首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
子波相位不准对叠前波形反演的影响(英文)   总被引:2,自引:0,他引:2  
子波是影响反演结果的关键因素之一。不正确的子波相位会改变目标函数的形态,导致反演结果收敛不到真实的位置,最终引起解释结果发生偏差甚至错误。基于两个简单模型,在忽略所有其它影响因素前提下,本文研究了子波依赖于频率的相位变化对叠前波形反演的影响,并对反演误差进行量化分析。实验结果表明,即使给定子波与真实子波有较高的相似性,依赖于频率的子波相位误差仍可能导致反演结果严重偏离真解。对给定子波进行常相位旋转可以在一定程度上提高反演结果的精度,但却无法完全校正子波相位不准的影响。而且子波相位不准为反演引人的是系统误差而非随机误差,很难采用统计性方法予以消除,从根本上限制了叠前反演的精度。  相似文献   

2.
Full waveform inversion algorithms are widely used in the construction of subsurface velocity models. In the following study, we propose a Laplace–Fourier-domain waveform inversion algorithm that uses both Laplace-domain and Fourier-domain wavefields to achieve the reconstruction of subsurface velocity models. Although research on the Laplace–Fourier-domain waveform inversion has been published recently that study is limited to fluid media. Because the geophysical targets of marine seismic exploration are usually located within solid media, waveform inversion that is approximated to acoustic media is limited to the treatment of properly identified submarine geophysical features. In this study, we propose a full waveform inversion algorithm for isotropic fluid–solid media with irregular submarine topography comparable to a real marine environment. From the fluid–solid system, we obtained P and S wave velocity models from the pressure data alone. We also suggested strategies for choosing complex frequency bands constructed of frequencies and Laplace coefficients to improve the resolution of the restored velocity structures. For verification, we applied our Laplace–Fourier-domain waveform inversion for fluid–solid media to synthetic data that were reconstructed for fluid–solid media. Through this inversion test, we successfully restored reasonable velocity structures. Furthermore, we successfully extended our algorithm to a field data set.  相似文献   

3.
Full waveform inversion aims to use all information provided by seismic data to deliver high-resolution models of subsurface parameters. However, multiparameter full waveform inversion suffers from an inherent trade-off between parameters and from ill-posedness due to the highly non-linear nature of full waveform inversion. Also, the models recovered using elastic full waveform inversion are subject to local minima if the initial models are far from the optimal solution. In addition, an objective function purely based on the misfit between recorded and modelled data may honour the seismic data, but disregard the geological context. Hence, the inverted models may be geologically inconsistent, and not represent feasible lithological units. We propose that all the aforementioned difficulties can be alleviated by explicitly incorporating petrophysical information into the inversion through a penalty function based on multiple probability density functions, where each probability density function represents a different lithology with distinct properties. We treat lithological units as clusters and use unsupervised K-means clustering to separate the petrophysical information into different units of distinct lithologies that are not easily distinguishable. Through several synthetic examples, we demonstrate that the proposed framework leads full waveform inversion to elastic models that are superior to models obtained either without incorporating petrophysical information, or with a probabilistic penalty function based on a single probability density function.  相似文献   

4.
傅红笋  曹莉  韩波 《地球物理学报》2012,55(9):3173-3179
测井数据和地震数据是地震勘探中两种最重要的资料. 测井约束地震波形反演是在非线性波形反演的基础上,利用已知测井资料详细的垂直分辨能力和地震资料均匀密集的水平采样特点, 通过迭代反演来求取一个具有较高分辨率的速度参数.本文建立了测井约束反演模型,研究了测井约束下地震波形反演的同伦摄动求解方法.同伦摄动法作为一种新的、求解数学物理中各种非线性问题的有效方法,具有计算速度快、计算精度高的优点.这对于提高反演的精度和效率是十分有益的. 为了表征该方法的有效性和稳定性,分别对水平层状介质模型和逆冲断层带模型进行了数值模拟,并与Landweber迭代法相对比,结果表明该算法具有更好的收敛性,能够取得更为满意的反演效果.  相似文献   

5.
基于对数目标函数的跨孔雷达频域波形反演   总被引:2,自引:1,他引:1       下载免费PDF全文
波形反演在探地雷达领域的应用已有十余年历史,但绝大部分算例属于时间域波形反演.频率域波形反演由于能够灵活地选择迭代频率并可以使用不同类型的目标函数,因而更加多样化.本文的频率域波形反演基于时间域有限差分(FDTD)法,采用对数目标函数,可在每一次迭代过程中同时或者单独反演介电常数和电导率.文中详细推导了频率域波形反演的理论公式,给出对数目标函数下的梯度表达式,并使用离散傅氏变换(DFT)实现数据的时频变换,能够有效地减少大模型反演的内存需求.在后向残场源的时频域转换过程中,提出仅使用以当前频点为中心的一个窄带数据,可以消除高频无用信号的干扰,获得可靠的反演结果.为加速收敛,采用每迭代十次则反演频率跳跃一定频带宽度的反演策略.实验证明适当的频率跳跃能够在不降低分辨率的基础上有效地提高反演效率.通过两组不同情形下合成数据反演的分析对比,证明基于对数目标函数的波形反演结果准确可靠.最后,将该方法应用到一组实际数据,得到较好的反演结果.  相似文献   

6.
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and frequency‐domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non‐linear objective function and the unreliable low‐frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace‐domain waveform inversion has been proposed. The Laplace‐domain waveform inversion has been known to provide a long‐wavelength velocity model even for field data, which may be because it employs the zero‐frequency component of the damped wavefield and a well‐behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media. We extend the Laplace‐domain waveform inversion algorithm to a 2D acoustic‐elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic‐elastic coupled media, the Laplace‐domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic‐elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid‐solid interfaces. Our Laplace‐domain waveform inversion algorithm is also based on the finite‐element method and logarithmic wavefields. To compute gradient direction, we apply the back‐propagation technique. Under the assumption that density is fixed, P‐ and S‐wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace‐domain waveform inversion successfully recovers the long‐wavelength structures of the P‐ and S‐wave velocity models from the noise‐free data. The models inverted by the Laplace‐domain waveform inversion were able to be successfully used as initial models in the subsequent frequency‐domain waveform inversion, which is performed to describe the short‐wavelength structures of the true models.  相似文献   

7.
We develop a two‐dimensional full waveform inversion approach for the simultaneous determination of S‐wave velocity and density models from SH ‐ and Love‐wave data. We illustrate the advantages of the SH/Love full waveform inversion with a simple synthetic example and demonstrate the method's applicability to a near‐surface dataset, recorded in the village ?achtice in Northwestern Slovakia. Goal of the survey was to map remains of historical building foundations in a highly heterogeneous subsurface. The seismic survey comprises two parallel SH‐profiles with maximum offsets of 24 m and covers a frequency range from 5 Hz to 80 Hz with high signal‐to‐noise ratio well suited for full waveform inversion. Using the Wiechert–Herglotz method, we determined a one‐dimensional gradient velocity model as a starting model for full waveform inversion. The two‐dimensional waveform inversion approach uses the global correlation norm as objective function in combination with a sequential inversion of low‐pass filtered field data. This mitigates the non‐linearity of the multi‐parameter inverse problem. Test computations show that the influence of visco‐elastic effects on the waveform inversion result is rather small. Further tests using a mono‐parameter shear modulus inversion reveal that the inversion of the density model has no significant impact on the final data fit. The final full waveform inversion S‐wave velocity and density models show a prominent low‐velocity weathering layer. Below this layer, the subsurface is highly heterogeneous. Minimum anomaly sizes correspond to approximately half of the dominant Love‐wavelength. The results demonstrate the ability of two‐dimensional SH waveform inversion to image shallow small‐scale soil structure. However, they do not show any evidence of foundation walls.  相似文献   

8.
时间二阶积分波场的全波形反演   总被引:4,自引:4,他引:0       下载免费PDF全文
陈生昌  陈国新 《地球物理学报》2016,59(10):3765-3776
通过对波场的时间二阶积分运算以增强地震数据中的低频成分,提出了一种可有效减小对初始速度模型依赖性的地震数据全波形反演方法—时间二阶积分波场的全波形反演方法.根据散射理论中的散射波场传播方程,推导出时间二阶积分散射波场的传播方程,再利用一阶Born近似对时间二阶积分散射波场传播方程进行线性化.在时间二阶积分散射波场传播方程的基础上,利用散射波场反演地下散射源分布,再利用波场模拟的方法构建地下入射波场,然后根据时间二阶积分散射波场线性传播方程中散射波场与入射波场、速度扰动间的线性关系,应用类似偏移成像的公式得到速度扰动的估计,以此建立时间二阶积分波场的全波形迭代反演方法.最后把时间二阶积分波场的全波形反演结果作为常规全波形反演的初始模型可有效地减小地震波场全波形反演对初始模型的依赖性.应用于Marmousi模型的全频带合成数据和缺失4Hz以下频谱成分的缺低频合成数据验证所提出的全波形反演方法的正确性和有效性,数值试验显示缺失4Hz以下频谱成分数据的反演结果与全频带数据的反演结果没有明显差异.  相似文献   

9.
Migration velocity analysis and waveform inversion   总被引:3,自引:0,他引:3  
Least‐squares inversion of seismic reflection waveform data can reconstruct remarkably detailed models of subsurface structure and take into account essentially any physics of seismic wave propagation that can be modelled. However, the waveform inversion objective has many spurious local minima, hence convergence of descent methods (mandatory because of problem size) to useful Earth models requires accurate initial estimates of long‐scale velocity structure. Migration velocity analysis, on the other hand, is capable of correcting substantially erroneous initial estimates of velocity at long scales. Migration velocity analysis is based on prestack depth migration, which is in turn based on linearized acoustic modelling (Born or single‐scattering approximation). Two major variants of prestack depth migration, using binning of surface data and Claerbout's survey‐sinking concept respectively, are in widespread use. Each type of prestack migration produces an image volume depending on redundant parameters and supplies a condition on the image volume, which expresses consistency between data and velocity model and is hence a basis for velocity analysis. The survey‐sinking (depth‐oriented) approach to prestack migration is less subject to kinematic artefacts than is the binning‐based (surface‐oriented) approach. Because kinematic artefacts strongly violate the consistency or semblance conditions, this observation suggests that velocity analysis based on depth‐oriented prestack migration may be more appropriate in kinematically complex areas. Appropriate choice of objective (differential semblance) turns either form of migration velocity analysis into an optimization problem, for which Newton‐like methods exhibit little tendency to stagnate at nonglobal minima. The extended modelling concept links migration velocity analysis to the apparently unrelated waveform inversion approach to estimation of Earth structure: from this point of view, migration velocity analysis is a solution method for the linearized waveform inversion problem. Extended modelling also provides a basis for a nonlinear generalization of migration velocity analysis. Preliminary numerical evidence suggests a new approach to nonlinear waveform inversion, which may combine the global convergence of velocity analysis with the physical fidelity of model‐based data fitting.  相似文献   

10.
傅磊  刘四新 《地球物理学报》2016,59(12):4464-4472
本文提出了一种初至纵波(P波)与瑞雷面波的交叉梯度联合反演策略.通过对初至P波进行全波形反演可以获得近地表P波速度结构;通过对仅含瑞雷面波信息的地震数据转换到频率-波数域进行加窗振幅波形反演(Windowed-Amplitude Waveform Inversion,w-AWI)可获得近地表横波(S波)速度结构.在二者反演的目标函数中均加入P波速度和S波速度的交叉梯度作为正则化约束项,使得在反演过程中P波速度和S波速度相互制约,相互约束,从而实现对地震初至P波与瑞雷面波的联合反演.数值模拟结果表明交叉梯度联合反演可以提高S波速度反演分辨率,而P波速度反演结果并没有得到提高.实际资料的反演结果表明,交叉梯度联合反演能够获得更加可信的近地表速度结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号