首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miocene submarine basanite pillows, lava lobes, megapillows and sheet lavas in the Stanley Peninsula, northwestern Tasmania, Australia, are well-preserved in three dimensions. The pillows have ropy wrinkles, transverse wrinkles, symmetrical wrinkles, contraction cracks and three types of spreading cracks on their surfaces, and concentric and radial joints in the interior. The lava lobes have ropy wrinkles and contraction cracks on their surfaces. The megapillows are cylindrical with a smoothly curved upper surface and steep sides, and are characterized by distinct radial columnar joints in the interior. They are connected to pillows that propagate radially from its basal margin. The sheet lavas are tabular and have vertical columnar joints in the interior. The largest sheet lava shows a remarkable gradation from a lower 5-m-thick pillow facies to an upper massive facies. The pillows, lava lobes, megapillows and sheet lavas are inferred to have been emplaced completely below sea level but in a shallow marine environment. Their morphological features suggest that the pillows grew by episodic rupture of a near-solid crust and emergence of hot lava, whereas the lava lobes propagated by continuous stretching of the outer skin at the flow front. The megapillows and sheet lavas were master feeder channels by which molten lava was conveyed to the advancing pillows. The sheet lavas propagated by repeated processes of pillow formation and overriding by an upper massive part. Alternating pillow and massive facies commonly found in ocean-floor drill cores and exposed in cross-section in many subaqueous volcanic successions may have formed by propagation of pillows from the basal margins of advancing sheet lavas.  相似文献   

2.
Two Miocene basaltic andesite pillowed sills in the Shimane Peninsula, SW Japan, were intruded into wet marine sediments, plastically deforming them. The pillows are elongated, constricted, interconnected and relatively closely packed. Individual pillows have a poorly to moderately vesiculated, somewhat crystalline rind thinner than a few centimeters and a moderately to well vesiculated, more crystalline core; contraction cracks and spreading cracks are poorly developed. The pillows in the sills morphologically resemble pillow lava flows, and during sill intrusion, the magma bifurcated into pillow lobes in a manner similar to pillow lavas. Formation of pillows in sill probably occurs when the magma is intruded into wet sediments and protrudes fingers by the instability of the magma-sediment interface with little turbulence of magma flow.  相似文献   

3.
The axial ratio of basalt pillows in some shallow water pillow lava sequences from Azores and Iceland, is defined as V/H, where V and H represent the vertical and horizontal axes in cross section perpendicular to the elongate direction of undisturbed pillows. The axial ratios show a great spread of overlapping values for pillows from different sequences. However, alkaline olivine basaltic pillows tend to be more flattened than the olivine tholeiitic pillows. Another, and probably more discriminative feature between the two, is the difference in the maximum size of V and H of a pillow body. The limit for V and H for alkaline olivine basalt pillows is significantly lower than that of the olivine tholeiite pillows. A lower viscosity for alkaline olivine basalt than for olivine tholeiite probably accounts for the differences.  相似文献   

4.
Observations in the Montgenevre Massif (French-Italian Alps) and in several other pillow basalt localities indicate that most pillowy flows are not made up of isolated spheres or sacks. In sections more or less parallel to the surface of the flow, it can be seen that pillows are in fact part of a system of interconnected fingers or tubes of lava that divide and bifurcate in the direction of flow. In transverse sections however the pillows appear to be isolated because of geometrical reasons. If this pillow lava structure seems to be the general rule, it is nevertheless likely that in the case of very fluid lavas and on a steep slope, the end of a tube or a new bud may become detached and roll down the bank in front of the flow to form an isolated spheroid.  相似文献   

5.
Pillow talk     
Three distinct types of pillows and pillow lava sequences with different modes of origin have been recognized in the extrusive sequences comprising the upper parts of ophiolite complexes that represent the mafic portion of the floor of an Early Cretaceous back-arc basin in southern Chile. One type of pillow formed by non-explosive submarine effusion. A second type formed by magmatic intrusion into pre-existing aquagene tuff formed by explosive eruption. The third type of pillow occurs within dikes, forming pillowed dikes, possibly as a result of vapor streaming within a cooling dike. Where studied in southern Chile, aquagene tuffs and intrusive pillows decrease and water-lain pillows increase in relative abundance from north to south. This variation corresponds with a north-to-south decrease in both the relative volume of extrusives to extensional dikes and the range and volume of differentiated rocks, suggesting a southward increase in rate of extension relative to rate of magma supply within the spreading ridges at which the ophiolites formed. In the northern part of the original basin where the rate of extension was small relative to the rate of magma supply, magma remained in magma chambers longer, resulting in a greater range and volume of differentiated rocks. The larger volume of more differentiated, cooler and more viscous magmas, in conjunction with the likelihood of more violent eruption of volatile-rich differentiates, may have been responsible for the large volume of aquagene tuff in the northern part of the original basin. These observations in southern Chile suggest that ophiolites which contain a great abundance of aquagene tuffs and intrusive pillow lavas formed in tectonic environments in which the rate of extension was small relative to the rate of magma supply (island arcs, embryonic marginal basins). Ophiolites with predominantly water-lain pillowed and massive lavas formed in tectonic environments in which the rate of extension was large relative to the rate of magma supply (mid-ocean ridges, mature back-arc basins). Thus geologic field data may supplement geochemical data as a tool in distinguishing the original igneous-tectonic environments in which ophiolites originate.  相似文献   

6.
A Pleistocene subaqueous, volcanic sequence in South Iceland consists of flows of basaltic hyaloclastite and lava with interbedded sedimentary diamictite units. Emplacement occurred on a distal submarine shelf in drowned valleys along the southern coast of Iceland. The higher sea level was caused by eustatic sea-level change, probably towards the end of a glaciation. This sequence, nearly 700 m thick, rests unconformably on eroded flatlying lavas and sedimentary rocks of likely Tertiary age. A Standard Depositional Unit, describing the flows of hyaloclastite, starts with compact columnar-jointed basalt overlain by cubejointed basalt, and/or pillow lava. This in turn is overlain by thick unstructured hyaloclastite containing aligned basalt lobes, and bedded hyaloclastite at the top. A similar lithofacies succession is valid for proximal to distal locations. The flows were produced by repeated voluminous extrusions of basaltic lava from subaquatic fissures on the Eastern Rift Zone of Iceland. The fissures are assumed to lie in the same general area as the 1783 Laki fissure which produced 12 km3 of basaltic lava. Due to very high extrusion rates, the effective water/melt ratio was low, preventing optimal fragmentation of the melt. The result was a heterogeneous mass of hyaloclastite and fluid melt which moved en masse downslope with the melt at the bottom of the flow and increasingly vesicular hyaloclastite fragments above. The upper and distal parts of the flow moved as low-concentration turbulent suspensions that deposited bedded hyaloclastite.  相似文献   

7.
8.
 Volcanic breccias form large parts of composite volcanoes and are commonly viewed as containing pyroclastic fragments emplaced by pyroclastic processes or redistributed as laharic deposits. Field study of cone-forming breccias of the andesitic middle Pleistocene Te Herenga Formation on Ruapehu volcano, New Zealand, was complemented by paleomagnetic laboratory investigation permitting estimation of emplacement temperatures of constituent breccia clasts. The observations and data collected suggest that most breccias are autoclastic deposits. Five breccia types and subordinate, coherent lava-flow cores constitute nine, unconformity-bounded constructional units. Two types of breccia are gradational with lava-flow cores. Red breccias gradational with irregularly shaped lava-flow cores were emplaced at temperatures in excess of 580  °C and are interpreted as aa flow breccias. Clasts in gray breccia gradational with tabular lava-flow cores, and in some places forming down-slope-dipping avalanche bedding beneath flows, were emplaced at varying temperatures between 200 and 550  °C and are interpreted as forming part of block lava flows. Three textural types of breccia are found in less intimate association with lava-flow cores. Matrix-poor, well-sorted breccia can be traced upslope to lava-flow cores encased in autoclastic breccia. Unsorted boulder breccia comprises constructional units lacking significant exposed lava-flow cores. Clasts in both of these breccia types have paleomagnetic properties generally similar to those of the gray breccias gradational with lava-flow cores; they indicate reorientation after acquisition of some, or all, magnetization and ultimate emplacement over a range of temperatures between 100 and 550  °C. These breccias are interpreted as autoclastic breccias associated with block lava flows. Matrix-poor, well-sorted breccia formed by disintegration of lava flows on steep slopes and unsorted boulder breccia is interpreted to represent channel-floor and levee breccias for block lava flows that continued down slope. Less common, matrix-rich, stratified tuff breccias consisting of angular blocks, minor scoria, and a conspicuously well-sorted ash matrix were generally emplaced at ambient temperature, although some deposits contain clasts possibly emplaced at temperatures as high as 525  °C. These breccias are interpreted as debris-flow and sheetwash deposits with a dominant pyroclastic matrix and containing clasts likely of mixed autoclastic and pyroclastic origin. Pyroclastic deposits have limited preservation potential on the steep, proximal slopes of composite volcanoes. Likewise, these steep slopes are more likely sites of erosion and transport by channeled or unconfined runoff rather than depositional sites for reworked volcaniclastic debris. Autoclastic breccias need not be intimately associated with coherent lava flows in single outcrops, and fine matrix can be of autoclastic rather than pyroclastic origin. In these cases, and likely many other cases, the alternation of coherent lava flows and fragmental deposits defining composite volcanoes is better described as interlayered lava-flow cores and cogenetic autoclastic breccias, rather than as interlayered lava flows and pyroclastic beds. Reworked deposits are probably insignificant components of most proximal cone-forming sequences. Received: 1 October 1998 / Accepted: 28 December 1998  相似文献   

9.
The Western Volcanic Zone in Iceland (64.19° to 65.22° N) has the morphological characteristics of a distinct Mid-Atlantic ridge segment. This volcanic zone was mapped at a scale of 1:36.000, and 258 intraglacial monogenetic volcanoes from the Late Pleistocene (0.01–0.78?Ma) were identified and investigated. The zone is characterized by infrequent comparatively large volcanic eruptions and the overall volcanic activity appears to have been low throughout the Late Pleistocene. Tholeiitic basaltic rocks dominate in the Western Volcanic Zone with about 0.5?vol.?% of intermediate and silicic rocks. The basalts divide into picrites, olivine tholeiites, and tholeiites. Three main eruptive phases can be distinguished in the intraglacial volcanoes: an effusive deep-water lava phase producing basal pillow lavas, an explosive shallow-water phase producing hyaloclastites and an effusive subaerial capping lava phase. Three evolutionary stages therefore charcterize these volcanoes; late dykes and irregular minor intrusions could be added as the fourth main stage. These intrusions are potential heat sources for short-lived hydrothermal systems and may play an important role in the final shaping of the volcanoes. Substantial parts of the hyaloclastites of each unit are proximal sedimentary deposits. The intraglacial volcanoes divide into two main morphological groups, ridge-shaped volcanoes, i.e., tindars (including pillow lava ridges) and subrectangular volcanoes, i.e., tuyas and hyaloclastite or pillow lava mounds. The volume of the tuyas is generally much larger than that of the tindars. The largest tuya, Eiríksj?kull, is about 48?km3 and therefore the largest known monogenetic volcano in Iceland. Many of the large volcanoes, both tuyas and tindars, show a similar, systematic range in geochemistry. The most primitive compositions were erupted first and the magmas then changed to more differentiated compositions. The ridge-shaped tindars clearly erupted from volcanic fissures and the more equi-dimensional tuyas mainly from a single crater. It is suggested that the morphology and structure of the intraglacial volcanos mainly depends on two factors, (a) tectonic control and (b) availability of magma at the time of eruption.  相似文献   

10.
The well-preserved extrusive sequence of the Solund-Stavfjord Ophiolite Complex (SSOC) in the West Norwegian Caledonides enables reconstruction of the uppermost oceanic crust that developed in a marginal basin. Basaltic sheet flows, pillow lavas and volcanic breccias are the main components of the extrusive sequence and show stratigraphic and structural evidence for a cyclic development. The first stage in a volcanic cycle is characterized by high extrusion rates yielding sheet flows, commonly with the thickest flow units at the base. Sequences of sheet flows can be correlated laterally for at least 6.5 km. Pillow lavas succeed the sheet flows later in a volcanic cycle with progressively smaller pillows forming at decreasing extrusion rates. Volcanic breccias occur towards the end of a volcanic cycle, but may also occur at lower stratigraphie levels. They are made generally of pillow breccias and hyaloclastites. The extrusive sequence of the SSOC oceanic crust was constructed through seven volcanic cycles that resulted in stratigraphic units with thicknesses ranging from 40 to 225 m. This architecture is comparable to sequences in in situ oceanic crust developed along slow- to intermediate-spreading ridges.  相似文献   

11.
Hlöðufell is a familiar 1186 m high landmark, located about 80 km northeast of Reykjavík, and 9 km south of the Langkjökull ice-cap in south-west Iceland. This is the first detailed study of this well-exposed and easily accessible subglacial to emergent basaltic volcano. Eight coherent and eleven volcaniclastic lithofacies are described and interpreted, and its evolution subdivided into four growth stages (I–IV) on the basis of facies architecture. Vents for stages I, II, and IV lie along the same fissure zone, which trends parallel to the dominant NNE–SSW volcano-tectonic axis of the Western Volcanic Zone in this part of Iceland, but the stage III vent lies to the north, and is probably responsible for the present N–S elongation of the volcano. The basal stage (I) is dominated by subglacially erupted lava mounds and ridges, which are of 240 m maximum thickness, were fed from short fissures and locally display lava tubes. Some of the stage I lavas preserve laterally extensive flat to bulbous, steep, glassy surfaces that are interpreted to have formed by direct contact with surrounding ice, and are termed ice-contact lava confinement surfaces. These surfaces preserve several distinctive structures, such as lava shelves, pillows that have one flat surface and mini-pillow (< 10 cm across) breakouts, which are interpreted to have formed by the interplay of lava chilling and confinement against ice, ice melting and ice fracture. The ice-contact lava confinement surfaces are also associated with zones of distinctive open cavities in the lavas that range from about 1 m to several metres across. The cavities are interpreted as having arisen by lava engulfing blocks of ice, that had become trapped in a narrow zone of meltwater between the lava and the surrounding ice, and are termed ice-block meltout cavities. The same areas of the lavas also display included and sometimes clearly rotated blocks of massive to planar to cross-stratified hyaloclastite lapilli tuffs and tuff–breccias, termed hyaloclastite inclusions, which are interpreted as engulfed blocks of hyaloclastite/pillow breccia carapace and talus, or their equivalents reworked by meltwater. Some of the stage I lavas are mantled at the southern end of the mountain by up to 35 m thickness of well-bedded vitric lapilli tuffs (stage II), of phreatomagmatic origin, which were erupted from a now dissected cone, preserved in this area. The tephra was deposited dominantly by subaqueous sediment gravity flows (density currents) in an ice-bound lake (or less likely a sub-ice water vault), and was also transported to the south by sub-ice meltwater traction currents. This cone is onlapped by a subaerial pahoehoe lava-fed delta sequence, formed during stage III, and which was most likely fed from a now buried vent(s), located somewhere in the north-central part of the mountain. A 150 m rise in lake level submerged the capping lavas, and was associated with progradation of a new pahoehoe lava-fed delta sequence, produced during stage IV, and which was fed from the present summit cone vent. The water level rise and onset of stage IV eruptions were not associated with any obviously exposed phreatomagmatic deposits, but they are most likely buried beneath stage IV delta deposits. Stage IV lava-fed deltas display steep benches, which do not appear to be due to syn- or post-depositional mass wasting, but were probably generated during later erosion by ice. The possibility that they are due to shorter progradation distances than the underlying stage III deltas, due to ice-confinement or lower volumes of supplied lava is also considered.  相似文献   

12.
Multiple-rind structure is common among shallow-water pillows with diameters larger than about 1 m in Oamaru, New Zealand, on the Columbia Plateau (USA), and elsewhere. A rind consists of sideromelane, tachylyte, and tachylytic basalt. A multiple rind is a concentric set of repeated rinds in various forms, e. g., a portion of a broken rind thrust under another part, a series of short and detached subparallel rinds, or a pouch-shaped depression. Transitions and combinations of these three forms are common. Multiple-rind structure develops at any part of the pillow perimeter, but does not cover the pillow completely. It is always accompanied by a rupture in the outermost rind. Up to 13 rinds have been observed, but two to four rinds are most common. The multiple-rind structure is formed by implosion resulting from condensation of exsolved H2O. When H2O condenses, a pressure difference between the interior and exterior of a pillow is created. Above a certain threshold pressure difference, the outer skin of a pillow is torn at weak points, such as radial joints, and thrusts under the neighboring skin, buckles to form a pouch-shaped depression, or produces some variation of these. One set of multiple rinds is thus formed. Further exsolution and condensation of H2O in solidifying pillows may cause development of additional rinds. H2O exsolution and condensation and subsequent implosion are limited to low-pressure environments so that multiple-rind structure is characteristic of shallow-water pillow lava.  相似文献   

13.
14.
The Kverkfjöll area, NE Iceland is characterised by subglacial basalt pillow lavas erupted under thick ice during the last major glaciation in Iceland. The water contents of slightly vesiculated glassy rims of pillows in six localities range from 0.85±0.03 to 1.04±0.03 wt %. The water content measurements allow the ice thickness to be estimated at between 1.2 and 1.6 km, with the range reflecting the uncertainty in the CO2 and water contents of the melt. The upper estimates agree with other observations and models that the ice thickness in the centre of Iceland was 1.5–2.0 km at the time of the last glacial maximum. Many of the pillows in the Kverkfjöll area are characterised by vesiculated cores (40–60% vesicles) surrounded by a thick outer zone of moderately vesicular basalt (15–20% vesicles). The core contains ~1 mm diameter spherical vesicles distributed uniformly. This observation suggests a sudden decompression and vesiculation of the still molten core followed by rapid cooling. The cores are attributed to a jökulhlaup in which melt water created by the eruption is suddenly released reducing the environmental pressure. Mass balance and solubility relationships for water allow a pressure decrease to be calculated from the observed change of vesicularity of between 4.4 and 4.7 MPa depressurization equivalent to a drop in the water level in the range 440–470 m. Consideration of the thickness of solid crust around the molten cores at the time of the jökulhlaup indicates an interval of 1–3 days between pillow emplacement and the jökulhlaup. Upper limits for ice melting rates of order 10?3 m/s are indicated. This interpretation suggests that jökulhlaups can reactivate eruptions.  相似文献   

15.
In an attempt to model the effect of slope on the dynamics of lava flow emplacement, four distinct morphologies were repeatedly produced in a series of laboratory simulations where polyethylene glycol (PEG) was extruded at a constant rate beneath cold sucrose solution onto a uniform slope which could be varied from 1° through 60°. The lowest extrusion rates and slopes, and highest cooling rates, produced flows that rapidly crusted over and advanced through bulbous toes, or pillows (similar to subaerial “toey” pahoehoe flows and to submarine pillowed flows). As extrusion rate and slope increased, and cooling rate decreased, pillowed flows gave way to rifted flows (linear zones of liquid wax separated by plates of solid crust, similar to what is observed on the surface of convecting lava lakes), then to folded flows with surface crusts buckled transversely to the flow direction, and, at the highest extrusion rates and slopes, and lowest cooling rates, to leveed flows, which solidified only at their margins. A dimensionless parameter, Ψ, primarily controlled by effusion rate, cooling rate and flow viscosity, quantifies these flow types. Increasing the underlying slope up to 30° allows the liquid wax to advance further before solidifying, with an effect similar to that of increasing the effusion rate. For example, conditions that produce rifted flows on a 10° slope result in folded flows on a 30° slope. For underlying slopes of 40°, however, this trend reverses, slightly owing to increased gravitational forces relative to the strength of the solid wax. Because of its significant influence on heat advection and the disruption of a solid crust, slope must be incorporated into any quantitative attempt to correlate eruption parameters and lava flow morphologies. These experiments and subsequent scaling incorporate key physical parameters of both an extrusion and its environment, allowing their results to be used to interpret lava flow morphologies on land, on the sea floor, and on other planets.  相似文献   

16.
 High-resolution bathymetric mapping has shown that submarine flat-topped volcanic cones, morphologically similar to ones on the deep sea floor and near mid-ocean ridges, are common on or near submarine rift zones of Kilauea, Kohala (or Mauna Kea), Mahukona, and Haleakala volcanoes. Four flat-topped cones on Kohala were explored and sampled with the Pisces V submersible in October 1998. Samples show that flat-topped cones on rift zones are constructed of tholeiitic basalt erupted during the shield stage. Similarly shaped flat-topped cones on the northwest submarine flank of Ni'ihau are apparently formed of alkalic basalt erupted during the rejuvenated stage. Submarine postshield-stage eruptions on Hilo Ridge, Mahukona, Hana Ridge, and offshore Ni'ihau form pointed cones of alkalic basalt and hawaiite. The shield stage flat-topped cones have steep (∼25°) sides, remarkably flat horizontal tops, basal diameters of 1–3 km, and heights <300 m. The flat tops commonly have either a low mound or a deep crater in the center. The rejuvenated-stage flat-topped cones have the same shape with steep sides and flat horizontal tops, but are much larger with basal diameters up to 5.5 km and heights commonly greater than 200 m. The flat tops have a central low mound, shallow crater, or levees that surrounded lava ponds as large as 1 km across. Most of the rejuvenated-stage flat-topped cones formed on slopes <10° and formed adjacent semicircular steps down the flank of Ni'ihau, rather than circular structures. All the flat-topped cones appear to be monogenetic and formed during steady effusive eruptions lasting years to decades. These, and other submarine volcanic cones of similar size and shape, apparently form as continuously overflowing submarine lava ponds. A lava pond surrounded by a levee forms above a sea-floor vent. As lava continues to flow into the pond, the lava flow surface rises and overflows the lowest point on the levee, forming elongate pillow lava flows that simultaneously build the rim outward and upward, but also dam and fill in the low point on the rim. The process repeats at the new lowest point, forming a circular structure with a flat horizontal top and steep pillowed margins. There is a delicate balance between lava (heat) supply to the pond and cooling and thickening of the floating crust. Factors that facilitate construction of such landforms include effusive eruption of lava with low volatile contents, moderate to high confining pressure at moderate to great ocean depth, long-lived steady eruption (years to decades), moderate effusion rates (probably ca. 0.1 km3/year), and low, but not necessarily flat, slopes. With higher effusion rates, sheet flows flood the slope. With lower effusion rates, pillow mounds form. Hawaiian shield-stage eruptions begin as fissure eruptions. If the eruption is too brief, it will not consolidate activity at a point, and fissure-fed flows will form a pond with irregular levees. The pond will solidify between eruptive pulses if the eruption is not steady. Lava that is too volatile rich or that is erupted in too shallow water will produce fragmental and highly vesicular lava that will accumulate to form steep pointed cones, as occurs during the post-shield stage. The steady effusion of lava on land constructs lava shields, which are probably the subaerial analogs to submarine flat-topped cones but formed under different cooling conditions. Received: 30 September 1999 / Accepted: 9 March 2000  相似文献   

17.
The Middle-Upper Miocene Las Burras–Almagro-El Toro (BAT) igneous complex within the Eastern Cordillera of the central Andes (∼24°S; NW Argentina) has revealed evidence of non-explosive interaction of andesitic magma with water or wet clastic sediments in a continental setting, including peperite generation. We describe and interpret lithofacies and emplacement mechanisms in three case studies. The Las Cuevas member (11.8 Ma) comprises facies related to: (i) andesite extruded in a subaqueous setting and generating lobe-hyaloclastite lava; and (ii) marginal parts of subaerial andesite lava dome(s) in contact with surface water, comprising fluidal lava lobes, hyaloclastite, and juvenile clasts with glassy rims. The Lampazar member (7.8 Ma) is represented by a syn-volcanic andesite intrusion and related peperite that formed within unconsolidated, water-saturated, coarse-grained volcaniclastic conglomerate and breccia. The andesite intrusion is finger-shaped and grades into intrusive pillows. Pillows are up to 2 m wide, tightly packed near the intrusion fingers, and gradually become dispersed in the host sediment ≥50 m from the parent intrusion. The Almagro A member (7.2 Ma) shows evidence of mingling between water-saturated, coarse-grained, volcaniclastic alluvial breccia and intruding andesite magma. The resulting intrusive pillows are characterized by ellipsoidal and tubular shape and concentric structure. The high-level penetration of magma in this coarse sediment was unconfined and irregular. Magma was detached in apophyses and lobes with sharp contacts and fluidal shapes, and without quench fragmentation and formation of a hyaloclastite envelope. The presence of peperite and magma–water contact facies in the BAT volcanic sequence indicates the possible availability of water in the system between 11–7 Ma and suggests a depositional setting in this part of the foreland basin of the central Andes characterized by an overall topographically low coastal floodplain that included extensive wetlands.  相似文献   

18.
Irregularly shaped, large and clear (LAC) glass inclusions are present in plagioclase phenocrysts in several andesitic lavas erupted from Tolimán volcano, Guatemala. Their morphology is different from densely spaced, fine-grained glass inclusions that form concentric zones in dusty or cellular textured plagioclase phenocrysts. The large size of LAC inclusions make them suitable for microprobe analysis and average bulk compositions are presented for glasses in 30 phenocrysts from eight lava samples. Their compositions are rhyolitic and in disequilibrium, or out-range (Anderson 1976) with respect to whole-rock and groundmass glass compositions. LAC inclusions typically occur in large, tabular plagioclase phenocrysts with relatively uniform, sodic compositions (An 40–54). Compositions of feldspar phenocrysts not containing LAC inclusions range from An 41 to An 81. Petrographic and chemical data support a primary origin for LAC glasses, suggest mixing of mafic and silicic magmas, and also constrain a mechanism for magma mixing. Rapid growth of plagioclase and entrapment of LAC glass occurs during mixing in a vapor-rich silicic liquid under low degrees of undercooling. These conditions are possibly produced in a high-level magma body such as that envisioned by Huppert et al. (1982), where replenishment and subsequent crystallization of a hydrous magma induces density instability and mixing with the resident magma.  相似文献   

19.
Well-preserved pillow lavas in the uppermost part of the Early Archean volcanic sequence of the Hooggenoeg Formation in the Barberton Greenstone Belt exhibit pronounced flow banding. The banding is defined by mm to several cm thick alternations of pale green and a dark green, conspicuously variolitic variety of aphyric metabasalt. Concentrations of relatively immobile TiO2, Al2O3 and Cr in both varieties of lava are basaltic. Compositional differences between bands and variations in the lavas in general have been modified by alteration, but indicate mingling of two different basalts, one richer in TiO2, Al2O3, MgO, FeOt and probably Ni and Cr than the other, as the cause of the banding. The occurrence in certain pillows of blebs of dark metabasalt enclosed in pale green metabasalt, as well as cores of faintly banded or massive dark metabasalt, suggest that breakup into drops and slugs in the feeder channel to the lava flow initiated mingling. The inhomogeneous mixture was subsequently stretched and folded together during laminar shear flow through tubular pillows, while diffusion between bands led to partial homogenisation. The most common internal pattern defined by the flow banding in pillows is concentric. In some pillows the banding defines curious mushroom-like structures, commonly cored by dark, variolitic metabasalt, which we interpret as the result of secondary lateral flow due to counter-rotating, transverse (Dean) vortices induced by the axial flow of lava towards the flow front through bends, generally downward, in the tubular pillows. Other pillows exhibit weakly-banded or massive, dark, variolitic cores that are continuous with wedge-shaped apophyses and veins that intrude the flow banded carapace. These cores represent the flow of hotter and less viscous slugs of the dark lava type into cooled and stiffened pillows.  相似文献   

20.
The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units 1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2–3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5–6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22–43% basalt, ~0.4–1% basaltic andesite, ~29–54% andesite, ~2–3% dacite, and ~18–40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely formed by episodic partial melting of upper crustal rocks in response to emplacement of basalts. There are no examples of mingled rhyolitic and basaltic magmas. Whatever mechanism is invoked to explain the generation of andesite at the Tequila volcanic field, it must be consistent with a dominantly bimodal distribution of high-Ti basalt and rhyolite for an 800 kyr interval beginning ~1 Ma, which abruptly switched to punctuated bursts of predominantly andesitic volcanism over the last 200 kyrs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial responsility: J. Donnelly-NolanThis revised version was published online in January 2005 with corrections to Tables 1 and 3.An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号