首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
洪水风险=灾害事件×暴露程度×脆弱程度   总被引:2,自引:0,他引:2  
Wolfgang KRON 《湖泊科学》2003,15(Z1):190-204
世界上,洪水可能是造成损失最大的自然灾害.世界上没有哪个地区不受到洪水的威助、由于洪灾风险是灾害事件、洪泛区财产遭遇风险的程度,以及它们的脆弱性的函数,所以灾害损失的增长与上述各个方面的变化都有关.防洪措施可以减少灾害事件的频率,恰当的预防措施也能显著降低财产风险.然而除了公共措施和私人措施外,在减少私人、企业、甚至整个社会的风险方面,保险发挥着关键作用.近年来,对洪水保险的需求日益增长,促使保险公司必须采取适当的解决方案.与此同时,至关重要的是,保险公司应当清楚在极端情况下他们自己可能承担的最大损失.  相似文献   

2.
要长江流域近150a间发生的1870、1931、1935、1954与1998年特大洪水灾害损失严重;长江洪水是我国的心腹之患.1990年以来,长江大洪水高频发生,达6次.长江洪水的发生,除湖泊蓄洪功能减弱等因素外,与全球变暖有关.20世纪90年代为近千年中全球最暖的年代,水循环加快,长江中下游夏季降水量为近120a最多的十年,高出1961-1990平均值112mm;而降雨集中和大暴雨降水事件的增加是洪水增加的主要原因.区域气候模式模拟在CO2倍增时,长江流域温度升高2.2℃,夏季降水增加10%-20%,气溶胶的增加可能使此值降低一些.考虑气候变暖可能促进潜在蒸发增加9%-15%的假定情景,计算在降水增加10%,蒸发增加9%条件下,最大洪峰流量在大通站将会达到8.4×104 m3/s左右,己超过1998年洪峰流量;汉口站7.9×104 m3/s,超过有记录以来所有的洪峰流量;而在宜昌站高达6.94×104 m3/s,超过自有实测记录以来的除1896年和1981年以外所有的洪峰流量.假定情景的最高值出现在降水增加20%,蒸发增加15%时,大通站流量将达到9.45×104 m3/s,超过该站近百年最大值,1954年的9.26×104 m3/s;宜昌站将出现7.82×104 m3/s流量,超过1882年以来所有实测记录值,但比1870年据洪痕推算的10.5×104 m3/s仍有逊色.未来气候若继续变暖,降水量增加将给长江洪水防御带来巨大的压力.但上述估算是粗糙的,有一定的不确定性,需在以后的研究中进一步改进.  相似文献   

3.
张强  姜彤 《湖泊科学》2003,15(Z1):221-229
通过对长江三角洲地区埋藏古树、泥炭、以及海相贝壳测年资料以及地方志、历史文献当中关于研究区洪灾事件记录的搜集、整理,研究结果表明,由于长江三角洲地区地势低平这一地貌特点,使得海面变化对于研究区洪灾的发生有着重要的影响.在长江中下游地区,海面的上升是导致冰后期长江河谷泥沙加积的主要原因,随着海面的上升和河床的抬高,长江中下游的水位也随之上升,从而导致长江洪水期排泄不畅,加重了洪灾的影响,加上长江三角洲地势低平,使海面变化成为长江三角洲地区洪灾发生的一个重要影响因子.同时,海面上升对长江水流的顶托作用也是加剧洪灾危害的一个重要原因.本文对于未来研究区洪水发生的预测,加强海岸带地区自然灾害的预防工作,减少生命财产的损失,具有一定的理论与实践意义.  相似文献   

4.
长江流域近50年降水变化及其对干流洪水的影响   总被引:1,自引:0,他引:1  
根据我国长江流域气象观测站近42年的资料,分析了整个流域年和季节平均面雨量、暴雨日数和暴雨量的变化特征,以及降水对流域径流和洪水的影响.长江流域年和夏季平均面雨量存在明显的年际和年代变化特征,也表现出比较显著的趋势变化特点.大部分测站年平均面雨量呈增加趋势,夏季和冬季平均面雨量的增加趋势尤其明显;秋季平均面雨量呈显著下降趋势.同时,年和夏季暴雨日数和暴雨量也在较大范围内呈显著增加趋势.长江流域的降水对干流平均流量具有重要影响.1973年、1983年和1998年的洪水主要是由明显高于平均的流域面雨量引起的;长江下游平均流量变化趋势也同流域年平均面雨量、夏季平均面雨量变化趋势基本一致,特别是70年代末以来,下游平均流量和流域面雨量的上升趋势更加明显,并同时在1998年达到最高值.长江流域大的丰水年一般对应El Nino年或El Nino次年,表明E1 Nino对长江较大洪水可能具有一定影响.  相似文献   

5.
1840年以来长江大洪水演变与气候变化关系初探   总被引:22,自引:3,他引:22  
长江洪水灾害是我国频率高、为患严重的自然灾害之一.本文依据可靠资料,选择1840年至2000年间32次大洪水记录,探讨其演变与气候变化的关系.认知1910s前的19世纪冷期出现大洪水13次(包括1870年的极值大洪水事件)频率为1.9次/10a.1921-2000年间出现了大洪水19次,频率为2.4次/10a.20世纪暖期又分出两个变暖时段,前一变暖时段的峰值期1920s-1940s出现大洪水9次,包含1931年全流域大洪水.后一变暖时段,即1980s与1990s出现大洪水8次.实测记录到的最大洪水1954年位于前一变暖时段结束阶段.1990s是全球,也是我国近百年中最暖年代,受东南季风影响大的中下游地区夏季降水量是近百年最多的,大暴雨频率也是有较多记录的40年来最高的.以此出现了10年5次大洪水高频率现象,包含1998年全流域型大洪水,表明了全球变暖的显著影响.也指示30-40年问周期性振荡中多雨年代.如此可预期21世纪初期降水会有小幅度下降与大洪水频率在短期内降低的可能性.长江上游受西南季风影响较大,19世纪下半期与20世纪上半期为多降水期,大洪水频率较高.20世纪下半期为少降水期,大洪水频率较低.关于气候变化研究有待深入,前景不易预估.  相似文献   

6.
气候变暖下太湖极端洪水的归因探讨   总被引:2,自引:1,他引:1  
于革  郭娅  廖梦娜 《湖泊科学》2013,25(5):765-774
全球增温引起的降水变化是否引起极端洪水的增加,发生在不同气候背景的极端洪水事件可提供不同参照系;而不同驱动因子下气候、水文数值模拟为认识洪水发生和归因提供了有效途径.本文结合机理数值模拟和随机统计模拟两种途径,针对1990s和1880s的太湖流域特大洪水,通过GCM气候模拟驱动的流域水文模拟和不确定性的阈值模拟,分析19世纪末和20世纪末极端洪水的发生强度和频率的变化,从而论证极端洪水发生的风险系数.结果表明,1990s的极端洪水流量(0.1%的极端洪水流量(Q0.1%)为2929~3601 m3/s,0.5%的极端洪水流量(Q0.5%)为1842~1893 m3/s)比工业革命前大气温室气体状况下(Q0.1%为2069~3119 m3/s,Q0.5%为1436~1561 m3/s)显著增大.与19世纪末相比,由于太湖流域人类活动改变的流域下垫面在1999年特大洪水中引起最大增量占35%,本文模拟和分析的20世纪末气候下的洪水最大增量占60%.去除人类活动影响的下垫面变化,估计特大洪水风险的最大增量为25%,因此认为20世纪末气候变化引起的太湖极端洪水风险在增加;这将为认识与全球增温相关联的洪水灾害预测预警提供科学依据.  相似文献   

7.
中全新世以来的川江大洪水初步分析   总被引:1,自引:0,他引:1  
在忠县中坝文化遗址剖面中发现了10个古洪水沉积层,时代为中全新世以来,之后又被1981年大洪水淹没.11次大洪水洪水位的变化显示洪水位总体呈上升趋势,其间有数个周期性起伏.前者反映中全新世以来河床堆积的影响,后者反映西南季风强度的周期变化.  相似文献   

8.
1999年春末夏初,太湖流域发生了建国以来继1954年和1991年洪水后的又一次全流域性大洪水,造成了严重经济损失,中国科学院在定购和解译加拿大雷达卫星图像,派遣遥感飞机现场航拍的基础上,组织精干力量,投入洪水灾情调查,并得到太湖流域水利主管部门、地方各级政府和人民解放军的大力支持和协助,获得了关于1999年太湖流域洪涝灾情的大量资料及洪灾成因的初步认识,并对太湖流域进一步整治问题提出若干建议.1雨情超历史、水情创记录,受淹范围缩小,经济损失增加,是1999年 太湖流域洪水的显著特征 1999年太…  相似文献   

9.
Marco GEMMER 《湖泊科学》2003,15(Z1):166-172
本文计算了洪湖东分洪区洪灾损失.洪水风险带以模拟的洪水淹没深度表示.这是洪水风险综合评价模型的基础.本项研究基于GIS为基础的水动力模型计算洪水淹没深度;并以GIS/RS为基础建立了单位洪水风险评价模型,计算不同洪水风险带的直接损失.研究表明,综合洪水风险评价模型在长江流域应用是可行的.  相似文献   

10.
Marco GEMMER 《湖泊科学》2003,15(Z1):173-183
本文回顾了欧洲洪水影响评价技术.突出的问题是怎样处理洪灾及如何使洪灾损失降到最低.很明显在长江流域开展洪水风险和潜在的损失评价非常有意义.而现有的欧洲洪水影响评价技术难以在长江流域直接运用.我们对其进行了若干修正,并引入了基于GIS/RS的综合水文水动力和最小损失评价模型,该模型己经较好地运用于长江流域洪水影响评价的研究项目.  相似文献   

11.
This paper interprets differences in flood hazard projections over Europe and identifies likely sources of discrepancy. Further, it discusses potential implications of these differences for flood risk reduction and adaptation to climate change. The discrepancy in flood hazard projections raises caution, especially among decision makers in charge of water resources management, flood risk reduction, and climate change adaptation at regional to local scales. Because it is naïve to expect availability of trustworthy quantitative projections of future flood hazard, in order to reduce flood risk one should focus attention on mapping of current and future risks and vulnerability hotspots and improve the situation there. Although an intercomparison of flood hazard projections is done in this paper and differences are identified and interpreted, it does not seems possible to recommend which large-scale studies may be considered most credible in particular areas of Europe.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR not assigned  相似文献   

12.
Climatological drivers of changes in flood hazard in Germany   总被引:1,自引:0,他引:1  
Since several destructive floods have occurred in Germany in the last decades, it is of considerable interest and relevance (e.g., when undertaking flood defense design) to take a closer look at the climatic factors driving the changes in flood hazard in Germany. Even if there also exist non-climatic factors controlling the flood hazard, the present paper demonstrates that climate change is one main driver responsible for the increasing number of floods. Increasing trends in temperature have been found to be ubiquitous in Germany, with impact on air humidity and changes in (intense) precipitation. Growing trends in flood prone circulation pattern and heavy precipitation are significant in many regions of Germany over a multi-decade interval and this can be translated into the rise of flood hazard and flood risk.  相似文献   

13.
The frequency of floods has been projected to increase across Europe in the coming decades due to extreme weather events. However, our understanding of how flood frequency is affected by geomorphic changes in river channel capacity remains limited. This paper seeks to quantify the influence of trends in channel capacity on flood hazards. Measuring and predicting the effect of geomorphic changes on freshwater flooding is essential to mitigate the potential effects of major floods through informed planning and response. Hydrometric records from 41 stream gauging stations were used to measure trends in the flood stage (i.e. water surface elevation) frequency above the 1% annual exceedance threshold. The hydrologic and geomorphic components of flood hazard were quantified separately to determine their contribution to the total trend in flood stage frequency. Trends in cross‐sectional flow area and mean flow velocity were also investigated at the same flood stage threshold. Results showed that a 10% decrease (or increase) in the channel capacity would result in an increase (or decrease) in the flood frequency of approximately 1.5 days per year on average across these 41 sites. Widespread increases in the flood hazard frequency were amplified through both hydrologic and geomorphic effects. These findings suggest that overlooking the potential influence of changing channel capacity on flooding may be hazardous. Better understanding and quantifying the influence of geomorphic trends on flood hazard will provide key insight for managers and engineers into the driving mechanisms of fluvial flooding over relatively short timescales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

Runoff discharge in the Tuku lowlands, Taiwan, has increased with land development. Frequent floods caused by extreme weather conditions have resulted in considerable economic and social losses in recent years. Currently, numerous infrastructures have been built in the lowland areas that are prone to inundation; the measures and solutions for flood mitigation focus mainly on engineering aspects. Public participation in the development of principles for future flood management has helped both stakeholders and engineers. An integrated drainage–inundation model, combining a drainage flow model with a two-dimensional overland-flow inundation model is used to evaluate the flood management approaches with damage loss estimation. The proposed approaches include increasing drainage capacity, using fishponds as retention ponds, constructing pumping stations, and building flood diversion culverts. To assess the effects on the drainage system of projected increase of rainfall due to climate change, for each approach simulations were performed to obtain potential inundation extent and depth in terms of damage losses. The results demonstrate the importance of assessing the impacts of climate change for implementing appropriate flood management approaches.

Editor Z.W. Kundzewicz

Citation Chang, H.-K., Tan, Y.-C., Lai, J.-S., Pan, T.-Y., Liu, T.-M., and Tung, C.-P., 2013. Improvement of a drainage system for flood management with assessment of the potential effects of climate change. Hydrological Sciences Journal, 58 (8), 1581–1597.  相似文献   

15.
The occurrence of devastating floods in the British uplands during the first two decades of the twenty‐first century poses two key questions: (1) are recent events unprecedented in terms of their frequency and magnitude; and (2) is climate and/or land‐use change driving the apparent upturn in flooding? Conventional methods of analysing instrumental flow records cannot answer these questions because upland catchments are usually ungauged, and where records do exist they rarely provide more than 30–40 years of data. In this paper we analyse all lichen‐dated upland flood records in the United Kingdom (UK) to establish the longer‐term context and causes of recent severe flooding. Our new analysis of torrential sedimentary deposits shows that twenty‐first century floods are not unprecedented in terms of both their frequency (they were more frequent before 1960) and magnitude (the biggest events occurred during the seventeenth–nineteenth centuries). However, in some areas recent floods have either equalled or exceeded the largest historical events. The majority of recent floods have been triggered by torrential summer downpours related to a marked negative phase of the summer North Atlantic Oscillation (NAO) between 2007 and 2012. It is of concern that historical data suggests there is far more capacity in the North Atlantic climate system to produce wetter and more prolonged flood‐rich periods than hitherto experienced in the twenty‐first century. Looking forwards, an increased likelihood of weather extremes due to climate change means that geomorphological based flood series extensions must be placed at the centre of flood risk assessment in the UK uplands and in similar areas worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
长江流域历史水旱灾害分析   总被引:1,自引:1,他引:1  
黄忠恕  李春龙 《湖泊科学》2003,15(Z1):210-215
长江流域有丰富和长期的水旱灾害史料,最早的水灾和旱灾记载有2000余年的历史,经过系统整理和分析的历史水旱灾害资料有1000余年的旱涝型年表和500余年的旱涝分布图集.在以上资料基础上,对长江流域历史水旱灾害的地域分布特性和时间变化规律进行了初步分析:500余年历史水旱灾害的地域分布显示,流域水旱灾害总体特征是水灾重于旱灾,各级水旱灾害频率的地域分布极不均匀,存在着显著的灾害多发和少发地带,它们与自然地理环境、水系特征、气候条件和社会经济条件等因素有关;1000余年旱涝型年表分析表明,长江流域洪涝和干旱频次在时间上的非均匀分布并非完全随机,表现出多种时间尺度的年际变化特征,其中主要表现为约100a上下的大干湿气候期变化及40a左右的小旱涝期振动.  相似文献   

17.
Relatively few studies have addressed water management and adaptation measures in the face of changing water balances due to climate change. The current work studies climate change impact on a multipurpose reservoir performance and derives adaptive policies for possible future scenarios. The method developed in this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India, which is a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on annual hydropower generation and four performance indices (reliability with respect to three reservoir functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenarios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045–65 and 2075–95. Increased irrigation demands, rule curves dictated by increased need for flood storage and downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydropower and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP) using current rule curves for flood protection is employed. An optimal monthly operating policy is then derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of climate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive policy, increasingly more weightage is given to the purpose of maximizing reliability with respect to hydropower for two extreme scenarios. It is seen that by marginally sacrificing reliability with respect to irrigation and flood control, hydropower reliability and generation can be increased for future scenarios. This suggests that reservoir rules for flood control may have to be revised in basins where climate change projects an increasing probability of droughts. However, it is also seen that power generation is unable to be restored to current levels, due in part to the large projected increases in irrigation demand. This suggests that future water balance deficits may limit the success of adaptive policy options.  相似文献   

18.
Parameters of 123 floods on the territory of the Russian Federation are analyzed, including the dates of young floods, numbers (frequency), duration, genetic type of floods, inundated land areas, total area of regions affected by flood, coordinates of their centers, number of population in these regions, total number of affected people, number of evacuated and killed people, number of buildings in inundation zone, and monetary damage. It is shown that material and human damages caused by rainfall floods and snowmelt floods in rivers are several orders of magnitude greater than the damages caused by the most common spring floods. Collation maps of main flood parameters have been prepared and analyzed; the areas of floods of main genetic types have been revealed and mapped and graphs of seasonal and long-term variability of flood parameters has been calculated.  相似文献   

19.
《水文科学杂志》2013,58(3):450-464
Abstract

On the basis of analysing the genesis, recurrence and severity of flood hazards, a regional flood hazard analysis of the southern area of East Siberia has been carried out. The greatest flood hazard corresponds to the relatively densely populated area of southern East Siberia: the Upper Yenisei, Angara and Upper Lena river basins and the Lake Baikal watershed. Typically, the most hazardous floods include those caused by surges produced by damage to the dams of the Angara—Yenisei hydropower cascade; flash floods are also an extreme hazard. Maximum runoff factors were used to delineate regions within the study area, and the hazard severity was scored for the Irkutsk region. An inventory of the ice-dam and ice-jam areas, as well as of the streamflow sites with maximum runoff of different origins predominating in the Angara and Lena river basins, showed that the study area includes 78 and 19 ice-dam and ice-jam locations, respectively. A high recurrence of ice dams and ice jams is also observed on other rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号