首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
在模拟降雨条件下(30-69mm/39min),对官厅水库流域玉米地和休闲地地表径流泥沙和生物可利用磷(BAP)流失进行了初步研究. 累积泥沙产量受雨强、坡度和作物覆盖影响,变幅为305.1-24933.4g/10m2;径流平均颗粒态生物可利用磷(BPP)、溶解态磷(SP)浓度都超出水体允许临界值0.02mg/L,表明流域农田地表径流对库区水体存在潜在污染危害;径流累积BAP流失达0.08-4.804g/10m2,估算的农田径流BAP流失达0.49kg/(hm2.a)以上. 79.7%以上的BAP是颗粒态的. 研究结果有助于采取措施减少农田径流向库区输入生物可利用磷、准确地评估流域农业管理实践对水库水质的影响.  相似文献   

2.
通过两个径流场的对比试验,研究了华南坡地氮素在某场降雨下的迁移特征和来源,结果表明,在没有施肥的情况下,氮素的迁移形态以铵氮、硝氮为主,总氮、硝氮和亚硝氮的迁移以地下下渗迁移为主,铵氮的迁移以地表迁移为主;在施放尿素的情况下,氮素的迁移形态以溶解态的尿素、铵氮和硝氮为主,总氮、溶解态尿素和铵氮的迁移以地表径流迁移为主,...  相似文献   

3.
巢湖典型子流域上下游水塘对暴雨径流氮磷去除效率比较   总被引:2,自引:0,他引:2  
从流域上下游环境条件及氮磷输出强度差异出发,探讨上下游水塘对径流氮磷去除的特征及效率,选取巢湖小柘皋河源头流域上下游水塘开展水塘去除暴雨径流氮磷的对比试验,研究暴雨及暴雨间期上下游水塘氮磷去除效率差异及原因,为流域上下游设计不同类型净化塘去除氮磷提供科学依据.结果表明:暴雨期,上游径流氮磷浓度高于下游,且颗粒态所占比例上游大于下游,流域上游应作为防治暴雨径流氮磷流失的重点区域;暴雨期,上游塘对暴雨径流中的氮磷去除效果明显,氮、磷去除率分别为74%和52%,且对颗粒态去除效果好于溶解态,下游塘没有表现出明显的去除效果;暴雨间期,上游塘塘内氮磷浓度平均下降50%和20%,下游塘则分别为72%和16%,且均以溶解态去除为主;水塘去除暴雨径流氮磷有一定的浓度适用范围,浓度过低,去除效果不明显;流域部位不同引起入塘径流氮磷浓度和形态的差异是上下游水塘对暴雨径流去除效果差异的主要外部原因.流域上游出山口,可以在渗透性好的山前洪积扇上构建深水宽塘,通过增加暴雨径流拦截量和降低流速增强物理沉降作用,实现暴雨径流氮磷的高效去除;流域下游农田区,宜构建水面较大的浅滩湿地,通过延长滞留时间和促进生物活动增强去除暴雨径流氮磷的效果.  相似文献   

4.
天目湖流域丘陵山区典型土地利用类型氮流失特征   总被引:4,自引:2,他引:2       下载免费PDF全文
天目湖丘陵山区农业综合开发持续推进,大量林地转变为茶园,迫切需要认识茶园扩张对流域氮流失的影响.本研究选取茶园、次生马尾松林和毛竹林开展自然降雨条件下的径流小区实验,分析天目湖丘陵山区典型用地类型径流氮流失规律,为评估丘陵山区综合开发的水环境影响提供实测参数.研究表明:茶园、次生马尾松林和毛竹林地表径流TN浓度分别为11.25、2.83和3.60 mg/L,均以溶解态为主;壤中流TN浓度分别为27.16、3.59和1.06 mg/L,茶园和次生马尾松林均以溶解性无机氮(尤其是硝态氮)为主,毛竹林以溶解性有机氮为主;茶园、次生马尾松林和毛竹林的小区尺度地表径流系数均不到0.03,壤中流是丘陵山区径流的主要来源;茶园开发加剧了丘陵山区的氮素流失,茶园径流TN流失强度高达103.08 kg/(hm2·a),分别是次生马尾松林和毛竹林的7.6和23.2倍,壤中流贡献了流失总量的86.7%~99.7%.防治茶园径流氮流失需重点关注壤中流输出,在减量施肥的基础上,采取坡脚构建毛竹林生态缓冲带/在小流域出口布设塘坝等原位拦截措施,实现流域氮流失综合防控.  相似文献   

5.
梁威  刘凌  潘沛 《湖泊科学》2007,19(6):710-717
农业非点源污染研究是当前环境问题研究领域的重点和难点.目前而言土槽尺度下非点源模型的研究较少.利用大型土槽和人工降雨装置来模拟无植被坡地单次降雨过程地表径流中硝态氮迁移过程.在此基础上,适当选取ANSWERS-2000的子模块建立起具有一定机理的适用模型,来研究土槽尺度下无植被坡地单次降雨过程地表径流中硝态氮迁移过程.经过三次实验验证,模拟的径流总量误差在4%-15%之间,CP'A在0.7-12之间;模拟的硝态氮总量误差的绝对值在9%-17%之间,CP'A在0.6-1.1之间.结果显示降雨径流、硝态氮浓度模拟结果与实际观测值有较好的一致性,模型模拟效果较好,模型可用于该尺度下硝态氮迁移量计算,具有一定的研究参考价值.  相似文献   

6.
太湖地区丘陵旱地土壤磷的吸持解吸特征   总被引:15,自引:1,他引:15  
高超  张桃林 《湖泊科学》2001,13(3):255-260
旱地土壤中流失的磷是地表水体中磷的重要来源,本文通过模拟实验对比太湖地区丘陵旱地土壤和水稻土对磷的吸持解吸特征,结果表明虽然旱地土壤对磷的固定能力略高于水稻土,但由于旱地土壤的有效磷水平普遍高于水稻土,因而前者磷的吸持饱和度(DPS)要大大高于后者,这就决定了旱地土壤中的磷被淋溶或以溶解态随径流流失的风险和数量也同于水稻土,磷吸持饱和度是土壤磷素水平和土壤固磷能力的综合指标,更能反映土壤固相中的磷进入液相的难易程序,可以作为评价水-土界面磷迁移能力 重要指标。  相似文献   

7.
磷(P)是长江流域备受关注的污染物。乌江是长江八大支流之一,位于三峡水库近库尾江段。武隆断面是乌江入长江控制断面。对1998—2019时期武隆断面径流量、悬浮泥沙浓度(SS)与输沙量、磷浓度与通量(包括总磷(TP)、溶解态磷(DP)和颗粒态磷(PP))年际变化及季节特征进行研究,并基于河流基流分割原理对磷的来源进行了解析。结果表明,(1)1998—2019年,乌江武隆断面径流量在一定幅度内上下波动,而悬浮泥沙浓度和输沙量下降剧烈。(2)22年来,乌江TP和DP浓度与通量总体上呈先升高后下降的趋势,2009—2013年为磷污染峰值期,TP和DP浓度与通量远高于其它时期。(3)2007年是一个重要的时间节点,该节点前,TP的赋存形态以颗粒态为主,颗粒态磷在总磷中的占比均值为65%;该节点后,TP的赋存形态转变为以溶解态为主,颗粒态磷占比均值下降为16%,相应地,溶解态磷占比由35%上升为84%。水沙条件改变是磷形态发生显著变化的主要驱动力,磷污染程度亦是磷形态变化的重要影响因素。(4)磷通量在年内的季节分布发生了显著变化,丰水期磷通量减少,枯水期磷通量增加。(5)1998—2012、2009—2013和2014—2019年3个时期点源负荷占比分别为23.5%、36.8%和62.1%,呈增加趋势。(6)建议制定适宜的总磷控制目标,结合目前所存在的磷污染风险点,进一步强化监管,侧重源头治理。  相似文献   

8.
总磷是长江流域备受关注的污染物。来自长江上游的物质输送对长江中下游、对入海口水域水生态都具有重要影响。研究了1998—2019时期长江上游和中下游之间的衔接断面暨三峡水库出水断面的磷通量及形态变化。整个研究时段分为3个阶段:1998—2002(阶段Ⅰ,三峡水库运行之前),2003—2013(阶段Ⅱ,作为过渡时期)及2014—2019(阶段Ⅲ,三峡水库实现175m正常蓄水位且金沙江下游段向家坝和溪洛渡水库运行后),以阶段Ⅰ、Ⅲ为重点时段进行对比分析。研究表明,2014—2019年总磷年通量平均为5.67万t/a,比1998—2002年减少了38.0%;溶解态磷年通量为4.02万t/a,增加了60.0%;颗粒态磷年通量为1.67万t/a,减少了74.9%。磷的主导形态由颗粒态变为溶解态,溶解态磷通量占比由27.5%上升为70.9%;相应地,颗粒态磷通量占比由72.5%下降为29.1%。总磷、溶解态磷和颗粒态磷通量均表现为丰水期>平水期>枯水期。近20年来,水沙关系发生了巨大变化,含沙量(SS)与水量(Q)正相关性大幅下降,其拟合方程的斜率由1.44下降为0.10,R2...  相似文献   

9.
地表水体中沉积物表面通常会附着一层自然生物膜,对上覆水-沉积物界面化学物质的迁移转化有着重要的影响.以往研究往往会忽略这一生物层面,因而,开展磷在"沉积物-自然生物膜-上覆水"三相界面之间的迁移转化研究具有重要的实际意义.以软性填料表面形成的自然生物膜模拟沉积物表层以及悬浮颗粒物表层的自然生物膜,开展磷在沉积物-自然生物膜-上覆水之间的迁移转化过程研究.结果表明:有无曝气情况下,自然生物膜界面的存在均能够显著降低上覆水中总磷、溶解态总磷、溶解态无机磷的含量,明显抑制沉积物中可交换态磷向上覆水释放.研究证明自然生物膜在水体磷的迁移转化中起着不可忽视的作用,在研究沉积物-上覆水界面之间磷的迁移转化行为时,要充分考虑自然生物膜界面的存在.  相似文献   

10.
滇池水-沉积物界面磷形态分布及潜在释放特征   总被引:14,自引:3,他引:11  
通过现场调查和室内模拟实验,对滇池35个上覆水-沉积物磷的分布特征以及沉积物中磷释放动力学特征进行研究,结果表明:滇池表层沉积物中不同形态磷含量表现为:有机磷(OP)(1482.49±1156.82 mg/kg)钙结合态磷(Ca-P)(865.54±558.40 mg/kg)金属氧化物结合态磷(Al-P)(463.77±662.18 mg/kg)残渣态磷(Res-P)(218.52±83.11 mg/kg)可还原态磷(Fe-P)(128.13±101.56 mg/kg)弱吸附态磷(NH4Cl-P)(2.26±3.05 mg/kg);滇池上覆水草海总磷浓度处于劣Ⅳ类水平,外海不同湖区总磷浓度介于Ⅳ~Ⅴ类之间;滇池水体中的磷以颗粒态磷含量最高;滇池表层沉积物中磷的释放是由快反应和慢反应两部分组成.释放过程主要发生在前8 h内;不同区域沉积物磷的最大释放速率、最大释放量、磷的释放潜力平均值均表现为:草海外海北部外海南部湖心区;滇池表层沉积物中磷的释放主要由NH4Cl-P、Fe-P、Al-P和OP进行,其中,NH4Cl-P和Fe-P所占比重较大;磷的释放与上覆水中溶解性总磷、溶解态无机磷和溶解态有机磷呈显著正相关,预示着上覆水中磷的迁移转化更多地受到水-沉积物界面浓度梯度的控制,进一步说明不能以总磷含量来评价湖泊磷素释放的状况,需与磷形态及分布特征相结合进行分析.  相似文献   

11.
Changes of soil surface roughness under water erosion process   总被引:5,自引:0,他引:5       下载免费PDF全文
The objective of this study was to determine the changing characteristics of soil surface roughness under different rainfall intensities and examine the interaction between soil surface roughness and different water erosion processes. Four artificial management practices (raking cropland, artificial hoeing, artificial digging, and contour tillage) were used according to the local agriculture customs of the Loess Plateau of China to simulate different types of soil surface roughness, using an additional smooth slope for comparison purposes. A total of 20 rainfall simulation experiments were conducted in five 1 m by 2 m boxes under two rainfall intensities (0.68 and 1.50 mm min?1) on a 15° slope. During splash erosion, soil surface roughness decreased in all treatments except raking cropland and smooth baseline under rainfall intensity of 0.68 mm min?1, while increasing for all treatments except smooth baseline under rainfall intensity of 1.50 mm min?1. During sheet erosion, soil surface roughness decreased for all treatments except hoeing cropland under rainfall intensity of 0.68 mm min?1. However, soil surface roughness increased for the artificial hoeing and raking cropland under rainfall intensity of 1.50 mm min?1. Soil surface roughness has a control effect on sheet erosion for different treatments under two rainfall intensities. For rill erosion, soil surface roughness increased for raking cropland and artificial hoeing treatments, and soil surface roughness decreased for artificial digging and the contour tillage treatments under two rainfall intensities. Under rainfall intensity of 0.68 mm min?1, the critical soil surface roughness was 0.706 cm for the resistance control of runoff and sediment yield. Under rainfall intensity of 1.50 mm min?1, the critical soil surface roughness was 1.633 cm for the resistance control of runoff, while the critical soil surface roughness was 0.706 cm for the resistance control of sediment yield. These findings have important implications for clarifying the erosive nature of soil surface roughness and harnessing sloped farmland. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This study delineated spatially and temporally variable runoff generation areas in the Sand Mountain region pasture of North Alabama under natural rainfall conditions, and demonstrated that hydrologic connectivity is important for generating hillslope response when infiltration‐excess (IE) runoff mechanism dominates. Data from six rainfall events (13·7–32·3 mm) on an intensively instrumented pasture hillslope (0·12 ha) were analysed. Analysis of data from surface runoff sensors, tipping bucket rain gauge and HS‐flume demonstrated spatial and temporal variability in runoff generation areas. Results showed that the maximum runoff generation area, which contributed to runoff at the outlet of the hillslope, varied between 67 and 100%. Furthermore, because IE was the main runoff generation mechanism on the hillslope, the data showed that as the rainfall intensity changed during a rainfall event, the runoff generation areas expanded or contracted. During rainfall events with high‐intensity short‐ to medium‐duration, 4–8% of total rainfall was converted to runoff at the outlet. Rainfall events with medium‐ to low‐intensity, medium‐duration were found less likely to generate runoff at the outlet. In situ soil hydraulic conductivity (k) was measured across the hillslope, which confirmed its effect on hydrologic connectivity of runoff generation areas. Combined surface runoff sensor and k‐interpolated data clearly showed that during a rainfall event, lower k areas generate runoff first, and then, depending on rainfall intensity, runoff at the outlet is generated by hydrologically connected areas. It was concluded that in IE‐runoff‐dominated areas, rainfall intensity and k can explain hydrologic response. The study demonstrated that only connected areas of low k values generate surface runoff during high‐intensity rainfall events. Identification of these areas would serve as an important foundation for controlling nonpoint source pollutant transport, especially phosphorus. The best management practices can be developed and implemented to reduce transport of phosphorus from these hydrologically connected areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Soil moisture is a key process in the hydrological cycle. During ecological restoration of the Loess Plateau, soil moisture status has undergone important changes, and infiltration of soil moisture during precipitation events is a key link affecting water distribution. Our study aims to quantify the effects of vegetation cover, rainfall intensity and slope length on total infiltration and the spatial variation of water flow. Infiltration data from the upper, middle and lower slopes of a bare slope, a natural grassland and an artificial shrub grassland were obtained using a simulated rainfall experiment. The angle of the study slope was 15° and rainfall intensity was set at 60, 90, 120, 150, and 180 mm/hr. The effect these factors have on soil moisture infiltration was quantified using main effect analysis. Our results indicate that the average infiltration depth (ID) of a bare slope, a grassland slope and an artificial shrub grassland slope was 46.7–73.3, 60–80, and 60–93.3 cm, respectively, and average soil moisture storage increment was 3.5–5.7, 5.0–9.4, and 5.7–10.2 mm under different rainfall intensities, respectively. Heavy rainfall intensity and vegetation cover reduced the difference of soil infiltration in the 0–40 cm soil layer, and rainfall intensity increased surface infiltration differences on the bare slope, the grassland slope and the artificial shrub grassland slope. Infiltration was dominated by rainfall intensity, accounting for 63.03–88.92%. As rainfall continued, the contribution of rainfall intensity to infiltration gradually decreased, and the contribution of vegetation cover and slope length to infiltration increased. The interactive contribution was: rainfall intensity * vegetation cover > vegetation cover * slope length > rainfall * slope length. In the grass and shrub grass slopes, lateral flow was found at a depth of 23–37 cm when the slope length was 5–10 m, this being related to the difference in soil infiltration capacity between different soil layers formed by the spatial cross-connection of roots.  相似文献   

14.
Abstract

The aim of this study was to assess the effect of land application of sewage sludge on phosphorus (P) losses during intense rainfall. Three rainfall simulations (40 mm h?1 of 30 min duration) were conducted on a field amended with sewage sludge. The overland flow water (OFW) was monitored and sampled every minute. The suspended solid, the dissolved and total phosphorus (respectively SS, TP and DP) concentrations were analysed. The forms of particulate bound P (PP) were investigated. Several results stem from this experiment: (a) sludge application induced a large increase in the DP content of the OFW; the concentrations obtained (0.15–0.57 mg l?1) were shown to result from desorption processes from the SS; and (b) in contrast, sludge application affected neither the SS content nor the TP concentration of OFW (9.5 g mg l?1 P, consisting of PP for 95%). However, sludge preserved the structure of soil surface and led to a 45% decrease in runoff rate (150 m3 ha?1 collected on the test surface compared to 290 m3 ha?1 on a reference). This indirectly reduced TP losses (2.7 kg ha?1 on the reference surface compared to 1.4 kg ha?1 on the test surface).  相似文献   

15.
The relative contribution of forest roads to total catchment exports of suspended sediment, phosphorus, and nitrogen was estimated for a 13 451 ha forested catchment in southeastern Australia. Instrumentation was installed for 1 year to quantify total in‐stream exports of suspended sediment, phosphorus, and nitrogen. In addition, a total of 101 road–stream crossings were mapped and characterized in detail within the catchment to identify the properties of the road section where the road network and the stream network intersect. Sediment and nutrient generation rates from different forest road types within the catchment were quantified using permanent instrumentation and rainfall simulation. Sediment and nutrient generation rates, mapped stream crossing information, traffic data and annual rainfall data were used to estimate annual loads of sediment, phosphorus, and nitrogen from each stream crossing in the catchment. The annual sum of these loads was compared with the measured total catchment exports to estimate the proportional contribution of loads from roads within the catchment. The results indicated that 3·15 ha of near‐stream unsealed road surface with an average slope of 8·4% delivered an estimated 50 t of the 1142 t of total suspended sediment exported from the catchment, or about 4·4% of the total sediment load from the forest. Stream discharge over this period was 69 573 Ml. The unsealed road network delivered an estimated maximum of 22 kg of the 1244 kg of total phosphorus from the catchment, or less than 1·8% of the total load from the forest. The average sediment and phosphorous load per crossing was estimated at 0·5 t (standard deviation 1·0 t) and 0·22 kg (standard deviation 0·30 kg) respectively. The lower proportional contribution of total phosphorus resulted from a low ratio of total phosphorus to total suspended sediment for the road‐derived sediment. The unsealed road network delivered approximately 33 kg of the 20 163 kg of total nitrogen, about 0·16% of the total load of nitrogen from the forest. The data indicate that, in this catchment, improvement of stream crossings would yield only small benefits in terms of net catchment exports of total suspended sediment and total phosphorus, and no benefit in terms of total nitrogen. These results are for a catchment with minimal road‐related mass movement, and extrapolation of these findings to the broader forested estate requires further research. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A relationship between summer monsoon rainfall and sea surface temperature anomalies was investigated with the aim of predicting the monthly scale rainfall during the summer monsoon period over a section (80°–90°E, 14°–24°N) of eastern India that depends heavily upon the rainfall during the summer monsoon months for its agricultural practices. The association between area-averaged rainfall of June over the study zone and global sea surface temperature (SST) anomalies for the period 1982–2008 was examined and the variability of rainfall in monthly scale was calculated. With a view to significant variability in the rainfall in the monthly scale, it was decided to implement the artificial neural network (ANN) for forecasting the monthly scale rainfall using the SST anomalies as a predictor. Finally, the potential of ANN in this prediction has been assessed.  相似文献   

17.
Excessive application of poultry litter to pastures in the Sand Mountain region of north Alabama has resulted in phosphorus (P) contamination of surface water bodies and buildup of P in soils of this region. Since surface runoff is recognized as the primary mechanism of P transport, understanding surface runoff generation mechanisms are crucial for alleviating water quality problems in this region. Identification of surface runoff generation mechanisms is also important for delineation of hydrologically active areas (HAAs). Therefore, the specific objective of this study was to identify surface runoff generation mechanisms (infiltration excess versus saturation excess) using distributed surface and subsurface sensors and rain gauge. Results from three rainfall events (2·13–3·43 cm) of differing characteristics, and sensor data at four locations with differing soil hydraulic properties along the hillslope showed that the main surface runoff generation mechanism in this region is infiltration excess. Because of this, rainfall intensity and soil hydraulic conductivity were found to play dominant roles in surface runoff generation in this region. Further, only short periods of a few rainfall events during which the rainfall intensity is high produce surface runoff. This study indicates that perhaps subsurface flows and transport of P in subsurface flows need to be quantified to reduce P contamination of surface water bodies in this region. Current studies at this location are identifying spatial and temporal distribution of HAAs, quantifying rainfall characteristics that generate runoff, and estimating runoff volume that results from connected HAAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
As one critical source of water for maintaining ecosystems in arid and semi-arid regions, rainfall replenishment to soil water can determine vegetation growth and ecosystem functions. However, the limited rainfall resources were often not used effectively in the semi-arid loess hilly areas due to random temporal and spatial distribution of rainfall and specific vegetation features. Thus, it is highly significant to determine the threshold and efficiency of rainfall replenishment to soil water under different vegetation types. The threshold and efficiency can offer scientific evidence for rehabilitating vegetation and improving efficiency of using rainfall resources. In this study, the efficiency and threshold of rainfall replenishment to soil water were determined under natural grassland, wheat, artificial grassland, sea buckthorn shrubland and Chinese pine forestland based on consecutive measurements. The results indicated that the lag-time, rate, efficiency of rainfall replenishment to soil water were closely related to vegetation type, with significant differences existing among different vegetation types. The lag-time for natural grassland in the soil horizon of 20 cm was the shortest one (26.4 h), followed by wheat (27.8 h), sea buckthorn (41.8 h), artificial grassland (50.0 h) and Chinese pine (81.8 h).The value of replenishment rate, followed the order of wheat (0.40 mm h–1)> natural grassland (0.30 mm h–1)> sea buckthorn (0.17 mm h–1)> artificial grassland (0.14 mm h–1)> Chinese pine (0.09 mm h–1). As for the efficiency of rainfall replenishment to soil water, natural grassland was the most efficient one (35.1%), followed by wheat (29.2%), sea buckthorn (16.8%), artificial grassland (11.5%), Chinese pine (4.2%). At last, it was found that wheat had the lowest threshold (6.8 mm) of rainfall replenishment to soil water, which was followed by natural grassland (10.5 mm), sea buckthorn (20.5 mm), artificial grassland (22.6 mm) and Chinese pine (26.4 mm). These results implied that soil water in natural grassland was sensitive to rainfall and easily to be replenished, while soil water in Chinese pine was harder to be replenished by rainfall compared to other vegetation types.  相似文献   

19.
太湖流域水环境综合治理力度空前,太湖总磷浓度却于2015、2016年重回升势,蓝藻大面积暴发情况也未得到有效遏制.本文从2015和2016年环太湖河道的进出太湖水量、总磷负荷量计算入手,结合雨情、水情、太湖调蓄以及人为影响等各方面因素,分别开展水量和总磷负荷质量的平衡分析.在此基础上,结合20102017年环太湖河流多年平均进出太湖总磷负荷量对比,分析太湖总磷的外源、内源变化趋势及来源,探讨2015和2016年太湖总磷升高的原因及控制重点方向.结果表明,2015和2016年为太湖流域丰水年,尤其是2016年发生特大洪水,太湖年内最高水位达4.87 m,仅次于1999年的4.97 m的历史最高水位.2015和2016年大量外源总磷负荷进入太湖,其中环太湖河道带入的总磷负荷量占年度太湖总磷负荷总量的66.8%和74.2%,成为进入太湖的总磷负荷的主要外源;加之,2015年太湖水生植物收割造成当年沉水植物面积较上年同期下降88.7%,水生植物骤减导致对磷的吸收转化能力下降,滞留在湖体中的总磷负荷量占年度太湖总磷负荷总量的21.5%和27.5%,成为影响太湖水体总磷浓度的重要内源.太湖总磷浓度升高又为太湖蓝藻暴发进一步提供了营养盐基础,亟需强化太湖总磷源头的控制、减少总磷入湖总量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号