首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Lower mantle heterogeneity could cause deviations from axial symmetry in geodynamo properties. Global tomography models are commonly used to infer the pattern of core–mantle boundary heat flux via a linear relation that corresponds to a purely thermal interpretation of lower mantle seismic anomalies, ignoring both non-thermal origins and non-resolved small scales. Here we study the possible impact on the geodynamo of narrow thermal anomalies in the base of the mantle, originating from either compositional heterogeneity or sharp margins of large-scale features. A heat flux boundary condition composed of a large-scale pattern and narrow ridges separating the large-scale positive and negative features is imposed on numerical dynamos. We find that hot ridges located to the west of a positive large-scale core–mantle boundary heat flux anomaly produce a time-average narrow elongated upwelling, a flow barrier at the top of the core and intensified low-latitudes magnetic flux patches. When the ridge is located to the east of a positive core–mantle boundary heat flux anomaly, the associated upwelling is weaker and the homogeneous dynamo westward drift leaks, precluding persistent intense low-latitudes magnetic flux patches. These signatures of the core–mantle boundary heat flux ridge are evident in the north–south component of the thermal wind balance. Based on the pattern of lower mantle seismic tomography (Masters et al., 2000), we hypothesize that hot narrow thermal ridges below central Asia and the Indian Ocean and below the American Pacific coast produce time-average fluid upwelling and a barrier for azimuthal flow at the top of the core. East of these ridges, below east Asia and Oceania and below the Americas, time-average intense geomagnetic flux patches are expected.  相似文献   

2.
Although vigorous mantle convection early in the thermal history of the Earth is shown to be capable of removing several times the latent heat content of the core, we are able to construct a thermal evolution model of the Earth in which the core does not solidify. The large amount of energy removed from the model Earth's core by mantle convection is supplied by the internal energy of the core which is assumed to cool from an initial high temperature given by the silicate melting temperature at the core-mantle boundary. For the smaller terrestrial planets, the iron and silicate melting temperatures at the core-mantle boundaries are more comparable than for the Earth, and the cores of these planets may not possess enough internal energy to prevent core solidification by mantle convection. Our models incorporate temperature-dependent mantle viscosity and radiogenic heat sources in the mantle. The Earth models are constrained by the present surface heat flux and mantle viscosity. Internal heat sources produce only about 55% of the Earth model's present surface heat flow.  相似文献   

3.
地磁场能量在地球内部的分布及其长期变化   总被引:7,自引:1,他引:6       下载免费PDF全文
用国际参考地磁场模型(IGRF)分析了地磁场能量在地球内部的分布及其长期变化.结果表明,从1900年到2005年,地核以外地磁场总能量由6.818×1018J减少到6.594×1018J,减小了3.3%,地表以外地磁场总能量由8.658×101J减小到.63×101J,减小了11.4%.分析地球内部不同圈层地磁场能量的变化表明,地壳(A层)、上地幔(B层)、转换带(C层)、下地幔D′层的地磁场总能量在减小,但是下地幔"层的地磁场总能量却在快速增加.磁能密度随时间的变化更清楚地显示出磁能增加和减小的分界面在r=3840km处.上述结果表明,地核和地表以外地磁场总能量在趋势性减小的同时,也在进行重新分配.进一步分析表明,下地幔D"层磁能快速增长,主要是由高阶磁多极子的增强引起的.在地磁场倒转前,偶极矩减小而多极性相对增强在能量分布上的表现就是磁能向下地幔底部(特别是D"层)集中.  相似文献   

4.
We study magnetic field variations in numerical models of the geodynamo, with convection driven by nonuniform heat flow imposed at the outer boundary. We concentrate on cases with a boundary heat flow pattern derived from seismic anomalies in the lower mantle. At a Rayleigh number of about 100 times critical with respect to the onset of convection, the magnetic field is dominated by the axial dipole component and has a similar spectral distribution as Earth’s historical magnetic field on the core-mantle boundary (CMB). The time scales of variation of the low-order Gauss coefficients in the model agree within a factor of two with observed values. We have determined the averaging time interval needed to delineate deviations from the axial dipole field caused by the boundary heterogeneity. An average over 2000 years (the archeomagnetic time scale) is barely sufficient to reveal the long-term nondipole field. The model shows reduced scatter in virtual geomagnetic pole positions (VGPs) in the central Pacific, consistent with the weak secular variation observed in the historical field. Longitudinal drift of magnetic field structures is episodic and differs between regions. Westward magnetic drift is most pronounced beneath the Atlantic in our model. Although frozen flux advection by the large-scale flow is generally insufficient to explain the magnetic drift rates, there are some exceptions. In particular, equatorial flux spot pairs produced by expulsion of toroidal magnetic field are rapidly advected westward in localized equatorial jets which we interpret as thermal winds.  相似文献   

5.
Recognition that the cooling of the core is accomplished by conduction of heat into a thermal boundary layer (D″) at the base of the mantle, partly decouples calculations of the thermal histories of the core and mantle. Both are controlled by the temperature-dependent rheology of the mantle, but in different ways. Thermal parameters of the Earth are more tightly constrained than hitherto by demanding that they satisfy both core and mantle histories. We require evolution from an early state, in which the temperatures of the top of the core and the base of the mantle were both very close to the mantle solidus, to the present state in which a temperature increment, estimated to be ~ 800 K, has developed across D″. The thermal history is not very dependent upon the assumption of Newtonian or non-Newtonian mantle rheology. The thermal boundary layer at the base of the mantle (i.e., D″) developed within the first few hundred million years and the temperature increment across it is still increasing slowly. In our preferred model the present temperature at the top of the core is 3800 K and the mantle temperature, extrapolated to the core boundary without the thermal boundary layer, is 3000 K. The mantle solidus is 3860 K. These temperatures could be varied within quite wide limits without seriously affecting our conclusions. Core gravitational energy release is found to have been remarkably constant at ~ 3 × 1011 W. nearly 20% of the core heat flux, for the past 3 × 109 y, although the total terrestrial heat flux has decreased by a factor of 2 or 3 in that time. This gravitational energy can power the “chemical” dynamo in spite of a core heat flux that is less than that required by conduction down an adiabatic gradient in the outer core; part of the gravitational energy is used to redistribute the excess heat back into the core, leaving 1.8 × 1011 W to drive the dynamo. At no time was the dynamo thermally driven and the present radioactive heating in the core is negligibly small. The dynamo can persist indefinitely into the future; available power 1010 y from now is estimated to be 0.3 × 1011 W if linear mantle rheology is assumed or more if mantle rheology is non-linear. The assumption that the gravitational constant decreases with time imposes an implausible rate of decrease in dynamo energy. With conventional thermodynamics it also requires radiogenic heating of the mantle considerably in excess of the likely content of radioactive elements.  相似文献   

6.
非均匀灌溉棉田能量平衡特征研究   总被引:2,自引:2,他引:0       下载免费PDF全文
运用国际能量平衡实验(EBEX-2000)的湍流、净辐射和土壤观测资料,运用涡动相关法分析了非均匀灌溉引起的热内边界层发展条件下近地层感热、潜热通量特征,并对有无灌溉两种条件下的能量闭合度进行了对比分析.在计算感热、潜热通量过程中,分别将Schotanus订正和Webb订正纳入了考虑范围,研究了两种订正方法对计算湍流热通量的影响.研究结果发现,由于非均匀灌溉生成的热内边界层使得近地层感热通量受到抑制,潜热通量出现波动,该现象在8.7 m比2.7 m 更为显著.非均匀灌溉导致的热内边界层的存在使得近地层能量闭合度偏低,能量平衡比率约为0.65;而没有热内边界层存在时,近地层能量平衡比率约为0.70.本实验中,Schotanus订正使得感热通量显著减小,其订正量日平均值约为-8 W/m2,占净辐射的近4%;Webb订正量日平均值约为2 W/m2,对能量平衡的影响较小.  相似文献   

7.
Several aspects of core-mantle interactions were considered during a Royal Astronomical Society Discussion Meeting on 12th May 1989, including modelling the geomagnetic field at the core surface, the morphology of the field between 1600 and 1820 AD, dynamo theory, Taylor's constraint, fluid motions at the top of the core that reproduce the observed secular variation, pressure coupling between the core and mantle and its geophysical consequences, topographic core-mantle coupling, angular momentum transfer at the core-mantle interface, the detection and implications of core oscillations, particularly those with associated fluctuations in the Earth's rotation rate, and the seismological determination of the core-mantle boundary topography from lateral inhomogeneities in the mantle.  相似文献   

8.
全球地表热流的产生与分布   总被引:7,自引:1,他引:7       下载免费PDF全文
全球地表热流是反映地球内部热与动力学过程的一种主要能流.本文在三维球坐标框架下,就几个不同的粘度模型分别研究地幔内部密度异常(基于全球地震层析结果)以及板块运动激发的地幔流动的热效应及其对于观测地表热流产生和分布特征的贡献.由于地幔动力系统具有较高的Pe数,可以期望由板块运动激发的地幔流动将强烈地扰动地幔内部初始传导状态下的温度场以及地表热的热流分布.结果表明,与地幔内部密度异常产生的热效应相比,运动的板块及其激发的地幔流动在全球地表观测热流的产生和分布特征上起着更为重要的作用.观测到的大洋中脊处的高热流在很大程度上可以归因于板块激发的地幔流动的热效应.计算的平均温度剖面较好地揭示了岩石圈和D″层的温度特征,即温度随深度的剧烈变化,这与我们目前通过其他手段对岩石圈和D″层的温度结构了解是一致的.一个下地幔粘度比上地幔高出30倍的粘度结构(文中使用的粘度模型2)较之其余模型的拟合程度似乎更好.  相似文献   

9.
板块运动是地幔对流的主要证据之一.同时,作为地球动力系统中一个相对独立部分,板块自身的存在和运动对地幔内部物质的流动形态有巨大影响.地幔内部的流动由两部分组成:一是由内部非绝热温度差异造成的自由对流解;另一部分是由在地表运动的板块所激发.作为系列工作的第一部分,本文研究球腔中的自由热对流问题.得到了对地幔对流研究有实际意义的下边界为自由、上边界为刚性情况下的临界瑞利数值,不同的瑞利数时球腔内流场和温度场的分布形态等.  相似文献   

10.
朱日祥  刘椿 《地震地质》1991,13(1):73-77
地磁场起源及其倒转是地球科学的难题之一。究其原因一方面是由于无法直接观测地球内部发生的物理过程,另一方面是由于缺乏理论与实验相结合的综合研究。本文以磁流体力学为基础,将古地磁学与αω发电机理论结合在一起进行分析和研究。得出了如下新观点:(1)洛仑兹力在地核发电过程起负反馈作用;(2)较差旋转控制着地磁场西向漂移,(3)α作用使地磁极偏离地球自转轴  相似文献   

11.
The theory of three-dimensional and finite-amplitude convection in a viscous spherical shell with temperature and pressure dependent physical parameters is developed on the basis of a modified Boussinesq fluid assumption. The lateral dependences of the variables are resolved through their spherical harmonic representations, whereas their radial and time dependences are determined by numerical procedures. The theory is then applied to produce thermal evolution models for Venus. The emphasis is on illustrating the effects of certain physical parameters on the thermal evolution rather than proposing a specific thermal history for the planet. The main conclusions achieved in this paper are (1) a significant portion of the present temperature in the mantle and heat flux at the surface of Venus is probably owing to the decay of a high temperature established in the planet at the completion of its core formation, (2) the effective Rayleigh number of the mantle is so high that even the lower order modes of convection cool the planet sufficiently and maintain an almost adiabatic temperature gradient in the convecting region and high temperature gradients in the thermal boundary layers, (3) the convection is oscillatory with avalanche type properties which induces oscillatory features to the surface heat flux and the thickness of the crustal layer, and (4) a planetary model with a recycling crust cools much faster than those with a permanently buoyant crust.The models presented in this paper suggest that Venus has been highly convective during its history until ~ 0.5 Ga ago. The vigorous convection was bringing hot and fresh material from the deep interior to the surface and dragging down the crustal slags, floating on the surface, in to the mantle. The rate of cooling of the planet was so high that its core has solidified. In the last 0.5 Ga the vigour of convection diminished considerably and the crustal slags developed into a global and permanently buoyant crustal layer. The tectonic style on Venus has, consequently, changed from the recycling of crustal plates to hot spot volcanics. At the present time the planet is completely solid, except in the upper part of its mantle where partial melting may occur.  相似文献   

12.
The data that describe the long-term reversing behavior of the geodynamo show strong and sudden changes in magnetic reversal frequency. This concerns both the onset and the end of superchrons and most probably the occurrence of episodes characterized by extreme geomagnetic reversal frequency (>10–15 rev./Myr). To account for the complexity observed in geomagnetic reversal frequency evolution, we propose a simple scenario in which the geodynamo operates in three distinct reversing modes: i—a “normal” reversing mode generating geomagnetic polarity reversals according to a stationary random process, with on average a reversal rate of ~3 rev./Myr; ii—a non-reversing “superchron” mode characterizing long time intervals without reversal; iii—a hyper-active reversing mode characterized by an extreme geomagnetic reversal frequency. The transitions between the different reversing modes would be sudden, i.e., on the Myr time scale. Following previous studies, we suggest that in the past, the occurrence of these transitions has been modulated by thermal conditions at the core-mantle boundary governed by mantle dynamics. It might also be possible that they were more frequent during the Precambrian, before the nucleation of the inner core, because of a stronger influence on geodynamo activity of the thermal conditions at the core-mantle boundary.  相似文献   

13.
地磁急变(jerk)是起源于地球外核并在导电地幔过滤效应后在地球表面观测到的一种地磁现象,其反映了地核内部某些动力学过程.Jerks在空间范围上既可以是区域性的,也可以是全球性的.中国地区地磁台能否检测到2014年jerk?针对这一问题,利用中国大陆10个地磁台的磁静日月均值和CHAOS-6全球磁场模型,分析了X、Y和Z分量2008—2018年期间的长期变化,估算了2014年前、后的长期加速度值,确定了2014年地磁jerk的时间和强度.研究表明中国地磁台Y分量的长期变化为"Λ"型,Z分量存在明显的"V"型,具有典型的jerk特点.Y分量jerk出现的时间大约在2014年6月,比非洲大陆的Algeria TAM台和南美洲French Guiana KOU台时间滞后大约4个月.这暗示着产生jerks的地核流体波动的时序特点.中国西部和东北部地磁台的长期变化形态有明显的差别,主要由非偶极磁场引起.CHAOS-6模型与地面台站的长期变化形态并非始终一致.本文结果有助于更好地理解和解释长期变化的时间演变和地理分布,并为深入探讨jerks的地核起源和驱动机制提供新的观测约束.  相似文献   

14.
The average secular cooling rate of the Earth can be deduced from compositional variations of mantle melts through time and from rheological conditions at the onset of sub-solidus convection at the end of the initial magma ocean phase. The constraint that this places on the characteristics of mantle convection in the past are investigated using the global heat balance equation and a simple parameterization for the heat loss of the Earth. All heat loss parameterization schemes depend on a closure equation for the maximum age of oceanic plates. We use a scheme that accounts for the present-day distribution of heat flux at Earth's surface and that does not depend on any assumption about the dynamics of convection with rigid plates, which remain poorly understood. We show that heat supply to the base of continents and transient continental thermal regimes cannot be ignored. We find that the maximum sea floor age has not changed by large amounts over the last 3 Ga. Calculations lead to a maximum temperature at an age of about 3 Ga and cannot be extrapolated further back in time. By construction, these calculations are based on the present-day tectonic regime characterized by the subduction of large oceanic plates and hence indicate that this regime did not prevail until an age of about 3 Ga. According to this interpretation, the onset of rapid continental growth occurred when the current plate regime became stable.  相似文献   

15.
现代地震学展现出了一个复杂的地球内核内部和表面结构.地球内核内部结构的主要特征表现为其地震波速度和衰减呈现各向异性,且各种结构(速度、衰减和各向异性)均呈现东西半球差异,而内核表面的新发现则包括其局部区域存在起伏的地形和固液并存的糊状层.地球内核压缩波速度和衰减均呈现以地球旋转轴为轴的柱对称各向异性,沿地球旋转轴方向传播的压缩波比沿赤道方向传播的压缩波传播更快且衰减更强烈.同时,内核各向异性结构随深度而变化:内核顶部约100~400 km接近各向同性,而在内核最深处300~600 km内则可能存在一个具有不同各向异性特征的内内核.地球内核的东西半球差异表现在多方面:在内核顶部~100 km厚度内,东半球的各向同性速度比西半球快约0.8%,东半球具有较强的衰减(Q=250),而西半球则具有较弱的衰减(Q=600);西半球的顶部各向同性层厚度约为100 km,而东半球顶部各向同性层厚度则约为400 km;在各向同性层底下,西半球具有较强的各向异性(~4%),而东半球则具有较弱的各向异性(~0.7%).地球内核边界在菲律宾海、黄海、西太平洋以及中美洲下方存在1~14 km高的地形起伏,在鄂霍次克海西南部下方存在4~8 km厚的糊状层.地球内核的这些新发现引发了对许多可能的新物理机制的探讨,也促使我们重新评估我们对外核成分、外核热化学对流、内核凝固过程和地球磁场驱动力的认识.这些结果表明内核凝固过程和地球磁场的热和化学驱动力远比传统观念认为的横向均匀分布复杂得多.内核西半球可能不断凝固并释放潜热和轻元素,而东半球则可能不断熔化并吸收潜热和轻元素,外核对流的驱动力在东西半球可能截然不同,甚至呈现相反方向.这些凝固与熔化交替过程也发生在局部地形起伏区域.在糊状层区域,地球内核凝固释放潜热和化学能,而在大部分无糊状地区,内核凝固只释放潜热.  相似文献   

16.
Plumes rising from the core–mantle boundary (CMB) are often assumed to transport most, or all, of the heat conducted across the CMB. Here this assumption is explored using numerical convection models in idealized geometries that lead to a single plume under steady-state or near steady state conditions. Plume heat transport is calculated for different internal heating rates using two methods and compared to the CMB heat flux. For these conditions, it is found that the heat flux transported by plumes in the upper mantle is only a fraction of the core heat flux and, thus, core heat flow estimates derived from observed hotspots could be multiplied by a factor of several.  相似文献   

17.
Summary The problem of expressing analytically the magnetic torque, acting on the electrically conducting part of the Earth's mantle, is treated as a function of the system of convection on the surface of the core. The changes of velocities in the system of convection are estimated for decadic changes of the Earth's rotation and for the perturbation of the Earth's rotation in 1897. As regards the decadic changes of the Earth's rotation a change of velocity in the system of convection at the surface of the core of the order of 10–4 m/s corresponds, and as regards the perturbation of the Earth's rotation in 1897 (10–3 s/year) a change of velocity of 10–3 m/s reduced to the whole surface of the core corresponds, and 10–2 m/s corresponds for the region of the focus of the world geomagnetic anomaly (dimension of this region is 106 m).  相似文献   

18.
Thermal convection in the mantle is caused by the heat transported upwards from the core and by the heat produced by the internal radioactive sources. According to the data on the heat transfer by the mantle plumes and geochemical evidence, only 20% of the total heat of the Earth is supplied to the mantle from the core, whereas most of the heat is generated by the internal sources. Along with the models that correctly allow for the internal heat sources, there are also many publications (including monographs) on the models of mantle convection that completely ignore the internal heating or the heat flux from below. In this study, we analyze to what extent these approximations could be correct. The analytical distributions of temperature and heat flux in the case of internal heating without convection and the results of the numerical modeling for convection with different intensity are presented. It is shown that the structure of thermal convection is governed by the distribution of the heat flux in the mantle but not by the heat balance, as it is typically implicitly assumed in most works. Heat production by the internal sources causes the growth of the heat flux as a function of radius. However, in the spherical mantle of the Earth, the heat flux decreases with radius due to the geometry. It turned out that with the parameters of the present Earth, both these effects compensate each other to a considerable extent, and the resulting heat flux turns out to be nearly constant as a function of radius. Since the structure of the convective flows in the mantle is determined by the distributions of heat flux and total heat flux, in the Cartesian models of the mantle convection the effective contribution of internal heating is small, and ignoring the heat flux from the core significantly distorts the structure of the convective currents and temperature distributions in the mantle.  相似文献   

19.
SNREI地球对表面负荷和引潮力的形变响应   总被引:5,自引:2,他引:5       下载免费PDF全文
基于PREM模型,利用非自转、球型分层、各向同性、理想弹性(SNREI)地球的形变理论,讨论了地球在不同驱动力作用下的形变特征.采用地球位移场方程的4阶Runge Kutta数值积分方法,解算了在表面负荷和日月引潮力作用下地球表面和内部形变和扰动位,并给出了地球表面的负荷Love数和体潮Love数.结果表明在固体内核中的形变很小,液核中低阶(n<10)负荷位移随半径的变化非常复杂.当负荷阶数超过10时,地核中的形变和扰动位都很小,地球的响应主要表现为弹性地幔中的径向位移,且随深度增加急剧减弱,负荷阶数越高这种衰减的速度越快.SNREI地球的地表负荷Love数和体潮Love数与信号频率的依赖关系很弱.在计算体潮Love数的过程中,采用了SNREI地球的运动方程,同时考虑了由于地球自转和椭率引起的核幔边界附加压力,这一近似处理方法获得的结果能很好地符合地球表面重力潮汐实际观测结果.  相似文献   

20.
Summary The effect of the electrical conductivity of the Earth's mantle on the non-stationary Ekman-Hartman hydromagnetic boundary layer is investigated under the conditions in the Earth's core. It is shown that under an impulsive change of rotation of the mantle Alfvén waves can only be excited if the Ekman-Hartman hydromagnetic boundary layer is in a non-stationary state, i.e. at a time when its structure is developing. The intensity of the Alfvén waves is very small, because the excitation is more of a mechanic nature than magnetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号