首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Markov chain Monte Carlo algorithms are commonly employed for accurate uncertainty appraisals in non-linear inverse problems. The downside of these algorithms is the considerable number of samples needed to achieve reliable posterior estimations, especially in high-dimensional model spaces. To overcome this issue, the Hamiltonian Monte Carlo algorithm has recently been introduced to solve geophysical inversions. Different from classical Markov chain Monte Carlo algorithms, this approach exploits the derivative information of the target posterior probability density to guide the sampling of the model space. However, its main downside is the computational cost for the derivative computation (i.e. the computation of the Jacobian matrix around each sampled model). Possible strategies to mitigate this issue are the reduction of the dimensionality of the model space and/or the use of efficient methods to compute the gradient of the target density. Here we focus the attention to the estimation of elastic properties (P-, S-wave velocities and density) from pre-stack data through a non-linear amplitude versus angle inversion in which the Hamiltonian Monte Carlo algorithm is used to sample the posterior probability. To decrease the computational cost of the inversion procedure, we employ the discrete cosine transform to reparametrize the model space, and we train a convolutional neural network to predict the Jacobian matrix around each sampled model. The training data set for the network is also parametrized in the discrete cosine transform space, thus allowing for a reduction of the number of parameters to be optimized during the learning phase. Once trained the network can be used to compute the Jacobian matrix associated with each sampled model in real time. The outcomes of the proposed approach are compared and validated with the predictions of Hamiltonian Monte Carlo inversions in which a quite computationally expensive, but accurate finite-difference scheme is used to compute the Jacobian matrix and with those obtained by replacing the Jacobian with a matrix operator derived from a linear approximation of the Zoeppritz equations. Synthetic and field inversion experiments demonstrate that the proposed approach dramatically reduces the cost of the Hamiltonian Monte Carlo inversion while preserving an accurate and efficient sampling of the posterior probability.  相似文献   

2.
In geophysical inverse problems, the posterior model can be analytically assessed only in case of linear forward operators, Gaussian, Gaussian mixture, or generalized Gaussian prior models, continuous model properties, and Gaussian-distributed noise contaminating the observed data. For this reason, one of the major challenges of seismic inversion is to derive reliable uncertainty appraisals in cases of complex prior models, non-linear forward operators and mixed discrete-continuous model parameters. We present two amplitude versus angle inversion strategies for the joint estimation of elastic properties and litho-fluid facies from pre-stack seismic data in case of non-parametric mixture prior distributions and non-linear forward modellings. The first strategy is a two-dimensional target-oriented inversion that inverts the amplitude versus angle responses of the target reflections by adopting the single-interface full Zoeppritz equations. The second is an interval-oriented approach that inverts the pre-stack seismic responses along a given time interval using a one-dimensional convolutional forward modelling still based on the Zoeppritz equations. In both approaches, the model vector includes the facies sequence and the elastic properties of P-wave velocity, S-wave velocity and density. The distribution of the elastic properties at each common-mid-point location (for the target-oriented approach) or at each time-sample position (for the time-interval approach) is assumed to be multimodal with as many modes as the number of litho-fluid facies considered. In this context, an analytical expression of the posterior model is no more available. For this reason, we adopt a Markov chain Monte Carlo algorithm to numerically evaluate the posterior uncertainties. With the aim of speeding up the convergence of the probabilistic sampling, we adopt a specific recipe that includes multiple chains, a parallel tempering strategy, a delayed rejection updating scheme and hybridizes the standard Metropolis–Hasting algorithm with the more advanced differential evolution Markov chain method. For the lack of available field seismic data, we validate the two implemented algorithms by inverting synthetic seismic data derived on the basis of realistic subsurface models and actual well log data. The two approaches are also benchmarked against two analytical inversion approaches that assume Gaussian-mixture-distributed elastic parameters. The final predictions and the convergence analysis of the two implemented methods proved that our approaches retrieve reliable estimations and accurate uncertainties quantifications with a reasonable computational effort.  相似文献   

3.
Seismic Rock physics plays a bridge role between the rock moduli and physical properties of the hydrocarbon reservoirs. Prestack seismic inversion is an important method for the quantitative characterization of elasticity, physical properties, lithology and fluid properties of subsurface reservoirs. In this paper, a high order approximation of rock physics model for clastic rocks is established and one seismic AVO reflection equation characterized by the high order approximation(Jacobian and Hessian matrix) of rock moduli is derived. Besides, the contribution of porosity, shale content and fluid saturation to AVO reflectivity is analyzed. The feasibility of the proposed AVO equation is discussed in the direct estimation of rock physical properties. On the basis of this, one probabilistic AVO inversion based on differential evolution-Markov chain Monte Carlo stochastic model is proposed on the premise that the model parameters obey Gaussian mixture probability prior model. The stochastic model has both the global optimization characteristics of the differential evolution algorithm and the uncertainty analysis ability of Markov chain Monte Carlo model. Through the cross parallel of multiple Markov chains, multiple stochastic solutions of the model parameters can be obtained simultaneously, and the posterior probability density distribution of the model parameters can be simulated effectively. The posterior mean is treated as the optimal solution of the model to be inverted.Besides, the variance and confidence interval are utilized to evaluate the uncertainties of the estimated results, so as to realize the simultaneous estimation of reservoir elasticity, physical properties, discrete lithofacies and dry rock skeleton. The validity of the proposed approach is verified by theoretical tests and one real application case in eastern China.  相似文献   

4.
In glacial studies, properties such as glacier thickness and the basement permeability and porosity are key to understand the hydrological and mechanical behaviour of the system. The seismoelectric method could potentially be used to determine key properties of glacial environments. Here we analytically model the generation of seismic and seismoelectric signals by means of a shear horizontal seismic wave source on top of a glacier overlying a porous basement. Considering a one-dimensional setting, we compute the seismic waves and the electrokinetically induced electric field. We then analyse the sensitivity of the seismic and electromagnetic data to relevant model parameters, namely depth of the glacier bottom, porosity, permeability, shear modulus and saturating water salinity of the glacier basement. Moreover, we study the possibility of inferring these key parameters from a set of very low noise synthetic data, adopting a Bayesian framework to pay particular attention to the uncertainty of the model parameters mentioned above. We tackle the resolution of the probabilistic inverse problem with two strategies: (1) we compute the marginal posterior distributions of each model parameter solving multidimensional integrals numerically and (2) we use a Markov chain Monte Carlo algorithm to retrieve a collection of model parameters that follows the posterior probability density function of the model parameters, given the synthetic data set. Both methodologies are able to obtain the marginal distributions of the parameters and estimate their mean and standard deviation. The Markov chain Monte Carlo algorithm performs better in terms of numerical stability and number of iterations needed to characterize the distributions. The inversion of seismic data alone is not able to constrain the values of porosity and permeability further than the prior distribution. In turn, the inversion of the electric data alone, and the joint inversion of seismic and electric data are useful to constrain these parameters as well as other glacial system properties. Furthermore, the joint inversion reduces the uncertainty of the model parameters estimates and provides more accurate results.  相似文献   

5.
We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is successful not only in enhancing the subsurface information but also as a survey design tool to identify the appropriate combination of the geophysical tools and show whether application of an individual method for further investigation of a specific site is beneficial.  相似文献   

6.
The main goal of this study is to assess the potential of evolutionary algorithms to solve highly non-linear and multi-modal tomography problems (such as first arrival traveltime tomography) and their abilities to estimate reliable uncertainties. Classical tomography methods apply derivative-based optimization algorithms that require the user to determine the value of several parameters (such as regularization level and initial model) prior to the inversion as they strongly affect the final inverted model. In addition, derivative-based methods only perform a local search dependent on the chosen starting model. Global optimization methods based on Markov chain Monte Carlo that thoroughly sample the model parameter space are theoretically insensitive to the initial model but turn out to be computationally expensive. Evolutionary algorithms are population-based global optimization methods and are thus intrinsically parallel, allowing these algorithms to fully handle available computer resources. We apply three evolutionary algorithms to solve a refraction traveltime tomography problem, namely the differential evolution, the competitive particle swarm optimization and the covariance matrix adaptation–evolution strategy. We apply these methodologies on a smoothed version of the Marmousi velocity model and compare their performances in terms of optimization and estimates of uncertainty. By performing scalability and statistical analysis over the results obtained with several runs, we assess the benefits and shortcomings of each algorithm.  相似文献   

7.
随机地震反演关键参数优选和效果分析(英文)   总被引:2,自引:0,他引:2  
随机地震反演技术是将地质统计理论和地震反演相结合的反演方法,它将地震资料、测井资料和地质统计学信息融合为地下模型的后验概率分布,利用马尔科夫链蒙特卡洛(MCMC)方法对该后验概率分布采样,通过综合分析多个采样结果来研究后验概率分布的性质,进而认识地下情况。本文首先介绍了随机地震反演的原理,然后对影响随机地震反演效果的四个关键参数,即地震资料信噪比、变差函数、后验概率分布的样本个数和井网密度进行分析并给出其优化原则。资料分析表明地震资料信噪比控制地震资料和地质统计规律对反演结果的约束程度,变差函数影响反演结果的平滑程度,后验概率分布的样本个数决定样本统计特征的可靠性,而参与反演的井网密度则影响反演的不确定性。最后通过对比试验工区随机地震反演和基于模型的确定性地震反演结果,指出随机地震反演可以给出更符合地下实际情况的模型。  相似文献   

8.
The paper discusses the performance and robustness of the Bayesian (probabilistic) approach to seismic tomography enhanced by the numerical Monte Carlo sampling technique. The approach is compared with two other popular techniques, namely the damped least-squares (LSQR) method and the general optimization approach. The theoretical considerations are illustrated by an analysis of seismic data from the Rudna (Poland) copper mine. Contrary to the LSQR and optimization techniques the Bayesian approach allows for construction of not only the “best-fitting” model of the sought velocity distribution but also other estimators, for example the average model which is often expected to be a more robust estimator than the maximum likelihood solution. We demonstrate that using the Markov Chain Monte Carlo sampling technique within the Bayesian approach opens up the possibility of analyzing tomography imaging uncertainties with minimal additional computational effort compared to the robust optimization approach. On the basis of the considered example it is concluded that the Monte Carlo based Bayesian approach offers new possibilities of robust and reliable tomography imaging.  相似文献   

9.
In this study, we focus on a hydrogeological inverse problem specifically targeting monitoring soil moisture variations using tomographic ground penetrating radar (GPR) travel time data. Technical challenges exist in the inversion of GPR tomographic data for handling non-uniqueness, nonlinearity and high-dimensionality of unknowns. We have developed a new method for estimating soil moisture fields from crosshole GPR data. It uses a pilot-point method to provide a low-dimensional representation of the relative dielectric permittivity field of the soil, which is the primary object of inference: the field can be converted to soil moisture using a petrophysical model. We integrate a multi-chain Markov chain Monte Carlo (MCMC)–Bayesian inversion framework with the pilot point concept, a curved-ray GPR travel time model, and a sequential Gaussian simulation algorithm, for estimating the dielectric permittivity at pilot point locations distributed within the tomogram, as well as the corresponding geostatistical parameters (i.e., spatial correlation range). We infer the dielectric permittivity as a probability density function, thus capturing the uncertainty in the inference. The multi-chain MCMC enables addressing high-dimensional inverse problems as required in the inversion setup. The method is scalable in terms of number of chains and processors, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. The proposed inversion approach can successfully approximate the posterior density distributions of the pilot points, and capture the true values. The computational efficiency, accuracy, and convergence behaviors of the inversion approach were also systematically evaluated, by comparing the inversion results obtained with different levels of noises in the observations, increased observational data, as well as increased number of pilot points.  相似文献   

10.
Characterization of groundwater contaminant source using Bayesian method   总被引:2,自引:1,他引:1  
Contaminant source identification in groundwater system is critical for remediation strategy implementation, including gathering further samples and analysis, as well as implementing and evaluating different remediation plans. Such problem is usually solved with the aid of groundwater modeling with lots of uncertainty, e.g. existing uncertainty in hydraulic conductivity, measurement variance and the model structure error. Monte Carlo simulation of flow model allows the input uncertainty onto the model predictions of concentration measurements at monitoring sites. Bayesian approach provides the advantage to update estimation. This paper presents an application of a dynamic framework coupling with a three dimensional groundwater modeling scheme in contamination source identification of groundwater. Markov Chain Monte Carlo (MCMC) is being applied to infer the possible location and magnitude of contamination source. Uncertainty existing in heterogonous hydraulic conductivity field is explicitly considered in evaluating the likelihood function. Unlike other inverse-problem approaches to provide single but maybe untrue solution, the MCMC algorithm provides probability distributions over estimated parameters. Results from this algorithm offer a probabilistic inference of the location and concentration of released contamination. The convergence analysis of MCMC reveals the effectiveness of the proposed algorithm. Further investigation to extend this study is also discussed.  相似文献   

11.
Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters according to prior expert knowledge as well as observational data about model parameter values. This study assesses the performance of two popular uncertainty analysis (UA) techniques, i.e., generalized likelihood uncertainty estimation (GLUE) and Bayesian method implemented with the Markov chain Monte Carlo sampling algorithm, in evaluating model parameter uncertainty in flood simulations. These two methods were applied to the semi-distributed Topographic hydrologic model (TOPMODEL) that includes five parameters. A case study was carried out for a small humid catchment in the southeastern China. The performance assessment of the GLUE and Bayesian methods were conducted with advanced tools suited for probabilistic simulations of continuous variables such as streamflow. Graphical tools and scalar metrics were used to test several attributes of the simulation quality of selected flood events: deterministic accuracy and the accuracy of 95 % prediction probability uncertainty band (95PPU). Sensitivity analysis was conducted to identify sensitive parameters that largely affect the model output results. Subsequently, the GLUE and Bayesian methods were used to analyze the uncertainty of sensitive parameters and further to produce their posterior distributions. Based on their posterior parameter samples, TOPMODEL’s simulations and the corresponding UA results were conducted. Results show that the form of exponential decline in conductivity and the overland flow routing velocity were sensitive parameters in TOPMODEL in our case. Small changes in these two parameters would lead to large differences in flood simulation results. Results also suggest that, for both UA techniques, most of streamflow observations were bracketed by 95PPU with the containing ratio value larger than 80 %. In comparison, GLUE gave narrower prediction uncertainty bands than the Bayesian method. It was found that the mode estimates of parameter posterior distributions are suitable to result in better performance of deterministic outputs than the 50 % percentiles for both the GLUE and Bayesian analyses. In addition, the simulation results calibrated with Rosenbrock optimization algorithm show a better agreement with the observations than the UA’s 50 % percentiles but slightly worse than the hydrographs from the mode estimates. The results clearly emphasize the importance of using model uncertainty diagnostic approaches in flood simulations.  相似文献   

12.
A statistical study was made of the temporal trend in extreme rainfall in the region of Extremadura (Spain) during the period 1961–2009. A hierarchical spatio-temporal Bayesian model with a GEV parameterization of the extreme data was employed. The Bayesian model was implemented in a Markov chain Monte Carlo framework that allows the posterior distribution of the parameters that intervene in the model to be estimated. The results show a decrease of extreme rainfall in winter and spring and a slight increase in autumn. The uncertainty in the trend parameters obtained with the hierarchical approach is much smaller than the uncertainties obtained from the GEV model applied locally. Also found was a negative relationship between the NAO index and the extreme rainfall in Extremadura during winter. An increase was observed in the intensity of the NAO index in winter and spring, and a slight decrease in autumn.  相似文献   

13.
Identification of rock boundaries and structural features from well log response is a fundamental problem in geological field studies. However, in a complex geologic situation, such as in the presence of crystalline rocks where metamorphisms lead to facies changes, it is not easy to discern accurate information from well log data using conventional artificial neural network (ANN) methods. Moreover inferences drawn by such methods are also found to be ambiguous because of the strong overlapping of well log signals, which are generally tainted with deceptive noise. Here, we have developed an alternative ANN approach based on Bayesian statistics using the concept of Hybrid Monte Carlo (HMC)/Markov Chain Monte Carlo (MCMC) inversion scheme for modeling the German Continental Deep Drilling Program (KTB) well log data. MCMC algorithm draws an independent and identically distributed (i.i.d) sample by Markov Chain simulation technique from posterior probability distribution using the principle of statistical mechanics in Hamiltonian dynamics. In this algorithm, each trajectory is updated by approximating the Hamiltonian differential equations through a leapfrog discrimination scheme. We examined the stability and efficiency of the HMC-based approach on “noisy” data assorted with different levels of colored noise. We also perform uncertainty analysis by estimating standard deviation (STD) error map of a posteriori covariance matrix at the network output of three types of lithofacies over the entire length of the litho section of KTB. Our analyses demonstrate that the HMC-based approach renders robust means for classification of complex lithofacies successions from the KTB borehole noisy signals, and hence may provide a useful guide for understanding the crustal inhomogeneity and structural discontinuity in many other tectonically critical and complex regions.  相似文献   

14.
This study addresses estimation of net irrigation requirement over a growing season under climate uncertainty. An ecohydrological model, building upon the stochastic differential equation of soil moisture dynamics, is employed as a basis to derive new analytical expressions for estimating seasonal net irrigation requirement probabilistically. Two distinct irrigation technologies are considered. For micro irrigation technology, probability density function of seasonal net irrigation depth (SNID) is derived assessing transient behavior of a stochastic process which is time integral of dichotomous Markov process. Probability mass function of SNID which is a discrete random variable for traditional irrigation technology is also presented using a marked renewal process with quasi-exponentially-distributed time intervals. Comparing the results obtained from the presented models with those resulted from a Monte Carlo approach verified the significance of the probabilistic expressions derived and assumptions made.  相似文献   

15.
In this paper, we present the uncertainty analysis of the 2D electrical tomography inverse problem using model reduction and performing the sampling via an explorative member of the Particle Swarm Optimization family, called the Regressive‐Regressive Particle Swarm Optimization. The procedure begins with a local inversion to find a good resistivity model located in the nonlinear equivalence region of the set of plausible solutions. The dimension of this geophysical model is then reduced using spectral decomposition, and the uncertainty space is explored via Particle Swarm Optimization. Using this approach, we show that it is possible to sample the uncertainty space of the electrical tomography inverse problem. We illustrate this methodology with the application to a synthetic and a real dataset coming from a karstic geological set‐up. By computing the uncertainty of the inverse solution, it is possible to perform the segmentation of the resistivity images issued from inversion. This segmentation is based on the set of equivalent models that have been sampled, and makes it possible to answer geophysical questions in a probabilistic way, performing risk analysis.  相似文献   

16.
随着并行计算技术的发展,非线性反演计算效率在不断提高,但对于基于单点搜索的非线性反演方法,其并行算法的实现则是一个难题。本文将群体搜索的思想引入到基于单点搜索的非线性反演方法,构建了并行算法,以量子蒙特卡罗方法为例进行了二维地震波速度反演及实际资料波阻抗反演,并测试了使用不同节点数进行计算的效率。计算结果表明:该并行算法在理论和实际资料反演中是可行的和有效的,具有很好的通用性;算法计算效率随着使用节点数的增加而提高,但算法计算效率的提高幅度随着使用节点数的增加逐渐减小。  相似文献   

17.
冯志生  范国华 《地震学报》1990,12(3):292-298
本文将Jones的蒙特卡罗反演法,与修改后的马夸特反演法有机地结合在一起,从而获得了一种新的蒙特卡罗反演法.它实际上是定向求解与随机求解的结合,具有占用机时短及解的拟合度高的优点.作者利用该法处理了理论视电阻率曲线,及实测的视电阻率曲线,获得了大量具有高拟合度的模型,进而获得了可能解的范围.   相似文献   

18.
The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity field. We used a stochastic joint inversion of Direct Current (DC) resistivity and self-potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field between two wells. The pilot point parameterization was used to avoid over-parameterization of the inverse problem. Bounds on the model parameters were used to promote a consistent Markov chain Monte Carlo sampling of the model parameters. To evaluate the effectiveness of the joint inversion process, we compared eight cases in which the geophysical data are coupled or not to the in situ sampling of the salinity to map the hydraulic conductivity. We first tested the effectiveness of the inversion of each type of data alone (concentration sampling, self-potential, and DC resistivity), and then we combined the data two by two. We finally combined all the data together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. We also investigated a case in which the data were contaminated with noise and the variogram unknown and inverted stochastically. The results of the inversion revealed that incorporating the self-potential data improves the estimate of hydraulic conductivity field especially when the self-potential data were combined to the salt concentration measurement in the second well or to the time-lapse cross-well electrical resistivity data. Various tests were also performed to quantify the uncertainty in the inverted hydraulic conductivity field.  相似文献   

19.
20.
长波长假设条件下,各向同性背景地层中发育一组平行排列的垂直裂缝可等效为具有水平对称轴的横向各向同性(HTI)介质.基于不同观测方位的岩石地震响应特征变化,宽方位地震数据不仅可实现裂缝岩石弹性参数与各向异性参数的预测,同时也蕴含着丰富的孔隙度等储层物性参数信息.本文结合实际地震资料提出了贝叶斯框架下岩石物理驱动的储层裂缝参数与物性参数概率地震联合反演方法,首先基于AVAZ反演裂缝岩石的弹性参数与各向异性参数,并在此基础上通过统计岩石物理模型表征孔隙度、裂缝密度等各向异性介质储层参数与裂缝岩石参数的相互关联,并采用马尔科夫链蒙特卡洛(MCMC)抽样方法进行大量样本的随机模拟,使用期望最大化(EM)算法估计后验条件概率分布,最终寻找最大后验条件概率对应的孔隙度、裂缝密度等HTI裂缝介质储层参数即为反演结果.测井及实际地震数据处理表明,该方法能够稳定合理地从方位地震资料中获取裂缝岩石弹性参数与各向异性参数,并提供了一种较为可靠的孔隙度、裂缝密度等裂缝介质储层参数概率地震反演方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号