首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
李鑫  迟明杰  李小军 《地震学报》2018,40(6):820-830
本文以2008年汶川MS8.0地震的烈度数据为基础,采用简化纽马克法对四川省青川县不同岩组的岩土体强度参数组合所对应的滑坡位移进行计算得到滑坡危险性等级图,并以计算得到的预测滑坡区与实际调查的滑坡数据的吻合度作为评价标准,对研究区内岩土体强度参数进行分析。分析结果表明,研究区大部分区域岩组的岩土体强度参数的合理取值区间与 《工程岩体分级标准GB 50218—94》 建议的参数取值范围基本一致,而本文在此基础上所确定的取值结果,在一定程度上可以提高地震滑坡危险性评估的精度。   相似文献   

2.
A methodology for reliability based optimum design of reinforced soil structures subjected to horizontal and vertical sinusoidal excitation based on pseudo-dynamic approach is presented. The tensile strength of reinforcement required to maintain the stability is computed using logarithmic spiral failure mechanism. The backfill soil properties, geometric and strength properties of reinforcement are treated as random variables. Effects of parameters like soil friction angle, horizontal and vertical seismic accelerations, shear and primary wave velocities, amplification factors for seismic acceleration on the component and system probability of failures in relation to tension and pullout capacities of reinforcement have been discussed. In order to evaluate the validity of the present formulation, static and seismic reinforcement force coefficients computed by the present method are compared with those given by other authors. The importance of the shear wave velocity in the estimation of the reliability of the structure is highlighted. The Ditlevsen's bounds of system probability of failure are also computed by taking into account the correlations between three failure modes, which is evaluated using the direction cosines of the tangent planes at the most probable points of failure.  相似文献   

3.
由削坡建房遗留的人工边坡存在大量滑坡隐患问题,在降雨引发土质边坡自身动力变化分析条件下,以稳定性评价建模为基础,提出降雨型滑坡动力学预警预报模型。文中以广东省梅州市花岗岩地区为例,使用GIS技术构建了1 727个预警分析单元,并进行关键地质环境因子赋值及与气象站点数据关联;按坡高、坡度等参数,分别构建16个边坡失稳动力学预警模块,并根据降雨量变化,计算边坡稳定性系数,最终按其阈值确定风险等级并予以预警。本研究对于推动人工边坡诱发的滑坡地质灾害预警预报与预防均具有重要意义。  相似文献   

4.
基于地震作用下黏性土坡失稳滑动特点,以土体应力状态及其变化分析边坡失稳过程。通过分析地震作用下边坡不同部位土体应力状态和剪应力变化,结合实际地震边坡失稳破坏特征,提出黏性土坡地震三段式滑动失稳机制。在分析该滑动失稳机制与有限元强度折减法之间应力关联的基础上,将两者结合应用于实际黄土地震滑坡动力稳定性分析。依据此考虑得到的动力安全系数相比较其他方法,与极限平衡法得到的结果更为接近。  相似文献   

5.
Rainfall-induced landslides are a common occurrence in terrain with steep topography and soils that have degradable strength. Rainfall infiltration into a partially saturated slope of infinite extent can lead to either a decrease or complete elimination of soil suction, compromising the slopes' stability. In this research the rainfall infiltration coupled with deformation of a partially saturated soil slope during rainfall infiltration is analyzed. The limit equilibrium conditions and the shear strength relationship of a partially saturated soil are employed to develop an analytical solution for calculating the stability of an infinite partially saturated slope due to rainfall infiltration. The analytical solutions are able to consider the influence of the coupled effects on the stability of the slope. The factors that affect the safety of a partially saturated slope of infinite extent are discussed. The results indicate that the poro-mechanical coupling of water infiltration and deformation has an important effect on the stability of the infinite unsaturated slope.  相似文献   

6.
Different models were developed for evaluating the probabilistic three-dimensional (3D) stability analysis of earth slopes and embankments under earthquake loading using both the safety factor and the displacement criteria of slope failure. In the 3D analysis, the critical and total slope widths become two new and important parameters.The probabilistic models evaluate the probability of failure under seismic loading considering the different sources of uncertainties involved in the problem, i.e. uncertainties stemming from the discrepancies between laboratory-measured and in-situ values of shear strength parameters, randomness of earthquake occurrence, and earthquake-induced acceleration. The models also takes into consideration the spatial variabilities and correlations of soil properties.Five probabilistic models of earthquake-induced displacement were developed based on the non-exceedance of a limited value criterion. Moreover, a probabilistic model for dynamic slope stability analysis was developed based on 3D dynamic safety factor.These models are formulated and incorporated within a computer program (PTDDSSA).A sensitivity analysis was conducted on the different parameters involved in the developed models by applying those models to a well-known landslides (Selset landslide) under different levels of seismic hazard.The parametric study was conducted to evaluate the effect of different input parameters on the resulting critical failure width, 3D dynamic safety factor, earthquake-induced displacement and the probability of failure. Input parameters include: average values and coefficients of variations of water table, cohesion and angle of friction for effective stress analysis, scales of fluctuations in both distance and time, hypocentral distance, earthquake magnitude, earthquake strong shaking period, etc.The hypocentral distance and earthquake magnitude were found to have major influence on the earthquake-induced displacement, probability of failure (i.e. probability of allowable displacement exceedance), and dynamic 2D and 3D safety factors.  相似文献   

7.
Geophysical methods can be applied to investigate the harmful effect of man's activities on the environment: the study of specific electrical resistivities and natural electric fields of filtrational origin makes it possible to control the penetration of exogenic pollutants into soil as well as desalinization and secondary salinization of soils; electrometric and seismometric methods allow to observe the groundwater level near water reservoirs thus evaluating the harmful effect of backing up natural groundwater flow; contrasting properties of bedrocks and rocks in a landslide body permit application of seismic and electrical prospecting methods. Observation of the changes in specific electrical resistivities with time on the slopes of quarries is an effective method of assessing slope stability and predicting landslide hazard. Mining activities, groundwater pumping, and oil extraction are the main causes of endogenic pollution of geological medium; surface and borehole geophysical methods make it possible to assess vertical and horizontal displacements of the interfaces between salty and fresh subterranean waters resulting from an extensive exploitation of water supply sources; activation of geodynamic processes associated with mining activities is determined from the data of ‘regime’ electrometric, seismometric, gravimetric, and inclinometric observations. Geophysical methods are applied widely for studying the intensification of physico-geological processes under the impact of man. A specific object of electrometric investigations is degradation of permafrost and intensification of karst processes in soluble rocks. The principal advantage of geophysical investigations lies in the possibility of creating high spatial and temporal density of observations permitting an extensive employment of statistical methods in the assessment of the impact of man on the geological medium.  相似文献   

8.
工程场地地震安全性评价中计算二维复杂场地地震反应分析时,如采用一维等效线性化分析模型会带来较大的误差,而直接采用二维的非线性模型在技术上还存在一定的困难和不合理性。目前工程中多采用对一维分析结果进行二维修正的思想给出设计地震动及反应谱。然而在建立二维分析模型时,由于勘测条件的限制使模型建立出现很多不确定性。基于以往提出的二维复杂工程场址设计地震动的修正分析思想,建立了几种可能且工程认可的二维复杂场地模型,主要研究不同分层特征模型及土层剪切波速这一物理参数不确定时对设计地震动的影响,进一步考虑不同场地类别下,不同二维分层模型及土体物理参数对地震动的影响。根据分析结果提出了不同类别场地下,方便且合理建立二维复杂场地地震动分析模型的方法,为实际工程中模型的建立及参数的选取提供一些参考。  相似文献   

9.
Knowledge of the mechanisms of rain‐induced shallow landslides can improve the prediction of their occurrence and mitigate subsequent sediment disasters. Here, we examine an artificial slope's subsurface hydrology and propose a new slope stability analysis that includes seepage force and the down‐slope transfer of excess shear forces. We measured pore water pressure and volumetric water content immediately prior to a shallow landslide on an artificial sandy slope of 32°: The direction of the subsurface flow shifted from downward to parallel to the slope in the deepest part of the landslide mass, and this shift coincided with the start of soil displacement. A slope stability analysis that was restricted to individual segments of the landslide mass could not explain the initiation of the landslide; however, inclusion of the transfer of excess shear forces from up‐slope to down‐slope segments improved drastically the predictability. The improved stability analysis revealed that an unstable zone expanded down‐slope with an increase in soil water content, showing that the down‐slope soil initially supported the unstable up‐slope soil; destabilization of this down‐slope soil was the eventual trigger of total slope collapse. Initially, the effect of apparent soil cohesion was the most important factor promoting slope stability, but seepage force became the most important factor promoting slope instability closer to the landslide occurrence. These findings indicate that seepage forces, controlled by changes in direction and magnitude of saturated and unsaturated subsurface flows, may be the main cause of shallow landslides in sandy slopes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Flowslides that override a liquefied substrate can vastly enhance a disaster after failure initiation. These effects may result from the rapid velocity and long runout distance from slides mobilized into flows. It is thus crucial to provide an improved understanding of the transformation mechanisms of catastrophic flowslides for hazard evaluation. This study examines the Saleshan landslide in Gansu, China, which occurred in 1983 and killed more than 200 people. The Saleshan landslide travelled for approximately 1 km due to pore water pressure generation resulting from overrunning and liquefication of the alluvial sands in the river valley below. We used geomorphologic and topographic maps to determine its dynamic features and mobilization behaviors on the landslide body, and placemarks and seismic signals to identify its approximate velocity at different sites. Electrical resistivity tomography (ERT) surveys also revealed the hydrogeological conditions post-landslide, showing a clear groundwater table along with the liquefied alluvial sand and gravel layers. Particle size distributions and triaxial shear behaviors confirmed more ready liquefaction of superficial loess and underlying alluvial sand in comparison with the red soil above and below them. Novel loading impact triaxial testing was also performed on the alluvial sand to elucidate its liquefaction potential in undrained and drained conditions. The alluvial sand was found to be markedly prone to liquefaction in undrained conditions due to impact-induced increased pore water pressure. The results further demonstrated that the Saleshan landslide underwent a transformation from a slowing slide on a steep slope, where it originated, to flow on a nearly flat terrace with abundant groundwater that it overrode. The transformation mechanism involved the liquefied alluvium sand substrate, which greatly enhanced the landslide mobility. Along with recent, similar findings from landslides globally, substrate liquefaction may result in a widespread, significant increase in landslide mobility and thus hazard, and the present study identifies the requisite conditions for this phenomenon to occur.  相似文献   

11.
不同含水率下滑坡滑带土动力特性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
甘肃舟曲泄流坡滑坡地处活跃断层破裂带内,断层活动控制着该滑坡的发育和运动。为了研究该滑坡滑带土的动力特性,采用重塑滑带土样,在固结不排水条件下,利用分级循环加载法开展动三轴试验,重点探讨含水率的变化对滑带土动力特性的影响规律。试验结果表明:含水率一定时,泄流坡滑坡滑带土的动弹性模量随动应变的增大呈指数形式减小;动应变一定时,动弹性模量随含水率的增大而不断减小,且衰减速率随含水率的增大而增大;含水率并不影响动弹性模量-动应变关系曲线的形态,不同含水率下该关系曲线可以进行归一化。滑带土阻尼比随含水率的增大而增大,阻尼比-动应变关系曲线也具有归一化特征。不同含水率下泄流坡滑带土动应力-应变本构关系可以用双曲线模型进行描述。  相似文献   

12.
During the 2003 Sanriku‐Minami earthquake, Japan, a flowslide was triggered on a slope of about 13.5º. The displaced landslide mass developed into a flowslide and deposited on a horizontal rice paddy after traveling approximately 130 m. To study the trigger and movement mechanisms of this landslide, field investigation and laboratory ring‐shear tests were performed. Field investigation revealed that the landslide originated from a fill slope, where a gully was buried for cultivation some decades ago, and shallow ground water was present. Undrained monotonic and cyclic ring‐shear tests on a sample (pyroclastic deposits) taken from the source area revealed that the soil is highly liquefiable, and its steady‐state shear strength can be little affected by overconsolidation. Using the seismic records of the earthquake, probable seismic loadings on the sliding surface were synthesized and applied to the samples in ring‐shear tests, which were performed under undrained or partially drained conditions. The undrained and partially drained tests revealed that shear failure can be triggered by the introduction of seismic loading and formation of excess pore‐water pressure. The generation of excess pore‐water pressure along with increase of shear displacement and the inhibited dissipation of excess pore‐water pressure due to the thickness of the saturated soil layer above the sliding surface probably enabled the continued post‐failure landsliding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Hillslope failure usually occurs as soil resistance deteriorates in the presence of the acting stress developed by a rising groundwater level during rainstorms. The present study adopted a slope-instability analysis and a hydrological model for landslide prediction during heavy rainstorms. Variation of the groundwater table on hillslope was simulated by using the hydrological model and then the temporal groundwater level at each grid was substituted into the slope-instability analysis to determine the instability of the grids in watersheds for prediction of massive landslides.Hydrological records from two landslide-prone areas in northern Taiwan were collected. Digital elevation model was adopted to obtain the geomorphologic factors required for the slope-instability analysis and the hydrological model. The spatial distribution of soil thickness required for performing the infinite slope model was estimated by using a wetness index. Results showed that the temporal variation of the percentage of unstable grids in the study watersheds basically followed the variation of rainfall hyetographs. The percentage of the unstable grids reached a maximum value when the centroid of the hyetograph passed. A comparison between the landslide records and the model analytical results revealed that a massive landslide might occur if more than 50% of the grids in the subwatershed were classified as unstable in the study areas. The predicted time and location of landslide occurrence were consistent with those obtained from field investigations. It is therefore considered promising to apply the developed analytical method for landslide warning to alleviate the loss of lives and property.  相似文献   

14.
寒区土与结构接触面冻结强度可以视为是与土性、温度、含水量、界面粗糙度、法向压力等诸多因素直接相关的复杂函数形式,并直接影响到上部结构的承载能力及稳定性。以青藏高原黏土与不同粗糙度的钢板结构接触面为研究对象,通过不同含水率、不同温度及不同法向压力下冻结黏土与钢板结构接触面的直剪正交试验,研究土与结构接触面冻结强度的影响因素及影响程度大小,并对冻结强度的变化规律进行初步分析和探讨。研究结果表明含水量对抗剪强度的影响最大,在不同影响因素共同作用下,界面抗剪强度最小值为0.13 MPa,最大值为0.45 MPa。界面抗剪强度随含水量的增加、温度的升高而明显降低,随界面法向压力和粗糙度的增大呈明显增大趋势。界面强度基本可通过摩尔-库仑准则,利用界面的黏聚力和内摩擦角进行表示,并在文中给出了界面强度的参考值。  相似文献   

15.
考虑崩塌堆积体边坡岩土体参数随机性和模糊性,以及地震力双向性,建立一种边坡地震动力模糊可靠度计算方法,针对竖向地震力对崩塌堆积体边坡稳定可靠性的影响进行进一步研究。首先,选用动力有限元时程分析法计算出双向地震工况下崩塌堆积体边坡的响应特征,并运用模糊理论对强度参数进行模糊性处理;然后,根据Mohr-Coulumb强度准则构建边坡安全系数与可靠度的时程计算模型;最后,采用边坡地震可靠性评价新方法,通过MATLAB编写相应程序,实现计算和分析结果的快速输出。案例结果表明:新方法计算结果更加合理,对工程而言也更加安全;竖向地震作用均对崩塌堆积体边坡整体可靠性存在影响,但影响程度需根据工程实际情况进行分析。在算例工况下,竖向地震对崩塌堆积体边坡的可靠性影响很小,仅使得可靠度降低3.55%,因此,可仅考虑水平地震的影响。  相似文献   

16.
为研究抗滑桩合理桩间距以及荷载传递机制,首先以桩侧摩阻力为拱脚时的破裂面推导出以桩身为拱脚时的破裂角计算公式;然后引入对数螺旋线法确定桩间土体的滑移深度,以土拱效应为基础建立计算模型,求解考虑桩间土体滑移深度的合理桩间距表达式;最后对桩间净距的主要影响因素进行分析,包括滑坡推力、黏聚力、桩截面宽度以及高度。研究结果表明:由桩身和桩侧摩阻力同时作为土拱拱脚更符合实际受力状态,同时求得的土拱拱圈厚度和矢高小于以桩身为拱脚条件下相应值而大于以桩侧摩阻力为拱脚条件下的相应值,并且随桩埋深的增加而增大。  相似文献   

17.
A high groundwater level is highly relevant to the slope instability. Drainage tunnel is an effective method for groundwater level control, but its effect on landslide hydrogeological characteristics is rarely discussed. This study analysed the changes of the landslide hydrogeological characteristics under the effect of a drainage tunnel by real-time monitoring of rainfall, groundwater level, and surface displacement. The trend and mutation of groundwater level are analysed by the Mann–Kendall test and the Mann–Kendall mutation test. The memory effect of groundwater in the landslide area was analysed using autocorrelation analysis. The response characteristics of groundwater level to rainfall were evaluated using cross-correlation analysis and mutual information theory. Variations of groundwater levels were further investigated based on hydrograph analysis. Results showed that the groundwater level had a downward trend from 2016 to 2017. The significant downward trend of groundwater levels began in August 2016. The memory effect of groundwater levels was longer under the effect of the drainage tunnel. Before the construction of the drainage tunnel, the response time of groundwater to rainfall was less than 3 hr and rainfall can generate dramatic groundwater level variations. After the drainage tunnel was completed, time lags can be observed in the groundwater response, and the variation of groundwater levels was smaller than before. A strong correlation was found between groundwater levels and the landslide movement. This study demonstrated that the drainage tunnel had effectively controlled the groundwater level in the landslide and ensured the stability of the landslide.  相似文献   

18.
Cracks are widely developed along the edge of loess platforms in northwest China. Field surveys reveal that these cracks can be grouped into shallow and deeply penetrating ones. The former occur at a small distance from the platform edge, normally penetrate into the top unsaturated loess with the penetration depth being controlled by the joints in loess. The latter penetrate deeper into the saturated loess farther away from the platform edge. These cracks control the inflow and drainage of irrigation water. The shallow penetrating crack can fail as a slide or fall with a volume of up to hundreds of cubic meters. The deeply penetrating crack can fail as a flow‐like landslide with a volume of thousands of cubic meters or more. A full‐scale field test simulating irrigation on the platform surface was conducted. The two types of crack can be interconnected so that the water applied in the test finally flowed into the deep crack and was discharged from the platform. Analysis of soil stress states and the results of field test show that the deeply‐penetrating cracks could have both positive as well as negative effects on slope stability. On the one hand, water can flow more freely in the cracks, and the loess could be saturated and trigger a landslide. On the other hand, the water can drain more easily along the crack and slope stability could be enhanced as the groundwater level is suppressed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
本文通过对某核电厂取水明渠导流堤地基土粉砂层室内共振柱试验及动三轴液化试验,测定了动剪切模量、阻尼比与动剪应变幅的双曲线关系,分析了粉砂的动力变形特性,探讨了砂土的抗液化强度与液化振次之间的乘幂函数关系,确定了该地基土的抗液化强度指标。为评价导流堤的地震稳定和液化分析提供了相关参数,同时对堤坝工程场地的地震安全性评价和液化评判有良好的借鉴和参考价值。  相似文献   

20.
The paper deals with the seismic reliability of elastic structural systems equipped with friction pendulum isolators (friction pendulum system). The behavior of these systems is analyzed by employing a two‐degree‐of‐freedom model accounting for the superstructure flexibility, whereas the friction pendulum system device behavior is described by adopting a widespread model that considers the variation of the friction coefficient with the velocity. With reference to medium soil condition, the uncertainty in the seismic inputs is taken into account by considering a set of artificial records, obtained through Monte Carlo simulations within the power spectral density method, with different frequency contents and characteristics depending on the soil dynamic parameters and scaled to increasing intensity levels. The sliding friction coefficient at large velocity is also considered as random variable modeled through a uniform probability density function. Incremental dynamic analyses are developed in order to evaluate the probabilities exceeding different limit states related to both r.c. superstructure and isolation level defining the seismic fragility curves through an extensive parametric study carried out for different structural system properties. Finally, considering the seismic hazard curves related to a site near L'Aquila (Italy), the seismic reliability of the r.c. superstructure systems is evaluated, and seismic reliability‐based design abacuses are derived with the aim to define the radius in plan of the friction pendulum devices in function of the structural properties and reliability level expected. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号