首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
Drought hotspot identification requires continuous drought monitoring and spatial risk assessment. The present study analysed drought events in the agriculture‐dominated mid‐Mahanadi River Basin in Odisha, India, using crop water stress as a drought indicator. This drought index incorporated different factors that affect crop water deficit such as the cropping pattern, soil characteristics, and surface soil moisture. The drought monitoring framework utilized a relevance vector machine model‐based classification that provided the uncertainty associated with drought categorization. Using the proposed framework, drought hotspots are identified in the study region and compared with indices based on precipitation and soil moisture. Further, a bivariate copula is employed to model the agricultural drought characteristics and develop the drought severity–duration–frequency (S–D–F) relationships. The drought hotspot maps and S–D–F curves are developed for different locations in the region. These provided useful information on the site‐specific drought patterns and the characteristics of the devastating droughts of 2002 and 2012, characterized by an average drought duration of 7 months at several locations. The site‐specific risk of short‐ and long‐term agricultural droughts are then investigated using the conditional copula. The results suggest that the conditional return periods and the S–D–F curves are valuable tools to assess the spatial variability of drought risk in the region.  相似文献   

2.
A number of previous studies have identified changes in the climate occurring on decadal to multi‐decadal time‐scales. Recent studies also have revealed multi‐decadal variability in the modulation of the magnitude of El Niño–Southern Oscillation (ENSO) impacts on rainfall and stream flow in Australia and other areas. This study investigates multi‐decadal variability of drought risk by analysing the performance of a water storage reservoir in New South Wales, Australia, during different climate epochs defined using the Inter‐decadal Pacific Oscillation (IPO) index. The performance of the reservoir is also analysed under three adaptive management techniques and these are compared with the reservoir performance using the current ‘reactive’ management practices. The results indicate that IPO modulation of both the magnitude and frequency of ENSO events has the effect of reducing and elevating drought risk on multi‐decadal time‐scales. The results also confirm that adaptive reservoir management techniques, based on ENSO forecasts, can improve drought security and become significantly more important during dry climate epochs. These results have marked implications for improving drought security for water storage reservoirs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Drought 2002 in Colorado: An Unprecedented Drought or a Routine Drought?   总被引:1,自引:0,他引:1  
The 2002 drought in Colorado was reported by the media and by public figures, and even by a national drought-monitoring agency, as an exceptionally severe drought. In this paper we examine evidence for this claim. Our study shows that, while the impacts of water shortages were exceptional everywhere, the observed precipitation deficit was less than extreme over a good fraction of the state. A likely explanation of this discrepancy is the imbalance between water supply and water demand over time. For a given level of water supply, water shortages become intensified as water demands increase over time. The sobering conclusion is that Colorado is more vulnerable to drought today than under similar precipitation deficits in the past.  相似文献   

4.
Hydrological drought analysis is very important in the design of hydrotechnical projects and water resources management and planning. In this study, a methodology is proposed for the analysis of streamflow droughts using the threshold level approach. The method has been applied to Yermasoyia semiarid basin in Cyprus based on 30‐year daily discharge data. Severity was defined as the accumulated water deficit volume occurring during a drought event, in respect with a target threshold. Fixed and variable thresholds (seasonal, monthly, and daily) were employed to derive the drought characteristics. The threshold levels were determined based on the Q50 percentiles of flow extracted from the corresponding flow duration curves for each threshold. The aim is to investigate the sensitivity of these thresholds in the estimation of maximum drought severities for various return periods and the derivation of severity–duration–frequency curves. The block maxima and the peaks over threshold approaches were used to perform the extreme value analysis. Three pooling procedures (moving average, interevent time criterion, and interevent time and volume criterion) were employed to remove the dependent and minor droughts. The application showed that the interevent time and volume criterion is the most unbiased pooling method. Therefore, it was selected to estimate the drought characteristics. The results of this study indicate that monthly and daily variable thresholds are able to capture abnormal drought events that occur during the whole hydrological year whereas the other two, only the severe ones. They are also more sensitive in the estimation of maximum drought severities and the derivation of the curves because they incorporate better the effect of drought durations.  相似文献   

5.
The Palmer indices (PIs) that have been most widely used for drought monitoring and assessment are criticized for two main drawbacks: coarse hydrological accounting processes with a simplified two-stage bucket soil water balance model and arbitrary rules for defining drought properties and standardizing index values through limited calibration and comparison. In this study, we introduce a new proposal of the VIC hydrologic model-based Palmer drought scheme, where traditional PIs (e.g. PDSI) can readily be calculated on the basis of distributed finescale hydrologic simulations. Moreover, recent variants of PI (i.e., SPDI and SPDI-JDI) also provide a preferable standardization strategy that allows probabilistic invariability and better spatio-temporal comparability of computed drought indices. Using gridded meteorological forcing, soil and vegetation data to drive the three-layer VIC model, both non-VIC and VIC-based PIs are investigated to examine their performances for drought characterization and detection. Results indicate that VIC hydrologic model would allow for adjustments in statistical properties of computed PDSI and VIC-based SPDI is also preferable to PDSI for better statistical robustness and spatio-temporal consistency/comparability. Moreover, the joint SPDI-JDI has the strength of integrating multi-scale probabilistic properties and drought information released by individual SPDI, providing overall drought conditions that take into account the onset, persistence and termination of droughts. At proposed 0.25° grid scale, the VIC-based SPDI-JDI indicates high frequency and long total time of drought condition in the Yellow River basin (YRB), China. Although no significant temporal trends are found in identified drought duration and severity, both the seasonal and annual drought index values demonstrate a downward trend (higher drought intensity) for considerable proportions of the YRB. These findings imply high drought risk and potential drying stress for this region. The new framework of hydrologic model-based PIs can help to strengthen our knowledge and/or practices in regional drought monitoring and assessment.  相似文献   

6.
In recent decades, copula functions have been applied in bivariate drought duration and severity frequency analysis. Among several potential copulas, Clayton has been mostly used in drought analysis. In this research, we studied the influence of the tail shape of various copula functions (i.e. Gumbel, Frank, Clayton and Gaussian) on drought bivariate frequency analysis. The appropriateness of Clayton copula for the characterization of drought characteristics is also investigated. Drought data are extracted from standardized precipitation index time series for four stations in Canada (La Tuque and Grande Prairie) and Iran (Anzali and Zahedan). Both duration and severity data sets are positively skewed. Different marginal distributions were first fitted to drought duration and severity data. The gamma and exponential distributions were selected for drought duration and severity, respectively, according to the positive skewness and Kolmogorov–Smirnov test. The results of copula modelling show that the Clayton copula function is not an appropriate choice for the used data sets in the current study and does not give more drought risk information than an independent model for which the duration and severity dependence is not significant. The reason is that the dependence of two variables in the upper tail of Clayton copula is very weak and similar to the independent case, whereas the observed data in the transformed domain of cumulative density function show high association in the upper tail. Instead, the Frank and Gumbel copula functions show better performance than Clayton function for drought bivariate frequency analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Multi-site simulation of hydrological data are required for drought risk assessment of large multi-reservoir water supply systems. In this paper, a general Bayesian framework is presented for the calibration and evaluation of multi-site hydrological data at annual timescales. Models included within this framework are the hidden Markov model (HMM) and the widely used lag-1 autoregressive (AR(1)) model. These models are extended by the inclusion of a Box–Cox transformation and a spatial correlation function in a multi-site setting. Parameter uncertainty is evaluated using Markov chain Monte Carlo techniques. Models are evaluated by their ability to reproduce a range of important extreme statistics and compared using Bayesian model selection techniques which evaluate model probabilities. The case study, using multi-site annual rainfall data situated within catchments which contribute to Sydney’s main water supply, provided the following results: Firstly, in terms of model probabilities and diagnostics, the inclusion of the Box–Cox transformation was preferred. Secondly the AR(1) and HMM performed similarly, while some other proposed AR(1)/HMM models with regionally pooled parameters had greater posterior probability than these two models. The practical significance of parameter and model uncertainty was illustrated using a case study involving drought security analysis for urban water supply. It was shown that ignoring parameter uncertainty resulted in a significant overestimate of reservoir yield and an underestimation of system vulnerability to severe drought.  相似文献   

8.
Multivariate modeling of droughts using copulas and meta-heuristic methods   总被引:3,自引:3,他引:0  
This study investigated the utility of two meta-heuristic algorithms to estimate parameters of copula models and for derivation of drought severity–duration–frequency (S–D–F) curves. Drought is a natural event, which has huge impact on both the society and the natural environment. Drought events are mainly characterized by their severity, duration and intensity. The study adopts standardized precipitation index for drought characterization, and copula method for multivariate risk analysis of droughts. For accurate estimation of copula model parameters, two meta-heuristic methods namely genetic algorithm and particle swarm optimization are applied. The proposed methodology is applied to a case study in Trans Pecos, an arid region in Texas, USA. First, drought severity and duration are separately modeled by various probability distribution functions and then the best fitted models are selected for copula modeling. For modeling the joint dependence of drought variables, different classes of copulas, namely, extreme value copulas, Plackett and Student’s t copulas are employed and their performance is evaluated using standard performance measures. It is found that for the study region, the Gumbel–Hougaard copula is the best fitted copula model as compared to the others and is used for the development of drought S–D–F curves. Results of the study suggest that the meta-heuristic methods have greater utility in copula-based multivariate risk assessment of droughts.  相似文献   

9.
Drought prediction is important for improved water resources management and agriculture planning. Although Arkansas has suffered severe droughts and economic loss in recent years, no significant study has been done. This study proposes a local nonparametric autoregressive model with designed stochastic residual-resampling approach to produce ensemble drought forecasts with associated confidence. The proposed model utilizes historical climate records, including drought indices, temperature, and precipitation to improve the quality of the short-term forecast of drought indices. Monthly forecasts of Palmer Drought Severity Index (PDSI) in Arkansas climate divisions show remarkable skills with 2–3 month lead-time based on selected performance measure such as, Normalized Root Mean Square Error (NRMSE) and the Kuiper Skill Score (KSS). Rank histograms also show that the model captures the natural variability very well in the produced drought forecasts. The incorporation of categorical long-term precipitation prediction significantly enhances the performance of the monthly drought forecasts.  相似文献   

10.
The Tarim River Basin is a special endorheic arid drainage basin in Central Asia, characterized by limited rainfall and high evaporation as common in deserts, while water is supplied mainly by glacier and snow melt from the surrounding mountains. The existing drought indices can hardly capture the drought features in this region as droughts are caused by two dominant factors (meteorological and hydrological conditions). To overcome the problem, a new hybrid drought index (HDI), integrating the meteorological and hydrological drought regimes, was developed and tested in the basin in the work. The index succeeded in revealing the drought characteristics and the ensemble influence better than the single standardized precipitation index or the hydrological index. The Artificial Neural Network approach based on temperature and precipitation observations was set up to simulate the HDI change. The method enabled constructing scenarios of future droughts in the region using climate simulation of the GCMs under four RCP scenarios from the latest CMIP5 project. The simulations in the study have shown that the water budget patterns in the Tarim River Basin are more sensitive to temperature than to precipitation. Dominated by temperature rise causing an accelerating snow/glacier melt, the frequency of drought months is projected to decrease by about 14% in the next decades (until 2035). The drought duration is expected to be shortened to 3 months on average, with the severity alleviated. However, the region would still suffer more severe droughts with a high intensity in some years. The general decrease in drought frequency and intensity over the region in the future would be beneficial for water resources management and agriculture development in the oases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Numerous publications document increasing consensus in the scientific community that climate change will increase the severity and frequency of drought. However, constructing large infrastructures is often viewed as an unreliable and inefficient option in dealing with the problem of drought, owing to unpredictability of climate change. This study aims at illustratively presenting that there is much room to improve drought management without resorting solely to infrastructure options. The adaptiveness concept is first explained to examine the reasons of failure in drought management and appropriate options from the viewpoint of a systems approach. Thereafter, a Korean water scarcity case is defined as the system dynamics model. The model is implemented to include movement of water via the reservoir and water supply facilities, the operating rules of the reservoir, and the relation between water scarcity and customer stress. Simulation results demonstrate that adaptiveness of drought management was low because of untimely or limited options of the reservoir operator. They also show that most customer stress could be largely mitigated by two options chosen from the adaptiveness concept. It is finally concluded that drought management needs to be addressed with consideration of the adaptiveness concept before deciding solely on expansion of infrastructure upon facing challenges due to climate change.  相似文献   

12.
吴浩云  甘月云  金科 《湖泊科学》2022,34(5):1393-1412
过去几十年太湖流域经济社会快速发展,但由于经济增长方式尚未根本转变,流域水循环系统遭到无序干扰和破坏,太湖水污染问题严重,水质型缺水问题突出,流域水安全面临巨大挑战. “引江济太”作为太湖流域水安全保障的关键措施和流域水环境综合治理的重要举措,自2002年启动实施以来,以丰补枯,增加流域水资源供给;以动治静,抑制太湖蓝藻大规模暴发,改善流域区域水环境;科学应对,保障突发水污染事件和重大活动期间供水安全,取得了显著的综合效益,社会各界予以了广泛关注. 本文基于监测数据和大量文献,在综述“引江济太”实践背景、过程和成效的基础上,重点围绕“引江济太”调度模式、水量水质保障、洪旱风险管控、调水事件驱动等进行了研究. 结果表明,“引江济太”通过试验探索回答了流域治理管理的一些关键科学问题,已经成为提升流域水资源和水环境承载能力的重要手段. 面对极端气候变化、流域水循环格局变化、保障长三角一体化高质量发展水安全新需求和挑战,建议“引江济太”实践中,探索多目标统筹协调调度、开展数字孪生太湖调水、促进流域骨干水网建设,实现”引江济太”综合效益最大化.  相似文献   

13.
Drought in Africa has been extensively researched, particularly from meteorological, agricultural, and food security perspectives. However, the impact of drought on water security, particularly ground water dependent rural water supplies, has received much less attention. Policy responses have concentrated on food needs, and it has often been difficult to mobilize resources for water interventions, despite evidence that access to safe water is a serious and interrelated concern. Studies carried out in Ghana, Malawi, South Africa, and Ethiopia highlight how rural livelihoods are affected by seasonal stress and longer-term drought. Declining access to food and water is a common and interrelated problem. Although ground water plays a vital role in buffering the effects of rainfall variability, water shortages and difficulties in accessing water that is available can affect domestic and productive water uses, with knock-on effects on food consumption and production. Total depletion of available ground water resources is rarely the main concern. A more common scenario is a spiral of water insecurity as shallow water sources fail, additional demands are put on remaining sources, and mechanical failures increase. These problems can be planned for within normal development programs. Water security mapping can help identify vulnerable areas, and changes to monitoring systems can ensure early detection of problems. Above all, increasing the coverage of ground water–based rural water supplies, and ensuring that the design and siting of water points is informed by an understanding of hydrogeological conditions and user demand, can significantly increase the resilience of rural communities to climate variability.  相似文献   

14.
15.
A slight variation in the magnitude of stream flow can have a substantial influence on the development of water resources. The Songhua River Basin (SRB) serves as a major grain commodity basin and is located in the northeastern region of China. Recent studies have identified a gradual decrease in stream flows, which presents a serious risk to water resources of the region. It is therefore necessary to assess the variation in stream flow and to predict the future of stream flows and droughts to make a comprehensive plan for agricultural irrigation. The simulation of monthly stream flows and the investigation of the influence of climate on the stream flow in the SRB were performed by utilizing the Integrated Water Evaluation and Planning (WEAP) tool coupled with observed precipitation data, as well as the Asian Precipitation-Highly-Resolved Observational Data Integration towards Evaluation of Water Resources (APHRODITE’s Water Resources) precipitation product. The Nash–Sutcliffe coefficient (NSC) was used to assess the WEAP efficiency. During the time of calibration, NSC was obtained as 0.90 and 0.67 using observed and APHRODITE precipitation data, respectively. The results indicate that WEAP can be used effectively in the SRB. The application of the model suggested a maximum decline in stream flow, reaching 24% until the end of 21st century under future climate change scenarios. The drought indices (standardized drought index and percent of normal index) demonstrated that chances of severe to extreme drought events are highest in 2059, 2060 and 2085, while in the remaining time period mild to moderate drought events may occur in the entire study area. The drought duration, severity and intensity for the period of 2011–2099 under all scenarios, [(A1B: 12, ? 1.55, ? 0.12), (A2: 12, ? 1.41, ? 0.09), (max. wetting and warming conditions: 12, ? 1.37, ? 0.11) and (min. wetting and warming conditions: 12, ? 1.69, ? 0.19)], respectively.  相似文献   

16.
Regional bivariate modeling of droughts using L-comoments and copulas   总被引:1,自引:0,他引:1  
The regional bivariate modeling of drought characteristics using the copulas provides valuable information for water resources management and drought risk assessment. The regional frequency analysis (RFA) can specify the similar sites within a region using L-comoments approach. One of the important steps in the RFA is estimating regional parameters of the copula function. In the present study, an optimization-based method along with the adjusted charged system search are introduced and applied to estimate the regional parameters of the copula models. The capability of the proposed methodology is illustrated by copula functions on drought events. Three commonly used copulas containing Clayton, Frank and Gumbel are employed to derive the joint distribution of drought severity and duration. The result of the new method are compared to the method of moments and after applying several goodness-of-fit tests, the results indicate that the new method provides higher accuracy than the classic one. Furthermore, the results of the upper tail dependence coefficient indicate that the Gumbel copula is the best-fitted copula among the other ones for modeling drought characteristics.  相似文献   

17.
In this study, the patterns of past and future drought occurrences in the Seoul region were analysed using observed historical data from the Seoul weather station located in the Korean Peninsula and four different types of general circulation models (GCMs), namely, GFDL:CM2_1, CONS:ECHO‐G, MRI:CGCM2_3_2 and UKMO:HADGEM1. To analyse statistical properties such as drought frequency duration and return period, the Standardized Precipitation Index was used to derive the severity–duration–frequency (SDF) curve from the drought frequency analysis. In addition, a drought spell analysis was conducted to estimate the frequency and change of drought duration for each drought classification. The results of the analysis suggested a decrease in the frequency of mild droughts and an increase in the frequency of severe and extreme droughts in the future. Furthermore, the average duration of droughts is expected to increase. A comparison of the SDF relationship derived from the observed data with that derived via the GCMs indicated that the drought severity for each return period was reduced as drought duration increased and that the drought severity derived from the GCMs was severer than the severity obtained using the observed data for the same duration and return period. Furthermore, among the four types of GCMs used in this study, the MRI model predicted the most severe future drought for the Seoul region, and the SDF curve derived using the MRI model also resulted in the highest degree of drought severity compared with the other GCMs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, progressive methods for assessing drought severity from diverse points of view were conceived. To select a fundamental drought index, the performances of the Effective Drought Index (EDI) and 1-, 3-, 6-, 9-, 12-, and 24-month Standardized Precipitation Indices (SPIs) were compared for drought monitoring data accumulated over 200-year period from 1807 to 2006 for Seoul, Korea. The results confirmed that the EDI was more efficient than the SPIs in assessing both short and long-term droughts.We then proposed the following methods for modifying and supplementing the EDI: (1) CEDI, a corrected EDI that considers the rapid runoff of water resources after heavy rainfall; (2) AEDI, an accumulated EDI that considers the drought severity and duration of individual drought events; and (3) YAEDI, a year-accumulated negative EDI representing annual drought severity. In addition to these indices, to more accurately measure and diagnose droughts, we proposed the utilization of (4) the Available Water Resources Index (AWRI), an existing index that expresses the actual amount of available water.Using the improved methods above, we assessed and summarized important droughts that have occurred in Seoul over the 200 years from 1807 to 2006.  相似文献   

19.
Accepting the concept of standardization introduced by the standardized precipitation index, similar methodologies have been developed to construct some other standardized drought indices such as the standardized precipitation evapotranspiration index (SPEI). In this study, the authors provided deep insight into the SPEI and recognized potential deficiencies/limitations in relating to the climatic water balance it used. By coupling another well‐known Palmer drought severity index (PDSI), we proposed a new standardized Palmer drought index (SPDI) through a moisture departure probabilistic approach, which allows multi‐scalar calculation for accurate temporal and spatial comparison of the hydro‐meteorological conditions of different locations. Using datasets of monthly precipitation, temperature and soil available water capacity, the moisture deficit/surplus was calculated at multiple temporal scales, and a couple of techniques were adopted to adjust corresponding time series to a generalized extreme value distribution out of several candidates. Results of the historical records (1900–2012) for diverse climates by multiple indices showed that the SPDI was highly consistent and correlated with the SPEI and self‐calibrated PDSI at most analysed time scales. Furthermore, a simple experiment of hypothetical temperature and/or precipitation change scenarios also verified the effectiveness of this newly derived SPDI in response to climate change impacts. Being more robust and preferable in spatial consistency and comparability as well as combining the simplicity of calculation with sufficient accounting of the physical nature of water supply and demand relating to droughts, the SPDI is promising to serve as a competent reference and an alternative for drought assessment and monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

The GWAVA (Global Water AVailability Assessment) model for indicating human water security has been extended with a newly developed module for calculating pollutant concentrations. This module is first described and then illustrated by being used to model nitrogen, phosphorus and organic matter concentrations. The module uses solely input variables that are likely to be available for future scenarios, making it possible to apply the module to such scenarios. The module first calculates pollutant loading from land to rivers, lakes and wetlands by considering drivers such as agriculture, industry and sewage treatment. Calculated loadings are subsequently converted to concentrations by considering aquatic processes, such as dilution, downstream transport, evaporation, human water abstraction and biophysical loss processes. Aquatic biodiversity is indicated to be at risk if modelled pollutant concentrations exceed certain water quality standards. This is indicated to be the case in about 35% of the European area, especially where lakes and wetlands are abundant. Human water security is indicated to be at risk where human water demands cannot be fulfilled during drought events. This is found to be the case in about 10% of the European area, especially in Mediterranean, arid and densely-populated areas. Modelled spatial variation in concentrations matches well with existing knowledge, and the temporal variability of concentrations is modelled reasonably well in some river basins. Therefore, we conclude that the updated GWAVA model can be used for indicating changes in human water security and aquatic biodiversity across Europe.

Editor Z.W. Kundzewicz

Citation Dumont, E., Williams, R., Keller, V., Voss, A., and Tattari, S., 2012. Modelling indicators of water security, water pollution and aquatic biodiversity in Europe. Hydrological Sciences Journal, 57 (7), 1378–1403.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号