、震相幅值较大等特点,适用于大批量数据处理.  相似文献   

8.
P波接收函数通过分离间断面上产生的P-to-S转换波来测量间断面的深度,由于地壳多次相的干扰,导致这一方法用于测岩石圈—软流圈界面(LAB)受到了很大的限制.不过,S波接收函数可以克服这一问题,因为它分离S-to-P转换相,而这一转换相比入射S波提前到达台站,于是避开了迟到的地壳S波振荡相.然而,由于S波的频率比P波低,这将导致S波接收函数的分辨率较P波接收函数的低.为了作对比分析,本文利用云南地区13个固定台站记录的远震三分量资料,分离出台站下方的P、S波接收函数,而且这些接收函数被校正到67°的参考震中距处,以便进行叠加增强信噪比.最后将时间域的叠加信号转换到深度域,分别获取台站下方的地壳和岩石圈的厚度.结果表明:P波接收函数得到的地壳厚度在32~56 km之间,S波接收函数得到的地壳厚度在41~54 km之间,S波接收函数得到地壳厚度系统地偏大8~9 km;P波接收函数得到的LAB深度在65~110 km之间,S波接收函数得到的LAB深度在66~135 km之间,S波接收函数得到的LAB深度偏大15~20 km,最大偏差达到了25 km.  相似文献   

9.
探讨了使用台站接收函数反演得到上地幔速度结构和间断面深度的一种方法——剥壳遗传算法. 由地表至深部分成几个深度段,逐段反演速度结构,并在接收函数曲线上剥离浅处间断面的多次反射震相和反射转换震相对深部间断面的一次透射转换相的影响. 在每一深度段使用浮点编码、算术杂交和非均匀变异的遗传反演方法;在10次独立反演后,依据适应度选出50个优秀模型,对其加权平均得到该段的最终速度结构. 所形成的方法和程序,用iasp’91模型进行数值检验之后,又反演了海拉尔台的观测接收函数,给出台下深至700km的速度结构和主要间断面埋藏深度及速度跃变量.  相似文献   

10.
利用接收函数方法研究瑞丽-龙陵断裂两侧S波速度结构   总被引:2,自引:0,他引:2  
傅竹武  王苏  刘建华  胥颐 《地震研究》2007,30(3):223-228
利用研究区(23.9°~25.1°N,97.8°~99.0°E)内瑞丽—龙陵断裂两侧4个流动数字地震台记录到的宽频带远震P波波形数据进行接收函数反演,得到了台站下方0~100km深度范围内地壳、上地幔的S波速度细结构。结果如下:(1)在研究区内,以瑞丽—龙陵断裂为界,其西北侧Moho面深度为38~40km,东南侧Moho面深度约为38km。(2)断裂两侧地壳、上地幔S波速度结构存在显著差异,西北侧台站下方地壳和上地幔均存在大范围低速区;东南侧台站下方上地幔中无明显低速层,地壳内存在低速层,但范围和速度差都较小。(3)断裂两侧台站下方地壳和上地幔S波速度结构的较大差异,证明它们分属不同的构造单元。(4)研究区内的S波速度结构存在明显的横向非均匀性。  相似文献   

11.
In this study, three receiver function stacking methods are used to study the detailed crust and upper mantle structure beneath south-central Alaska. We used teleseismic waveform data recorded by 36 stations in the Broadband Experiment Across the Alaska Range (BEAAR) and 4 permanent stations in Alaska. H − κ stacking method using P-to-S converted wave and its multiply reflected waves between the Earth's surface and the Moho discontinuity is adopted to estimate the crustal thickness (H) and average crustal VP/VS ratio (κ) in this region. The receiver function results for 24 stations show that the crustal thickness under Alaska ranges from 26.0 to 42.6 km with an average value of 33.8 km, and the VP/VS ratio varies from 1.66 to 1.94 with an average value of 1.81 which corresponds to an average Poisson's ratio of 0.277 with a range from 0.216 to 0.320. High Poisson's ratios under some stations are possibly caused by partial melting in the crust and the uppermost mantle. Common converted point (CCP) stacking results of receiver functions along three lines show clear Moho and slab images under this subduction zone. The depths of the slab from our CCP stacking images are consistent with those estimated from the Wadati–Benioff Zone (WBZ). In the area between two stations DH2 (147.8°W, 63.3°N) and DH3 (147.1°W, 63.0°N), a Moho depth offset of about 10 km is found by both the H − κ and CCP stacking techniques. Common depth point (CDP) stacking of receiver functions shows not only the 410-, 520- and 660-km discontinuities, but also significant variations (−30 to 15 km) in the transition zone thickness under the southwest and southeast parts of the study region. The transition zone becomes thinner by 20–30 km, indicating that the temperature there is 150–200 K higher than that of the normal mantle.  相似文献   

12.
云南腾冲火山区地壳及岩石圈厚度研究   总被引:2,自引:1,他引:1       下载免费PDF全文
使用云南腾冲火山监测台网9个宽频带地震台站的远震数据,采用P波和S波接收函数的方法研究了腾冲火山区的地壳厚度、泊松比值以及岩石圈和软流圈分界面(LAB)深度.研究结果表明:1)云南腾冲火山区的地壳厚度约在33.5~38.0km之间;2)火山区的泊松比主要集中范围为0.26~0.32,其中6个台站均大于0.29,推测与地壳镁铁质成分的增加有关并且可能存有2个岩浆囊;3)火山区的岩石圈厚度在78.2~88.0km,较周边地区明显隆起且横向差异较大.腾冲火山区岩石圈的明显穹隆,由软流圈上涌(地幔热物质上升)引起岩石圈的拉张与减薄所致.  相似文献   

13.
本文使用位于青藏高原东南缘的25个地震台站的远震数据,采用P波和S波接收函数的方法研究了台站下方的Moho深度、泊松比以及地幔过渡带的厚度.计算结果表明:① 青藏高原东南缘的地壳厚度由松潘—甘孜地体和羌塘地体的约60 km,向邻区的印支地体以及扬子板块分别减薄为约38 km和约42 km; ② 羌塘地体的泊松比主要集中范围为0.25~0.28,地壳物质组分主要为中基性岩石,推测与下地壳镁铁质成分的增加有关.松潘—甘孜块体、印支块体和扬子板块的泊松比为0.25~0.26,主要为中酸性岩石组分.缺乏高的泊松比(≥0.30)分布表明青藏高原东南缘的地壳不存在广泛的部分熔融,但是不排除局部部分熔融的存在;③ 青藏高原东南缘的羌塘地体内存在一个比较明显的、异常变化范围为10~26 km的地幔过渡带增厚区域,其对应着地幔过渡带内100℃~260℃的温度降低,可以推断与此异常区域的地幔过渡带内存在俯冲的板块有关.  相似文献   

14.
云南数字地震台站下方的S波速度结构研究   总被引:36,自引:13,他引:36       下载免费PDF全文
通过对云南数字地震台站的宽频带远震接收函数反演,获得了云南地区数字地震台站下方0-0km深度范围的S波速度结构.结果表明,云南地区地壳厚度变化剧烈,中甸、丽江等西北部地区,地壳厚度达62km左右,景洪、思茅和沧源等南部地区,地壳厚度仅为32-34km.厚地壳从西北部向东南方向伸展,厚度和范围逐渐减小,至通海一带地壳厚度减为42km,其形态和范围与小江断裂和元江断裂围成的川滇菱形块体相一致.地壳厚度较小的东、南部地区Moho面速度界面明显;在地壳厚度较大或变化剧烈的地区,Moho面大多表现为S波速度的高梯度带.云南地区S波速度结构具有很强的横向不均匀性.km深度以上,北部地区S波速度明显低于南部地区,在-20km深度范围内,北部地区的S波速度比南部地区高.地壳内部S波速度界面的连续性较差,低速层的深度和范围不一,近一半的台站下方不存在明显的低速层.受南部地区上地幔的影响,40-50km深度范围内,S波速度南部高、北部低,高速区随深度增加逐渐向北推移,低速异常区形态与川滇菱形块体的形态趋向一致.70-80km深度的上地幔速度分布与云南地区大震分布具有一定的相关性.  相似文献   

15.
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.  相似文献   

16.
As part of a joint Sino-U.S. research project to study the deep structure of the Tibetan Plateau, 11 broadband digital seismic recorders were deployed on the Plateau for one year of passive seismic recording. In this report we use teleseimic P waveforms to study the seismic velocity structure of crust and upper mantle under three stations by receiver function inversion. The receiver function is obtained by first rotating two horizontal components of seismic records into radial and tangential components and then deconvolving the vertical component from them. The receiver function depends only on the structure near the station because the source and path effects have been removed by the deconvolution. To suppress noise, receiver functions calculated from events clustered in a small range of back-azimuths and epicentral distances are stacked. Using a matrix formalism describing the propagation of elastic waves in laterally homogeneous stratified medium, a synthetic receiver function and differential receiver functions for the parameters in each layer can be calculated to establish a linearized inversion for one-dimensional velocity structure. Preliminary results of three stations, Wen-quan, Golmud and Xigatze (Coded as WNDO, TUNL and XIGA), located in central, northern and southern Plateau are given in this paper. The receiver functions of all three stations show clear P-S converted phases. The time delays of these converted phases relative to direct P arrivals are: WNDO 7.9s (for NE direction) and 8.3s (for SE direction), TUNL 8.2s, XIGA 9.0s. Such long time delays indicate the great thickness of crust under the Plateau. The differences between receiver function of these three station shows the tectonic difference between southern and north-central Plateau. The waveforms of the receiver functions for WNDO and TUNL are very simple, while the receiver function of XIGA has an additional midcrustal converted phase. The S wave velocity structures at these three stations are estimated from inversions of the receiver function. The crustal shear wave velocities at WNDO and TUNL are vertically homogeneous, with value between 3.5–3.6 km/s down to Moho. This value in the lower crust is lower than the normal value for the lower crust of continents, which is consistent with the observed strong Sn attenuation in this region. The velocity structure at XIGA shows a velocity discontinuity at depth of 20 km and high velocity value of 4.0 km/s in the midcrust between 20–30 km depth. Similar results are obtained from a DSS profile in southern Tibet. The velocity under XIGA decreases below a depth of 30 km, reaching the lowest value of 3.2 km/s between 50–55 km. depth. This may imply that the Indian crust underthrusts the low part of Tibetan crust in the southern Plateau, forming a “double crust”. The crustal thickness at each of these sites is: WNDO, 68 km; TUNL, 70 km; XI-GA, 80 km. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 581–592, 1992.  相似文献   

17.
We computed P and S receiver functions to investigate the lithospheric structure beneath the northwest Iran and compute the Vp/Vs ratio within the crust of this seismologically active area. Our results enabled us to map the lateral variations of the Moho as well as those of the lithosphere–asthenosphere boundary (LAB) beneath this region. We selected data from teleseismic events (Mb?>?5.5, epicentral distance between 30° and 95° for P receiver functions and Mb?>?5.7, epicentral distance between 60° and 85° for S receiver functions) recorded from 1995 to 2008 at 8 three-component short-period stations of Tabriz Telemetry Seismic Network. Our results obtained from P receiver functions indicate clear conversions at the Moho boundary. The Moho depth was firstly estimated from the delay time of the Moho converted phase relative to the direct P wave. Then we used the H-Vp/Vs stacking algorithm of Zhu and Kanamori to estimate the crustal thickness and Vp/Vs ratio underneath the stations with clear Moho multiples. We found an average Moho depth of 48 km, which varies between 38.5 and 53 km. The Moho boundary showed a significant deepening towards east and north. This may reveal a crustal thickening towards northeast possibly due to the collision between the Central Iran and South Caspian plates. The obtained average Vp/Vs ratio was estimated to be 1.76, which varies between 1.73 and 1.82. The crustal structure was also determined by modeling of P receiver functions. We obtained a three-layered model for the crust beneath this area. The thickness of the layers is estimated to be 6–11, 18–35, and 38–53 km, respectively. The average of the shear wave velocity was calculated to be 3.4 km/s in the crust and reaches 4.3 km/s below the Moho discontinuity. The crustal thickness values obtained from P receiver functions are in good agreement with those derived by S receiver functions. In addition, clear conversions with negative polarity were observed at ~8.7 s in S receiver functions, which could be related to the conversion at the LAB. This may show a relatively thin continental lithosphere of about 85 km implying that the lithosphere was influenced by various geodynamical reworking processes in the past.  相似文献   

18.
Seismic studies of the subducting lithosphere and the upper mantle discontinuities in the northwest Pacific subduction zone beneath Japan and northeast China have suggested contrary subduction scenarios. There was little consensus on the issue whether the subducting slab penetrates the upper mantle discontinuities into the lower mantle or it is deflected atop of the 660-km discontinuity over several hundred kilometers. We calculate receiver functions from a recent seismic broadband station network located in northeast China and find topographic variations of the upper mantle discontinuities. A deeper-than-normal 660-km discontinuity is observed over an area of 400 km and it coincides with the stagnant slab imaged by seismic tomography. The 660-km discontinuity is locally depressed by more than 35 km and the transition zone is thickened by more than 20 km in the east of the region where it encounters the slab. These observations provide evidence of the slab accumulating in the mantle transition zone and locally penetrating into the lower mantle.  相似文献   

19.
SsPmp波是远震S波经地表反射转换的P波在莫霍面发生反射后被地表台站接收得到的震相.震中距在30°~50°之间的远震S波震相经地表反射转换的P波射线参数较大,在莫霍面发生全反射,使得台站接收的SsPmp波具有较强的能量,能够从地震记录中清楚地识别出来,为探测台站附近的莫霍面形态提供新的途径.本文通过合成理论地震图分析了SsPmp震相与地壳厚度、射线参数和Pn波速度之间的关系.结果表明:对于水平界面,地壳厚度只影响SsPmp与Ss波之间的相对到时差;Pn波速度只影响SsPmp的相位;射线参数既对SsPmp波的相对到时有影响,也会引起SsPmp波的相位变化.对于复杂的界面,SsPmp反映的深度与速度梯度最大的深度接近,而反映的Pn波速度与实际的Pn波速度一致.  相似文献   

20.
利用文登—阿拉善左旗长观测距地震宽角反射/折射剖面东段资料,辩识出4组地壳震相和3组地幔盖层震相.采用二维射线追踪走时反演和正演拟合交替计算方法,得到了包括鲁东隆起和华北裂陷盆地在内的地壳和地幔盖层二维速度结构.研究结果表明:华北裂陷盆地基底深达6km以上,研究区壳内界面C1埋深约15km,C2界面深约25km,Moho面平均埋深约35km.上地壳速度6.0~6.1km·s-1,且横向变化较大;中地壳速度相对均匀约为6.2~6.4km·s-1;下地壳速度为6.5~7.0km·s-1,速度梯度较大.地壳平均速度与隆起和坳陷构造相关.研究区岩石圈底界面一般为75~80km,西端接近太行隆起构造时深至90km左右,向西呈明显加深趋势,地壳厚度呈现相同的增厚特征.地幔盖层上部速度8.0~8.2km·s-1,具明显正梯度特征.岩石圈平均速度在郯庐断裂带附近显著偏低.PmP和PLP震相存在不同程度的复杂性,意味着在本地区Moho界面和岩石圈界面有较为复杂的结构,可能具有一定厚度或过渡带性质.结合其他研究结果认为,地幔盖层和下地壳速度梯度、界面性质差异与华北克拉通破坏相关,意味着破坏是一个渐变、缓慢和不均匀的过程.郯庐断裂带附近的低速应是其为软弱带的证据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号