首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
全球变暖背景下东亚气候变化的最新情景预测   总被引:64,自引:4,他引:60       下载免费PDF全文
在最新的SRES A2和B2温室气体排放情景下,利用国际上7个气候模式针对未来全球变暖的数值模拟结果,本文着重分析了东亚区域气候21世纪的变化趋势. 研究揭示:中国大陆年均表面气温升高过程与全球同步,但增幅在东北、西部和华中地区较大,且表现出明显的年际变化;全球年均表面气温增幅纬向上大体呈带状分布,两极地区最为明显,并在北极地区达到最大;此外,21世纪后半段北半球高纬度地区的年平均强升温幅度主要来自于冬季增温. 在21世纪前50年,温室气体含量的增加除在一定程度上会增加青藏高原大部分夏季降水量外,不会对中国大陆其余地区的年、季节平均降水量产生较大影响;但持续的温室气体含量增加将最终导致大陆降水量几乎是全域性的增加.  相似文献   

2.
张冬峰  石英 《地球物理学报》2012,55(9):2854-2866
采用高水平分辨率区域气候模式进行区域未来气候变化预估,对理解全球增暖对区域气候的潜在影响和科学评估区域气候变化有很好的参考价值.这里对国家气候中心使用25 km高水平分辨率区域气候模式RegCM3单向嵌套全球模式MIROC3.2_hires在观测温室气体(1951—2000)和IPCC A1B温室气体排放情景下(2001—2100)进行的共计150年长时间模拟结果,进行华北地区未来气温、降水和极端气候事件变化的分析.模式检验结果表明:模式对当代(1981—2000)气温以及和气温有关的极端气候事件(霜冻日数、生长季长度)的空间分布和数值模拟较好;对降水及和降水有关的极端气候事件(强降水日期、降水强度、五日最大降水量)能够模拟出它们各自的主要空间分布特征,但在模拟数值上存在偏大、偏强的误差.和全球模式驱动场相比,区域模式模拟的气温、降水和极端气候事件有明显的改进.2010—2100年华北地区随时间区域平均气温升高幅度逐渐增大,随之霜冻日数逐渐减少,生长季长度逐渐增多;同时随温室效应的不断加剧,未来降水呈增加的趋势,强降水日期和五日最大降水量逐渐增多、降水强度逐渐增大.从空间分布看,21世纪末期(2081—2100)气温、降水以及有关的极端气候事件变化比21世纪中期(2041—2060)更加明显.  相似文献   

3.
基于观测资料和CMIP5多模式的历史试验(考虑所有驱动因子)以及单因子强迫气候归因试验结果,估算了温室气体、气溶胶、土地利用及自然因素等外强迫在中国区域气候变化中的相对贡献.结果表明,人为和自然外强迫的共同作用可解释近30年观测气温变化的95%~99%,其中温室气体引起的温度变化是观测增温的2~3倍,而气溶胶起到了显著的冷却降温作用;人为和自然因素外强迫对近几十年观测降水的变化的可能贡献约为65%~78%,其中,气溶胶和温室气体是中国区域降水的主要外强迫因子,尤其气溶胶主导着中国东部降水变化的分布型,而自然因素外强迫的贡献主要体现在干旱半干旱区.人类活动主导了近60年来中国区域气温的长期非线性趋势,特别是从20世纪60年代开始温室气体的影响强度逐渐增大,是中国区域气候变暖最主要的贡献者;不同外强迫因子对中国区域降水长期非线性趋势的影响具有明显的区域差异,温室气体是20世纪70年代以后干旱半干旱区降水逐渐增加的主要贡献者,而气溶胶的主要影响使湿润半湿润区降水有较为明显下降趋势,土地利用和自然因素外强迫也会造成降水呈减少的趋势.通过最优指纹法(Optimal Fingerprinting)的检测可知,人类活动能够很好地解释近60年来中国区域特别是湿润半湿润区观测气温的变化,其中温室气体的单独作用能够清晰地从观测结果中检测出来;由于多模式结果的不确定性,观测降水变化的归因目前还无法通过残余一致性检测.需要指出的是,尽管本文的研究结果还存在着一定的不确定性,但仍可为中国区域气候变化成因研究及其预测提供科学依据.  相似文献   

4.
本文基于中国科学院大气物理研究所大气科学和地球流体力学国家重点实验室(LASG/IAP)发展的气候系统模式FGOALS_gl对近百年气温变化的模拟,讨论了自然变率和人为因素对20世纪全球变暖的相对贡献.数值试验结果表明,在自然和人为因子的共同强迫作用下,耦合模式能够合理再现20世纪全球平均气温随时间的演变;仅在自然因子作用下,模式不能再现1970年以后的全球变暖.自然因素对20世纪第一次变暖的作用是显著的,但温室气体是20世纪后期变暖的主要原因.在这一定性结论基础上,进一步对近百年变化中自然和人为因素的相对贡献做定量的归因分析,结果表明,除赤道中东太平洋和北大西洋外,人为因素对近百年的增暖起决定性作用.对全球、半球及大陆尺度而言,外强迫可以解释平均气温变化的70%以上,而内部变率贡献较小;但对于区域尺度而言,多数地区内部变率的贡献大于外强迫,区域尺度气温变化的机制较全球、半球尺度要复杂.对中国地区而言,20世纪早期的气温变化受自然变率影响,但20世纪后期的变暖主要是温室气体增加的结果.中国东部气温变化的空间分布表明,自然因素对近50年及近百年中国地区的变暖趋势贡献较小.在自然和人为因子共同作用下,模式能够再现近50年中国东部气温变化冬春两季增暖的特征、但没有模拟出夏季长江中下游地区及淮河流域的降温趋势;自然因子试验的结果表明,太阳活动对该区域的变冷有贡献,但模式无法再现该地区气温的季节变化特征.  相似文献   

5.
利用NACR CCSM3.0气候系统模式的20世纪气候模拟试验(20C3M)结果,在检验模式对全球季风区、季风降水模态以及1979-1999年全球季风降水趋势的模拟性能基础上,研究了全强迫、自然强迫以及人类活动强迫等因子对20世纪全球季风降水变化趋势的可能影响。结果表明:全球季风降水在全强迫的作用下在20世纪呈线性增长趋势,且这个增长趋势主要是由于人类活动强迫影响造成的,进一步分析得到主要是由于人类活动强迫中的温室气体因子影响所导致的.在温室气体强迫作用下会产生"东太平洋冷—西太平洋暖"这一形势,有利于水汽传输合并进入东半球季风区,加上其引起的全球海陆热力差和半球热力差的增大会加大季风低压,使得相应的水汽辐合和越赤道气流的增大从而引起全球季风降水的增长.自然强迫作用下也会引起20世纪全球季风降水的增加,但增长趋势并不明显.而硫酸盐和黑碳气溶胶会减弱全球季风降水在20世纪的增长趋势,硫酸盐气溶胶主要引起北半球季风降水的减少,而黑碳气溶胶主要引起南半球季风降水的减少.  相似文献   

6.
陶纯苇  姜超  孙建新 《地球物理学报》2016,59(10):3580-3591
应用CN05观测资料,以及参与国际耦合模式比较计划第5阶段(CMIP5)中的26个模式,评估了新一代全球气候模式对东北三省气候变化模拟能力并选出4个较优模式,发现经过筛选得出的较优模式集合平均模拟结果的可靠性得到进一步加强,尤其体现在对气温的模拟上.在此基础上着重分析了多模式集合在不同典型浓度路径(RCPs)下对未来气候变化特征的预估.结果表明:21世纪的未来阶段,东北三省将处于显著增温的状态,且RCP8.5情景下的增温速率(0.53℃/10a)明显高于RCP4.5情景下的速率(0.22℃/10a);空间上,北部地区将成为增温幅度最大、增温速率最高的区域.未来降水将会相对增加,但波动较大,21世纪末期RCP4.5和RCP8.5情景下的降水增加幅度分别为11.24%和15.95%;空间上,辽宁省西部地区将成为降水增加最为显著的区域.根据水分盈亏量,21世纪未来阶段,RCP4.5情景下的东北三省绝大多数地区未来将相对变湿,尤其到了中后期;RCP8.5情景下则是中西部地区将相对变干,其余地区则会相对变湿.  相似文献   

7.
人工神经网络模型预测气候变化对博斯腾湖流域径流影响   总被引:9,自引:3,他引:6  
陈喜  吴敬禄  王玲 《湖泊科学》2005,17(3):207-212
温室气体排放量增加造成气候变化,对全球资源环境产生重要影响.本文利用人工神经网络模型建立月降水、气温与径流关系,利用开都河流域降水、气温、径流资料对模型进行训练和验证,通过试算法确定网络模型结构,气温升高和降水量增加对径流影响的敏感程度分析表明,气温升高和降水增加对该区域径流影响较大,且气温升高的影响更为显著,径流增加主要集中在夏季,根据区域气候模型(RCMs)推算的CO2加倍情况下西北地区气候的可能变化,预测位于博斯腾湖流域的开都河大山口站年径流量增加38.6%,其中夏季增加71.8%,冬季增加11.4%。  相似文献   

8.
中国不同排放情景下人为气溶胶的气候效应   总被引:2,自引:0,他引:2       下载免费PDF全文
刘红年  张力 《地球物理学报》2012,55(6):1867-1875
本文利用区域气候模式RIEMS2.0(Regional Integrated Environmental Model System)和2006年以及2020年三种排放情景下的排放资料,研究了2006年气候背景下的人为气溶胶的浓度分布特征及辐射效应,估算了未来不同排放情景下人为气溶胶的主要成分硫酸盐、硝酸盐、黑碳、有机碳(含二次有机碳)的综合气候效应.结果表明:(1)2006年中国地区人为气溶胶浓度硫酸盐>有机碳>硝酸盐>黑碳,其区域柱浓度平均值分别为6.0、4.0、1.3和0.3 mg/m2.(2)2006年硫酸盐、硝酸盐、有机碳和黑碳的平均辐射强迫分别为-1.32、-0.60、-0.40和0.28 W/m2.硫酸盐、硝酸盐和有机碳的负辐射强迫超过黑碳的正辐射强迫,人为气溶胶总辐射强迫为-1.96 W/m2.(3)人为气溶胶的辐射效应及引起的地面气温变化对排放源非常敏感,未来采取不同排放政策导致的人为气溶胶的含量及辐射效应有较大差异.在未来排放增加的情景下,各区域的气溶胶浓度、辐射强迫、气温下降幅度和降水减少幅度也相应加大.  相似文献   

9.
利用美国的SAGEⅡ全球月平均格点卫星资料, 对青藏高原地区的大气气溶胶状况进行了分析. 分析表明高原上空平流层大气气溶胶的光学厚度在冬季最大, 春、秋季次之, 夏季最小, 存在明显的季节振荡现象. 然后利用MM 5模拟了气溶胶的辐射强迫状况, 结果表明, 相对于设置均一的背景气溶胶而言, 青藏高原地区的辐射强迫均为正值. 高原上地面土壤温度和地面气温均有所增加, 增加的量级相当, 但增幅略小. 高原上500 hPa处的气温也有所增加, 增幅比地面气温的增幅更小, 但仍处于同一个量级.  相似文献   

10.
SRES情景下多模式集合对淮河流域未来气候变化的预估   总被引:2,自引:0,他引:2  
吴迪  严登华 《湖泊科学》2013,25(4):565-575
采用偏差修正/空间降尺度方法处理后的IPCC AR4中8个全球海气耦合模式的集合平均结果,分析了SRESA2、A1B和B1情景下淮河流域未来30 a(2011 2040年)相对于现状(1961 1990年)地面温度和降水的可能变化.结果表明:(1)多模式集合能较好地反映流域现状年、季温度和降水的大尺度空间分布特征;对温度和降水的年内分配过程模拟较好,各月温度集合平均与观测值相差0.2℃左右(冬季各月除外),而降水集合平均与观测值相对误差在5%左右(9月除外).(2)不同情景下未来流域年、季温度一致增加,年温度增加幅度在0.85~1.12℃之间;冬、春季温度增加相对明显,而夏、秋季温度增加并不显著;年际和年代际温度增加趋势显著.(3)不同情景下未来流域年降水有增加趋势,增加幅度为0.13%~5.24%,增幅不明显;降水季节变化有增有减,季节、年际和年代际降水变化较为复杂,不同情景下降水空间变化差异显著.  相似文献   

11.
This study focuses on how irrigation processes affect local climate over arid areas. The chosen study area is northwest China, a typical arid region where three dominant land‐use types are irrigated cropland, grassland, and desert. Observational analysis indicates that the highest precipitation, the coolest surface temperatures, and the slowest warming trend are seen over irrigated cropland from 1979 to 2005. The single column atmospheric model (SCAM), developed by the National Center for Atmospheric Research (NCAR), was used to investigate and better understand the differences in long‐term climate conditions and change over the above three land‐use types. The results indicate that local climate conditions are predominantly controlled by large‐scale forcing in this arid region and that local land surface forcing related to vegetation cover change and irrigation processes also has a significant impact. This study strongly suggests that a realistic climate forecast for this region can be achieved only with both accurate large‐scale and local climate forcing. The irrigated cropland of the region generates stronger evaporation that cools the surface and slows the warming trend more than does the evaporation from the natural grassland and desert. Stronger evaporation also significantly increases precipitation, potentially alleviating the stress of irrigation demands in arid regions. A series of sensitivity SCAM simulations indicate that a drier and warmer climate occurs with decreasing vegetation cover in the irrigated cropland region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Much of the discussion on hydrological trends and variability in the source region of the Yellow River centres on the mean values of the mainstream flows. Changes in hydrological extremes in the mainstream as well as in the tributary flows are largely unexplored. Although decreasing water availability has been noted, the nature of those changes is less explored. This article investigates trends and variability in the hydrological regimes (both mean values and extreme events) and their links with the local climate in the source region of the Yellow River over the last 50 years (1959–2008). This large catchment is relatively undisturbed by anthropogenic influences such as abstraction and impoundments, enabling the characterization of widely natural, climate‐driven trends. A total of 27 hydrological variables were used as indicators for the analysis. Streamflow records from six major headwater catchments and climatic data from seven stations were studied. The trend results vary considerably from one river basin to another, and become more accentuated with longer time period. Overall, the source region of the Yellow River is characterized by an overall tendency towards decreasing water availability. Noteworthy are strong decreasing trends in the winter (dry season) monthly flows of January to March and September as well as in annual mean flow, annual 1‐, 3‐, 7‐, 30‐ and 90‐day maxima and minima flows for Maqu and Tangnag catchments over the period 1959–2008. The hydrological variables studied are closely related to precipitation in the wet season (June, July, August and September), indicating that the widespread decrease in wet season precipitation is expected to be associated with significant decrease in streamflow. To conclude, decreasing precipitation, particularly in the wet season, along with increasing temperature can be associated with pronounced decrease in water resources, posing a significant challenge to downstream water uses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
There is increasing interest in the magnitude of the flow of freshwater to the Arctic Ocean due to its impacts on the biogeophysical and socio‐economic systems in the north and its influence on global climate. This study examines freshwater flow based on a dataset of 72 rivers that either directly or indirectly contribute flow to the Arctic Ocean or reflect the hydrologic regime of areas contributing flow to the Arctic Ocean. Annual streamflow for the 72 rivers is categorized as to the nature and location of the contribution to the Arctic Ocean, and composite series of annual flows are determined for each category for the period 1975 to 2015. A trend analysis is then conducted for the annual discharge series assembled for each category. The results reveal a general increase in freshwater flow to the Arctic Ocean with this increase being more prominent from the Eurasian rivers than from the North American rivers. A comparison with trends obtained from an earlier study ending in 2000 indicates similar trend response from the Eurasian rivers, but dramatic differences from some of the North American rivers. A total annual discharge increase of 8.7 km3/y/y is found, with an annual discharge increase of 5.8 km3/y/y observed for the rivers directly flowing to the Arctic Ocean. The influence of annual or seasonal climate oscillation indices on annual discharge series is also assessed. Several river categories are found to have significant correlations with the Arctic Oscillation, the North Atlantic Oscillation, or the Pacific Decadal Oscillation. However, no significant association with climate indices is found for the river categories leading to the largest freshwater contribution to the Arctic Ocean.  相似文献   

14.
This study used a regional climate model, driven at a resolution of 30 km, to derive climate estimates that were used as input to a hydrological model to determine stream flow in a changing climate. This regional climate model output was derived using the Weather Research and Forecasting model, which was used to downscale the general circulation model ECHAM5 T63 under the A2 greenhouse gas emission scenario for the future. Two river basins, Dakbla and Poko, over the Sesan catchment of the Lower Mekong region were considered for runoff modeling. A 10‐year climatology of the recent past, 1991–2000, was used as the baseline for the present‐day climate, and another 10‐year climate over the period 2091–2100 was chosen for the future time slice. The results from the simulation of future stream flow indicate that, over both Dakbla and Poko river basins, the stream flow is likely to increase, especially during the peak rainfall season. The Dakbla River Basin shows a substantial increase in stream flow when compared with the Poko River Basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

We compare the output of various climate models to temperature and precipitation observations at 55 points around the globe. We also spatially aggregate model output and observations over the contiguous USA using data from 70 stations, and we perform comparison at several temporal scales, including a climatic (30-year) scale. Besides confirming the findings of a previous assessment study that model projections at point scale are poor, results show that the spatially integrated projections are also poor.

Citation Anagnostopoulos, G. G., Koutsoyiannis, D., Christofides, A., Efstratiadis, A. & Mamassis, N. (2010) A comparison of local and aggregated climate model outputs with observed data. Hydrol. Sci. J. 55(7), 1094–1110.  相似文献   

16.
Abstract

Climate change is recognized to be one of the most serious challenges facing mankind today. Driven by anthropogenic activities, it is known to be a direct threat to our food and water supplies and an indirect threat to world security. Increase in the concentration of carbon dioxide and other greenhouse gases in the atmosphere will certainly affect hydrological regimes. The consequent global warming is expected to have major implications on water resources management. The objective of this research is to present a general approach for evaluating the impacts of potential climate change on streamflow in a river basin in the humid tropical zone of India. Large-scale global climate models (GCMs) are the best available tools to provide estimates of the effect of rising greenhouse gases on rainfall and temperature. However the spatial resolution of these models (250 km?×?250 km) is not compatible with that of watershed hydrological models. Hence the outputs from GCMs have to be downscaled using regional climate models (RCMs), so as to project the output of a GCM to a finer resolution (50 km?×?50 km). In the present work, the projections of a GCM for two scenarios, A2 and B2 are downscaled by a RCM to project future climate in a watershed. Projections for two important climate variables, viz. rainfall and temperature are made. These are then used as inputs for a physically-based hydrological model, SWAT, in order to evaluate the effect of climate change on streamflow and vegetative growth in a humid tropical watershed.

Citation Raneesh, K. Y. & Santosh, G. T. (2011) A study on the impact of climate change on streamflow at the watershed scale in the humid tropics. Hydrol. Sci. J. 56(6), 946–965.  相似文献   

17.
This study aimed to quantify possible climate change impacts on runoff for the Rheraya catchment (225 km2) located in the High Atlas Mountains of Morocco, south of Marrakech city. Two monthly water balance models, including a snow module, were considered to reproduce the monthly surface runoff for the period 1989?2009. Additionally, an ensemble of five regional climate models from the Med-CORDEX initiative was considered to evaluate future changes in precipitation and temperature, according to the two emissions scenarios RCP4.5 and RCP8.5. The future projections for the period 2049?2065 under the two scenarios indicate higher temperatures (+1.4°C to +2.6°C) and a decrease in total precipitation (?22% to ?31%). The hydrological projections under these climate scenarios indicate a significant decrease in surface runoff (?19% to ?63%, depending on the scenario and hydrological model) mainly caused by a significant decline in snow amounts, related to reduced precipitation and increased temperature. Changes in potential evapotranspiration were not considered here, since its estimation over long periods remains a challenge in such data-sparse mountainous catchments. Further work is required to compare the results obtained with different downscaling methods and different hydrological model structures, to better reproduce the hydro-climatic behaviour of the catchment.
EDITOR M.C. Acreman

ASSOCIATE EDITOR R. Hirsch  相似文献   

18.
Most natural disasters are caused by water‐/climate‐related hazards, such as floods, droughts, typhoons, and landslides. In the last few years, great attention has been paid to climate change, and especially the impact of climate change on water resources and the natural disasters that have been an important issue in many countries. As climate change increases the frequency and intensity of extreme rainfall, the number of water‐related disasters is expected to rise. In this regard, this study intends to analyse the changes in extreme weather events and the associated flow regime in both the past and the future. Given trend analysis, spatially coherent and statistically significant changes in the extreme events of temperature and rainfall were identified. A weather generator based on the non‐stationary Markov chain model was applied to produce a daily climate change scenario for the Han River basin for a period of 2001–2090. The weather generator mainly utilizes the climate change SRES A2 scenario driven by input from the regional climate model. Following this, the SLURP model, which is a semi‐distributed hydrological model, was applied to produce a long‐term daily runoff ensemble series. Finally, the indicator of hydrologic alteration was applied to carry out a quantitative analysis and assessment of the impact of climate change on runoff, the river flow regime, and the aquatic ecosystem. It was found that the runoff is expected to decrease in May and July, while no significant changes occur in June. In comparison with historical evidence, the runoff is expected to increase from August to April. A remarkable increase, which is about 40%, in runoff was identified in September. The amount of the minimum discharge over various durations tended to increase when compared to the present hydrological condition. A detailed comparison for discharge and its associated characteristics was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Ecosystems within the subhumid Boreal Plains of Northern Alberta host ecologically and commercially significant habitat and natural resources. However, these ecosystems exist under a delicate hydrologic balance that may be upset as the climate warms by 2 to 5 °C over the next century. In this study, numerical simulations were used to predict climate change impacts at a catchment composed of a mosaic of Boreal Plains ecosystems including a small pond, peatlands with sparse black spruce, and hillslopes with predominantly aspen forests. Simulations were conducted with a fully integrated groundwater–surface water code using a 2‐D model previously calibrated to a decade of hydrologic data that included a range in climatic conditions. Projections from 13 climate change scenarios were simulated from 2011 to 2090 and compared to a base case scenario that assumed no climate change. Results indicate peatland water levels may decline by up to 1 m; however, sensitivity simulations indicate that the decline in water levels may be moderated by several feedback mechanisms that restrict evaporative losses and moderate water level changes. In contrast, higher evapotranspiration losses from the aspen hillslopes are predicted to result in near‐surface soils becoming increasingly drier. Thus, the aspen may frequently be water stressed and increasingly susceptible to secondary maladies such as pests and disease. Reduced pond water levels are also predicted with the development of frequent ephemeral conditions in warmer and drier scenarios. Concurrent decreases in stream flow may further impact downstream ecosystems. Further research into the regional health and sustainability of Boreal Plains ecosystems is warranted and could benefit from the development of improved numerical tools capable of extending the processes considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号