首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In this article, the quadrupole method is implemented in order to simulate the effects of heterogeneities on one dimensional advective and diffusive transport of a passive solute in porous media. Theoretical studies of dispersion in heterogeneous stratified media can bring insight into transport artefacts linked to scale effects and apparent dispersion coefficients. The quadrupole method is an efficient method for the calculation of transient response of linear systems. It is based here on the Laplace transform technique. The analytical solutions that can be derived by this method assists understanding of upscaled parameters relevant to heterogeneous porous media.First, the method is developed for an infinite homogeneous porous medium. Then, it is adapted to a stratified medium where the fluid flow is perpendicular to the interfaces. The first heterogeneous medium studied is composed of two semi-infinite layers perpendicular to the flow direction each having different transport properties. The concentration response of the medium to a Dirac injection is evaluated. The case studied emphasises the importance in the choice of the boundary conditions.In the case of a periodic heterogeneous porous medium, the concentration response of the medium is evaluated for different numbers of unit-cells. When the number of unit cells is great enough, depending on the transport properties of each layer in the unit cell, an equivalent homogeneous behaviour is reached. An exact determination of the transport properties (equivalent dispersion coefficient) of the equivalent homogeneous porous medium is given.  相似文献   

2.
《Advances in water resources》2007,30(6-7):1408-1420
Non-invasive magnetic resonance microscopy (MRM) methods are applied to study biofouling of a homogeneous model porous media. MRM of the biofilm biomass using magnetic relaxation weighting shows the heterogeneous nature of the spatial distribution of the biomass as a function of growth. Spatially resolved MRM velocity maps indicate a strong variation in the pore scale velocity as a function of biofilm growth. The hydrodynamic dispersion dynamics for flow through the porous media is quantitatively characterized using a pulsed gradient spin echo technique to measure the propagator of the motion. The propagator indicates a transition in transport dynamics from a Gaussian normal diffusion process following a normal advection diffusion equation to anomalous transport as a function of biofilm growth. Continuous time random walk models resulting in a time fractional advection diffusion equation are shown to model the transition from normal to anomalous transport in the context of a conceptual model for the biofouling. The initially homogeneous porous media is transformed into a more complex heterogeneous porous media by the biofilm growth.  相似文献   

3.
Song‐Bae Kim 《水文研究》2006,20(5):1177-1186
A mathematical model to describe bacterial transport in saturated porous media is presented. Reversible/irreversible attachment and growth/decay terms were incorporated into the transport model. Additionally, the changes of porosity and permeability due to bacterial deposition and/or growth were accounted for in the model. The predictive model was used to fit the column experimental data from the literature, and the fitting result showed a good match with the data. Based on the parameter values determined from the literature experimental data, numerical experiments were performed to examine bacterial sorption and/or growth during bacterial transport through saturated porous media. In addition, sensitivity analysis was performed to investigate the impact of key model parameters for bacterial transport on the permeability and porosity of porous media. The model results show that the permeability and porosity of porous media could be altered due to bacterial deposition and growth on the solid matrix. However, variation of permeability due to bacterial growth was trivial compared with natural permeability variation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This pore-scale modeling study in saturated porous media shows that compound-specific effects are important not only at steady-state and for the lateral displacement of solutes with different diffusivities but also for transient transport and solute breakthrough. We performed flow and transport simulations in two-dimensional pore-scale domains with different arrangement of the solid grains leading to distinct characteristics of flow variability and connectivity, representing mildly and highly heterogeneous porous media, respectively. The results obtained for a range of average velocities representative of groundwater flow (0.1–10 m/day), show significant effects of aqueous diffusion on solute breakthrough curves. However, the magnitude of such effects can be masked by the flux-averaging approach used to measure solute breakthrough and can hinder the correct interpretation of the true dilution of different solutes. We propose, as a metric of mixing, a transient flux-related dilution index that allows quantifying the evolution of solute dilution at a given position along the main flow direction. For the different solute transport scenarios we obtained dilution breakthrough curves that complement and add important information to traditional solute breakthrough curves. Such dilution breakthrough curves allow capturing the compound-specific mixing of the different solutes and provide useful insights on the interplay between advective and diffusive processes, mass transfer limitations, and incomplete mixing in the heterogeneous pore-scale domains. The quantification of dilution for conservative solutes is in good agreement with the outcomes of mixing-controlled reactive transport simulations, in which the mass and concentration breakthrough curves of the product of an instantaneous transformation of two initially segregated reactants were used as measures of reactive mixing.  相似文献   

5.
Several laboratory experiments were conducted to identify the validity domain under which a Hele–Shaw cell may serve as a suitable analogue for variable-density flow in homogeneous porous media. These experiments are concerned with the injection into a Hele–Shaw cell of a salt solute at different concentrations and flow rates. The experimental data analysis highlighted two types of mixing zone shape: with and without ‘fingers’. A semi-empirical criterion based on the ratio between gravitational and injected velocities was used to forecast the change from one shape to another. The experimental data were then analysed using numerical solutions of the classical Hele–Shaw equations by taking into account an anisotropic dispersion tensor whose components depend on fluid density gradients. The good agreement between experimental and numerical results clearly shows that the validity of the concentration-dependent dispersion tensor strongly depends on the local Péclet number variation. For Péclet numbers lower 50, the Hele–Shaw cell can be considered as an analogous model of a homogeneous and isotropic 2D porous medium. It can be successfully used to study, at the laboratory scale, the gravitational instability effects induced by flow and transport phenomena into a porous medium.  相似文献   

6.
A three-dimensional, reactive numerical flow model is developed that couples chemical reactions with density-dependent mass transport and fluid flow. The model includes equilibrium reactions for the aqueous species, kinetic reactions between the solid and aqueous phases, and full coupling of porosity and permeability changes that result from precipitation and dissolution reactions in porous media. A one-step, global implicit approach is used to solve the coupled flow, transport and reaction equations with a fully implicit upstream-weighted control volume discretization. The Newton–Raphson method is applied to the discretized non-linear equations and a block ILU-preconditioned CGSTAB method is used to solve the resulting Jacobian matrix equations. This approach permits the solution of the complete set of governing equations for both concentration and pressure simultaneously affected by chemical and physical processes. A series of chemical transport simulations are conducted to investigate coupled processes of reactive chemical transport and density-dependent flow and their subsequent impact on the development of preferential flow paths in porous media. The coupled effects of the processes driving flow and the chemical reactions occurring during solute transport is studied using a carbonate system in fully saturated porous media. Results demonstrate that instability development is sensitive to the initial perturbation caused by density differences between the solute plume and the ambient groundwater. If the initial perturbation is large, then it acts as a “trigger” in the flow system that causes instabilities to develop in a planar reaction front. When permeability changes occur due to dissolution reactions occurring in the porous media, a reactive feedback loop is created by calcite dissolution and the mixed convective transport of the system. Although the feedback loop does not have a significant impact on plume shape, complex concentration distributions develop as a result of the instabilities generated in the flow system.  相似文献   

7.
The dynamics of porosity evolution are explored during mineral precipitation that is induced by the mixing of two fluids of different compositions. During mineral precipitation in geological formations, the physical parameters that characterize the porous matrix, such as porosity and specific surface area, can change significantly. A series of coupled equations that determine the changes in porosity is outlined and solved for a 2D model domain using a finite element scheme. Using model parameters equivalent to those for calcite precipitation in a saline system, the evolution of porosity is examined for two types of porous media: (1) an initially homogeneous system and (2) a heterogeneous system containing high porosity regions that serve initially as preferential flow paths. In addition, the influence of two different expressions that relate specific surface area to porosity is explored. The simulations in both domains indicated that porosity was reduced primarily in the regions in which significant degrees of mixing occurred. Although an effective barrier was created in these regions, the fluids bypassed the clogged areas allowing precipitation to continue farther “downstream”. Furthermore, mixing-induced precipitation can account for systems in which some high porosity regions are filled while others remain almost unchanged. Thus, mixing-induced precipitation represents a viable mechanism for the infilling of pores in fractured and porous rocks. The simulations also demonstrate that the choice of functional form for specific surface area plays an important role in controlling porosity patterns by influencing both the kinetics of precipitation and the permeability of the porous medium. As specific surface area is currently one of the least constrained parameters in models of porosity evolution, this result highlights the need for future experimental studies in this field of research.  相似文献   

8.
Three-dimensional analytical solutions for solute transport in saturated, homogeneous porous media are developed. The models account for three-dimensional dispersion in a uniform flow field, first-order decay of aqueous phase and sorbed solutes with different decay rates, and nonequilibrium solute sorption onto the solid matrix of the porous formation. The governing solute transport equations are solved analytically by employing Laplace, Fourier and finite Fourier cosine transform techniques. Porous media with either semi-infinite or finite thickness are considered. Furthermore, continuous as well as periodic source loadings from either a point or an elliptic source geometry are examined. The effect of aquifer boundary conditions as well as the source geometry on solute transport in subsurface porous formations is investigated.  相似文献   

9.
Determination of aqueous phase diffusion coefficients of solutes through porous media is essential for understanding and modeling contaminant transport. Prediction of diffusion coefficients in both saturated and unsaturated zones requires knowledge of tortuosity and constrictivity factors. No methods are available for the direct measurement of these factors, which are empirical in their definition. In this paper, a new definition for the tortuosity factor is proposed, as the real to ideal interfacial area ratio. We define the tortuosity factor for saturated porous media (tau5) as the ratio S/S(o) (specific surface of real porous medium to that of an idealized capillary bundle). For unsaturated media, tortuosity factor (tau(a)) is defined as a(aw)/a(aw),o (ratio of the specific air-water interfacial area of real and the corresponding idealized porous medium). This tortuosity factor is suitably measured using sorptive tracers (e.g., nitrogen adsorption method) for saturated media and interfacial tracers for unsaturated media. A model based on this new definition of tortuosity factors, termed the interfacial area ratio (IAR) model, is presented for the prediction of diffusion coefficients as a function of the degree of water saturation. Diffusion coefficients and diffusive resistances measured in a number of saturated and unsaturated granular porous media, for solutes in dilute aqueous solutions, agree well with the predictions of the IAR model. A comparison of permeability of saturated sands estimated based on tau(s) and the same based on the Kozeny-Carman equation confirm the usefulness of the tau(s) parameter as a measure of tortuosity.  相似文献   

10.
In the dispersion theory, a linear relationship has been verified between the coefficient of hydrodynamic dispersion and water velocity, both in saturated and in unsaturated porous media. But for unsaturated soils the variability of flow directions and microscopic velocities can be larger than in saturated soils because of the lower degree of water saturation. This leads to an increased dispersion. Therefore, relationships between water content and relative water velocity fluctuations and water content together with the coefficient of dispersivity in unsaturated porous media respectively have been investigated systematically by displacement experiments in glass beads and coarse-textured sandy soil columns. The breakthrough curves (BTCs) of chloride showed that an increase of solute mixing with a decrease of water content was caused by an increase of flow velocity fluctuations for different pathways. In order to explain the observed tailing effect in unsaturated flow, two mathematical models were used to fit theoretically derived nonlinear functions of water content dependent dispersivities for both porous media. The close agreement between the observed and computed results suggests that the theoretical model of hydrodynamic dispersion can be extended to transport in unsaturated porous media, providing that BTCs of the effluent water are used to estimate representative dispersivity parameters of soils.  相似文献   

11.
二维格子气自动机模拟孔隙介质的电传输特性   总被引:14,自引:1,他引:13       下载免费PDF全文
本文应用2-D格子气自动机模拟饱和油水两相的多孔介质的导电特性。在油水两相界面处,引入反射与透射系数来决定粒子的运动状态,通过调节反射与透射系数就可以改变油水两相的导电性差异。用模拟结果考察Archie公式的地层因素F=R0/Rw和电阻率增大系数I=Rt/R0,其中,R0为百分之百饱和水时的岩石电阻率,Rw为水的电阻率,Rt为不同流体饮和度时的岩石电阻率。结果表明F与孔隙度φ间,I与含水饱和度间都存在幂关系,并可以表示为F=aφ-m,I=bS-nw模拟结果同时证实:公式中的参数a、m的变化反映了孔隙微观结构的变化,参数b、n主要受孔隙度大小和油相分布状态的影响。  相似文献   

12.
This work proposes a complete method for automatic inversion of data from hydraulic interference pumping tests based on both homogeneous and fractal dual-medium approaches. The aim is to seek a new alternative concept able to interpret field data, identify macroscopic hydraulic parameters and therefore enhance the understanding of flow in porous fractured reservoirs. Because of its much contrasted sensitivities to parameters, the dual-medium approach yields an ill-posed inverse problem that requires a specific optimization procedure including the calculation of analytical sensitivities and their possible re-scaling. Once these constraints are fulfilled, the inversion proves accurate, provides unambiguous and reliable results. In the fractal context inverting several drawdown curves from different locations at the same time reveals more accurate. Finally, hydraulic parameters drawn from inversion should be taken into account to improve in various situations the conditioning of up-scaled flow in fractured rocks.  相似文献   

13.
Flow velocity is a basic hydraulic property of surface flows and its precise calculation is necessary for process based hydrological models, such as soil erosion and rill development models, as well as for modelling sediment and solute transport by runoff. This study presents a technique based on infrared thermography to visualize very shallow flows and allow a quantitative measurement of overland flow and rill flow velocities. Laboratory experiments were conducted to compare the traditional dye tracer technique with this new thermal tracer technique by injecting a combined tracer (heated dye) into shallow flowing surface water. The leading edge tracer velocities estimated by means of infrared video and by the usual real imaging video were compared. The results show that thermal tracers can be used to estimate both overland and rill flow velocities, since measurements are similar to those resulting from using dye tracers. The main advantage of using thermography was the higher visibility of the leading edge of the injected tracer compared with the real image videos. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
 A stochastic simulation is performed to study multiphase flow and contaminant transport in fractal porous media with evolving scales of heterogeneity. Numerical simulations of residual NAPL mass transfer and subsequent transport of dissolved and/or volatilized NAPL mass in variably saturated media are carried out in conjunction with Monte Carlo techniques. The impact of fractal dimension, plume scale and anisotropy (stratification) of fractal media on relative dispersivities is investigated and discussed. The results indicate the significance of evolving scale of porous media heterogeneity to the NAPL transport in the subsurface. In general, the fractal porous media enhance the dispersivities of NAPL mass plume transport in both the water phase and the gas phase while the influence on the water phase is more significant. The porous media with larger fractal dimension have larger relative dispersivities. The aqueous horizontal dispersivity exhibits a most significant increase against the plume scale.  相似文献   

15.
Based on a dye tracer experiment in a sand tank we addressed the problem of local dispersion of conservative tracers in the unsaturated zone. The sand bedding was designed to have a defined spatial heterogeneity with a strong anisotropy. We estimated the parameters that characterize the local dispersion and dilution from concentration maps of a high spatial and temporal resolution obtained by image analysis. The plume spreading and mixing behavior was quantified on the basis of the coefficient of variation of the concentration and of the dilution index. The heterogeneous structure modified the flow pattern depending on water saturation. The shape of the tracer plumes revealed the structural signature of the sand bedding at low saturation only. In this case pronounced preferential flow was observed. At higher flow rates the structure remained hidden by a spatially almost homogeneous behavior of the plumes. In this context, we mainly discuss the mechanism of re-distributing a finite mass of inert solutes over a large volume, due to macro- and micro-heterogeneities of the structure.  相似文献   

16.
Modelling pollutant transport in water is one of the core tasks of computational hydrology, and various physical models including especially the widely used nonlocal transport models have been developed and applied in the last three decades. No studies, however, have been conducted to systematically assess the applicability, limitations and improvement of these nonlocal transport models. To fill this knowledge gap, this study reviewed, tested and improved the state-of-the-art nonlocal transport models, including their physical background, mathematical formula and especially the capability to quantify conservative tracers moving in one-dimensional sand columns, which represents perhaps the simplest real-world application. Applications showed that, surprisingly, neither the popular time-nonlocal transport models (including the multi-rate mass transfer model, the continuous time random walk framework and the time fractional advection-dispersion equation), nor the spatiotemporally nonlocal transport model (ST-fADE) can accurately fit passive tracers moving through a 15-m-long heterogeneous sand column documented in literature, if a constant dispersion coefficient or dispersivity is used. This is because pollutant transport in heterogeneous media can be scale-dependent (represented by a dispersion coefficient or dispersivity increasing with spatiotemporal scales), non-Fickian (where plume variance increases nonlinearly in time) and/or pre-asymptotic (with transition between non-Fickian and Fickian transport). These different properties cannot be simultaneously and accurately modelled by any of the transport models reviewed by this study. To bypass this limitation, five possible corrections were proposed, and two of them were tested successfully, including a time fractional and space Hausdorff fractal model which minimizes the scale-dependency of the dispersion coefficient in the non-Euclidean space, and a two-region time fractional advection-dispersion equation which accounts for the spatial mixing of solute particles from different mobile domains. Therefore, more efforts are still needed to accurately model transport in non-ideal porous media, and the five model corrections proposed by this study may shed light on these indispensable modelling efforts.  相似文献   

17.
Modeling unsaturated flow in porous media requires constitutive relations that describe the soil water retention and soil hydraulic conductivity as a function of either potential or water content. Often, the hydraulic parameters that describe these relations are directly measured on small soil cores, and many cores are needed to upscale to the entire heterogeneous flow field. An alternative to the forward upscaling method using small samples are inverse upscaling methods that incorporate soft data from geophysical measurements observed directly on the larger flow field. In this paper, we demonstrate that the hydraulic parameters can be obtained from cross borehole ground penetrating radar by measuring the first arrival travel time of electromagnetic waves (represented by raypaths) from stationary antennae during a constant flux infiltration experiment. The formulation and coupling of the hydrological and geophysical models rely on a constant velocity wetting front that causes critical refraction at the edge of the front as it passes by the antennae. During this critical refraction period, the slope of the first arrival data can be used to calculate (1) the wetting velocity and (2) the hydraulic conductivity of the wet (or saturated) soil. If the soil is undersaturated during infiltration, then an estimate of the saturated water content is needed before calculating the saturated hydraulic conductivity. The hydraulic conductivity value is then used in a nonlinear global optimization scheme to estimate the remaining two parameters of a Broadbridge and White soil.  相似文献   

18.
We address the question of how one can combine theoretical and numerical modeling approaches with limited measurements from laboratory flow cell experiments to realistically quantify salient features of complex mixing-driven multicomponent reactive transport problems in porous media. Flow cells are commonly used to examine processes affecting reactive transport through porous media, under controlled conditions. An advantage of flow cells is their suitability for relatively fast and reliable experiments, although measuring spatial distributions of a state variable within the cell is often difficult. In general, fluid is sampled only at the flow cell outlet, and concentration measurements are usually interpreted in terms of integrated reaction rates. In reactive transport problems, however, the spatial distribution of the reaction rates within the cell might be more important than the bulk integrated value. Recent advances in theoretical and numerical modeling of complex reactive transport problems [De Simoni M, Carrera J, Sanchez-Vila X, Guadagnini A. A procedure for the solution of multicomponent reactive transport problems. Water Resour Res 2005;41:W11410. doi: 10.1029/2005WR004056, De Simoni M, Sanchez-Vila X, Carrera J, Saaltink MW. A mixing ratios-based formulation for multicomponent reactive transport. Water Resour Res 2007;43:W07419. doi: 10.1029/2006WR005256] result in a methodology conducive to a simple exact expression for the space–time distribution of reaction rates in the presence of homogeneous or heterogeneous reactions in chemical equilibrium. The key points of the methodology are that a general reactive transport problem, involving a relatively high number of chemical species, can be formulated in terms of a set of decoupled partial differential equations, and the amount of reactants evolving into products depends on the rate at which solutions mix. The main objective of the current study is to show how this methodology can be used in conjunction with laboratory experiments to properly describe the key processes that occur in a complex, geochemically-active system under chemical equilibrium conditions. We model three CaCO3 dissolution experiments reported in Singurindy et al. [Singurindy O, Berkowitz B, Lowell RP. Carbonate dissolution and precipitation in coastal environments: Laboratory analysis and theoretical consideration. Water Resour Res 2004;40:W04401. doi: 10.1029/2003WR002651, Singurindy O, Berkowitz B, Lowell RP. Correction to Carbonate dissolution and precipitation in coastal environments: laboratory analysis and theoretical consideration. Water Resour Res 2005;41:W11701. doi: 10.1029/2005WR004433], in which saltwater and freshwater were mixed in different proportions. The integrated reaction rate within the cell estimated from the experiments are modeled independently by means of (a) a state-of-the-art reactive transport code, and (b) the uncoupled methodology of [12, 13], both of which use dispersivity as a single, adjustable parameter. The good agreement between the results from both methodologies demonstrates the feasibility of using simple solutions to design and analyze laboratory experiments involving complex geochemical problems.  相似文献   

19.
Changes in the water table level result in variable water saturation and variable hydrological fluxes at the interface between the unsaturated and saturated zone. This may influence the transport and fate of contaminants in the subsurface. The objective of this study was to examine the impact of a decreasing and an increasing water table on solute transport. We conducted tracer experiments at downward flow conditions in laboratory columns filled with two different uniform porous media under static and transient flow conditions either increasing or decreasing the water table. Tracer breakthrough curves were simulated using a mobile–immobile transport model. The resulting transport parameters were compared to identify dominant transport processes. Changes in the water table level affected dispersivities and mobile water fractions depending on the direction of water table movement and the grain size of the porous media. In fine glass beads, the water flow velocity was similar to the decline rate of the water table, and the mobile water fraction was decreased compared with steady‐state saturated conditions. However, immobile water was negligible. In coarse glass beads, water flow was faster because of fingered flow in the unsaturated part, and the mobile water fraction was smaller than in the fine material. Here, a rising water table led to an even smaller mobile water fraction and increased solute spreading because of diffusive interaction with immobile water. We conclude that changes of the water table need to be considered to correctly simulate transport in the subsurface at the transition of the unsaturated–saturated zone. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In this work, numerical modeling is used to evaluate and interpret a series of detailed and well‐controlled two‐dimensional bench‐scale conservative tracer tank experiments performed to investigate transverse mixing in porous media. The porous medium used consists of a fine matrix and a more permeable lens vertically aligned with the tracer source and the flow direction. A sensitivity analysis shows that the tracer distribution after passing the lens is only slightly sensitive to variations in transverse dispersivity, but strongly sensitive to the contrast of hydraulic conductivities. A unique parameter set could be calibrated to closely fit the experimental observations. On the basis of calibrated and validated model, synthetic experiments with different contrasts in hydraulic conductivity and more complex setups were performed and the efficiency of mixing evaluated. Flux‐related dilution indices derived from these simulations show that the contrasts in hydraulic conductivity between matrix and high‐permeable lenses as well as the spatial configuration of tracer plumes and lenses dominate mixing, rather than the actual pore scale dispersivities. These results indicate that local material distributions, the magnitude of permeability contrasts, and their spatial and scale relation to solute plumes are more important for macro‐scale transverse dispersion than the micro‐scale dispersivities of individual materials. Local material characterization by thorough site investigation hence is of utmost importance for the evaluation of mixing‐influenced or ‐governed problems in groundwater, such as tracer test evaluation or an assessment of contaminant natural attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号