首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
华北降水年代际变化特征及相关的海气异常型   总被引:62,自引:6,他引:56       下载免费PDF全文
利用近50年华北地区26个站逐月降水观测资料和全球大气海洋分析资料,分析了华北降水的年代际变化特征及其和全球海气系统年代际变化的关系.对华北降水距平指数变化分析表明,近50年来华北降水具有减少的总体趋势,叠加在该趋势之上的是年代际变化,其中1965年和1980年发生了两次跃变,使得20世纪80年代干旱尤为严重.在对华北地区降水年代际变化特征分析的基础上,揭示了与华北降水年代际异常相伴随的大气环流和上层海洋热力异常型.结果表明,华北降水年代际异常与太平洋上层海洋热力状况异常有显著关系,主要表现为太平洋年代际振荡(PDO)与华北降水异常的相关.在年代际时间尺度上,华北干旱与上层海洋热力及大气环流异常的配置关系如下:当华北地区干旱时,则热带中东太平洋海温偏高,北太平洋中部海温偏低,即太平洋上主要表现为PDO暖位相,全球大部分地区(包括华北地区)气温偏高,青藏高原地区气温偏低,日本北部及东西伯利亚气压异常偏低,华北及其以南大片地区气压偏高,华北地区由异常西北风控制,不利于水汽向华北地区输送.  相似文献   

2.
The El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) are two important climate oscillations that affect hydrological processes at global and regional scales. However, few studies have attempted to identify their single and combined influences on water discharge variability at multiple timescales. In this study, we examine temporal variation in water discharge from the Yangtze River into the sea and explore the influence of the ENSO and the PDO on multiscale variations in water discharge over the last century. The results of the wavelet transform analysis of the water discharge series show significant periodic variations at the interannual timescale of 2 to 8 years and the decadal timescale of 15 to 17 years. Water discharge tended to be higher during the La Niña–PDO cold phase and lower during the El Niño–PDO warm phase. The results of the cross wavelet spectrum and wavelet coherence analyses confirm the relationship between the interannual (i.e., 2 to 8 years) and decadal (i.e., 15 to 17 years) periodicities in water discharge with the ENSO and the PDO, respectively. As an important large‐scale climate background, the PDO can modulate the influence of the ENSO on water discharge variability. In general, the warm PDO enhances the influence of El Niño events, and the cold PDO enhances the influence of La Niña events. Our study is helpful in understanding the influencing mechanism of climate change on hydrological processes and provides an important scientific guideline for water resource prediction and management.  相似文献   

3.
The variability of stratospheric planetary waves and their possible connection with the 11-year solar cycle forcing have been investigated using annual-mean temperatures for the period of 1958–2001 derived from two reanalysis data sets. The significant planetary waves (wavenumbers 1–3) can be identified in the northern mid-high latitudes (55–75°N) in the stratosphere using this data. Comparisons with satellite-retrieved products from the Microwave Sounding Unit (MSU) confirm the significant planetary wave variability seen in the reanalyses. A planetary wave amplitude index (PWAI) is defined to indicate the strength of the stratospheric planetary waves. The PWAI is derived from Fourier analysis of the temperature field for wavenumbers 1–3 and averaged over 55–75°N latitude and the 70–20 hPa layers. The results include two meaningful inter-annual oscillations (2- and 8-year) and one decadal trend (16-year) that was derived from wavelet analysis. The stratospheric temperature structure of the wave amplitudes appear associated with the Arctic Oscillation (AO) which explicitly changed with the PWAI. The temperature gradients between the polar and mid-high latitudes show opposite tendencies between the top-10 strong and weak wave regimes.The variation of the planetary wave amplitude appears closely related to the solar forcing during the recent four solar cycles (20–23). The peak of the 2-year oscillation occurs synchronously with solar minimum, and is consistent with the negative correlation between the PWAI and the observed solar UV irradiance. The UV changes between the maxima and minima of the 11-year solar cycle impact the temperature structure in the middle-lower stratosphere in the mid-high latitudes and hence influence the planetary waves. During solar maximum, the dominant influence appears to be exerted through changes in static stability, leading to a reduction in planetary wave amplitude. During solar minimum, the dominant influence appears to be exerted through changes in the meridional temperature gradient and vertical wind shear, leading to an enhancement of planetary wave amplitude.  相似文献   

4.
van Loon et al. [2007. Coupled air–sea response to solar forcing in the Pacific region during northern winter. Journal of Geophysical Research 112, D02108, doi:10.1029/2006JD007378] showed that the Pacific Ocean in northern winter is sensitive to the influence of the sun in its decadal peaks. We extend this study by three solar peaks to a total of 14, examine the response in the stratosphere, and contrast the response to solar forcing to that of cold events (CEs) in the Southern Oscillation. The addition of three solar peak years confirms the earlier results. That is, in solar peak years the sea level pressure (SLP) is, on average, above normal in the Gulf of Alaska and south of the equator, stronger southeast trades blow across the Pacific equator and cause increased upwelling and thus anomalously lower sea surface temperatures (SSTs). Since the effect on the Pacific climate system of solar forcing resembles CEs in the Southern Oscillation, we compare the two and note that, even though their patterns appear similar in some ways, they are particularly different in the stratosphere and are thus due to separate processes. That is, in July–August (JA) of the year leading into January–February (JF) of the solar peak years, the Walker cell expands in the Pacific troposphere, and the stratospheric wind anomalies are westerly below 25 hPa and easterly above, whereas this signal in the stratosphere is absent in CEs. Thus the large-scale east–west tropical atmospheric (Walker) circulation is enhanced, though not to the extent that it is in CEs in the Southern Oscillation, and the solar influence thus appears as a strengthening of the climatological mean regional precipitation maxima in the tropical Pacific. Additionally, CEs have a 1-year evolution, while the response to solar peaks extends across 3 years such that the signal in the Pacific SLP of the solar peaks is similar but weaker in the year leading into the peak and in the year after the peak. The concurrent negative SST anomalies develop during the year before the solar peak, and after the peak the anomalies are still present but are waning. In the stratosphere in solar peaks, the equatorial quasi-biennial oscillation (QBO) is amplified when it is in its westerly phase in the lower stratosphere and easterly phase above; and the QBO is suppressed when in its easterly phase below–westerly phase above. Such an association is not evident in CEs.  相似文献   

5.
We present time series of January–May mean mesosphere/lower thermosphere (MLT) mean winds and planetary wave (PW) proxies over Europe together with stratospheric stationary planetary waves (SPW) at 50°N and time series of European ozone laminae occurrence. The MLT winds are connected with stratospheric PW and laminae at time scales of several years to decades. There is a tendency for increased wave activity after 1990, together with more ozone laminae and stronger MLT zonal winds. However, possible coupling processes are not straightforward. While mean MLT winds before the 1990s show similar interannual variations than stratospheric PW at 100 hPa, later a tendency towards a connection of the MLT with the middle stratosphere SPW is registered. There is also a tendency for a change in the correlation between lower and middle stratosphere SPW, indicating that coupling processes involving the European middle atmosphere from the lower stratosphere to the mesopause region have changed.  相似文献   

6.
Decadal variability and trends of the isothermal layer depth (ILD), mixed layer depth (MLD), and barrier layer thickness (BLT) were analyzed for the tropical Pacific during 1979–2015. The decadal variability of ILD, MLD, and BLT shows a close connection with the Pacific Decadal Oscillation (PDO). At PDO positive phase, the eastward shift of precipitation and weakened trade winds result in thinner BLT in western Pacific and thicker BLT in central and eastern Pacific. The situation is reversed at PDO negative phase. The differences in BLT can be up to 9–15 m. The spatial distributions of decadal trends of ILD and MLD are complex, but a thickening of BLT in the western tropical Pacific is clearly present. The raw trends of ILD, MLD, and BLT averaged in the tropical Pacific (30° N–30° S, 120° E–75° W) from 1979 to 2015 are 1.62, 1.20, and 0.51 m per decade, respectively. PDO can explain about 25% of the increasing trends of BLT, while El Niño-Southern Oscillation (ENSO) only explains about 1.7%. Global warming and/or variability at longer time scales is responsible for the remaining increasing trends. The BLT change is related to the warming and freshening of the western Pacific warm pool in recent decades. The ocean-atmosphere interactions about trade winds, wind-driven ocean circulation, temperature, and precipitation/evaporation are discussed.  相似文献   

7.
本文通过分析1957~2002年平流层爆发性增温(SSW)的环流特征,研究平流层爆发性增温可能对我国天气气候的影响.平流层爆发性增温发生后平流层高纬地区有异常的环流变化,但是这种变化并不仅局限于平流层内部,其产生的环流异常能够向下传播,并对对流层的天气和气候产生影响.研究发现,平流层出现强爆发性增温后,平流层异常温度场和位势高度场在中、高纬度形成AO型振荡并向下传播,使得对流层低层西伯利亚高压增强、阿留申低压加深,500 hPa东亚大槽加深且偏西,导致东亚冬季风增强,我国北部大部分地区气温偏低.而在爆发性增温前,强行星波扰动使得东亚大槽加深,西伯利亚高压和阿留申低压同时增强,也可能导致东亚冬季风偏强.El Nio可能激发出强行星波,有利于强SSW事件的发生.通过上述的两个过程可能造成东亚冬季风的加强,这将会对"El Nio事件通过对流层过程而引起东亚冬季风减弱"的结论有一定影响. 因此,ENSO事件影响东亚冬季风及中国的天气气候存在不止一种途径,具体影响情况应该是几种途径的综合结果.  相似文献   

8.
Seasonal and interannual variations of sea surface temperature (SST) in the Banda Sea are studied for the period of January 1985 through December 2007. A neural network pattern recognition approach based on self-organizing map (SOM) has been applied to monthly SST from the Advanced Very High Resolution Radiometer (AVHRR) Oceans Pathfinder. The principal conclusions of this paper are outlined as follows. There are three different patterns associated with the variations in the monsoonal winds: the southeast and northwest monsoon patterns, and the monsoon-break patterns. The southeast monsoon pattern is characterized by low SST due to the prevailing southeasterly winds that drive Ekman upwelling. The northwest monsoon pattern, on the other hand, is one of high SST distributed uniformly in space. The monsoon-break pattern is a transitional pattern between the northwest and southeast monsoon patterns, which is characterized by moderate SST patterns. On interannual time-scale, the SST variations are significantly influenced by the El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) phenomena. Low SST is observed during El Niño and/or positive IOD events, while high SST appears during La Niña event. Low SST in the Banda Sea during positive IOD event is induced by upwelling Kelvin waves generated in the equatorial Indian Ocean which propagate along the southern coast of Sumatra and Java before entering the Banda Sea through the Lombok and Ombai Straits as well as through the Timor Passage. On the other hand, during El Niño (La Niña) events, upwelling (downwelling) Rossby waves associated with off-equatorial divergence (convergence) in response to the equatorial westerly (easterly) winds in the Pacific, partly scattered into the Indonesian archipelago which in turn induce cool (warm) SST in the Banda Sea.  相似文献   

9.
FGOALSg快速耦合模式模拟的北太平洋年代际变率   总被引:5,自引:0,他引:5       下载免费PDF全文
本文分析了由中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)最新发展的FGOALSg快速耦合模式300 a积分模拟结果,通过与多种观测资料的对比分析,讨论了北太平洋年代际变率的时空结构、主要年代际模态的演变特征以及与ENSO的联系等研究内容. 结果表明:该模式能成功模拟出北太平洋年代际变率的主要空间分布特征;模拟的年代际模态具有多时间尺度性,其中最显著的是周期约为10~20 a左右的准20年振荡模态,该模态上层海洋热容量异常的演变过程主要表现为大致沿副热带海洋涡旋做海盆尺度顺时针旋转的特征,相应的大气异常不仅与阿留申低压的变异有关,而且与太平洋-北美PNA)遥相关型以及上游的欧亚大气环流异常有密切关系;模拟的北太平洋年代际变率对年际ENSO循环的发生频率和强度有明显的调制作用. 但模拟的KOE区和阿拉斯加湾SST异常振幅比观测偏强,这与模式海冰偏多、高纬度SST偏冷的误差有关.  相似文献   

10.
The tropical Pacific experienced a sustained warm sea surface condition that started in 2014 and a very strong El Nio event in 2015. One striking feature of this event was the horseshoe-like pattern of positive subsurface thermal anomalies that was sustained in the western-central equatorial Pacific throughout 2014–2015. Observational data and an intermediate ocean model are used to describe the sea surface temperature(SST) evolution during 2014–2015. Emphasis is placed on the processes involved in the 2015 El Nio event and their relationships with SST anomalies, including remote effects associated with the propagation and reflection of oceanic equatorial waves(as indicated in sea level(SL) signals) at the boundaries and local effects of the positive subsurface thermal anomalies. It is demonstrated that the positive subsurface thermal anomaly pattern that was sustained throughout 2014–2015 played an important role in maintaining warm SST anomalies in the equatorial Pacific. Further analyses of the SST budget revealed the dominant processes contributing to SST anomalies during 2014–2015. These analyses provide an improved understanding of the extent to which processes associated with the 2015 El Nio event are consistent with current El Nio and Southern Oscillation theories.  相似文献   

11.
Planetary wave activity at quasi 16-, 10- and 5-day periods has been compared at various altitudes through the middle and upper atmosphere over Halley (76°S, 27°W), Antarctica, during the austral winters of 1997–1999. Observational data from the mesosphere, E-region ionosphere and F-region ionosphere have been combined with stratospheric data from the ECMWF assimilative operational analysis. Fourier and wavelet techniques have shown that the relationship between planetary wave activity at different altitudes is complex and during the winter eastward wind regime does not conform to a simple combination of vertical planetary wave propagation and critical filtering. Strong planetary wave activity in the stratosphere can coincide with a complete lack of wave activity at higher altitudes; conversely, there are also times when planetary wave activity in the mesosphere, E-region or F-region has no apparent link to activity in the stratosphere. The latitudinal activity pattern of stratospheric data tentatively suggests that when the stratospheric signatures are intense over a wide range of latitudes, propagation of planetary waves into the mesosphere is less likely than when the stratospheric activity is more latitudinally restricted. It is possible that, on at least one occasion, 16-day planetary wave activity in the mesosphere may have been ducted to high latitudes from the lower latitude stratosphere. The most consistent feature is that planetary wave activity in the mesosphere is almost always anti-correlated to planetary wave activity in the E-region even though the two are in close physical proximity. The oscillatory critical filtering of vertical gravity wave propagation by planetary waves and the re-generation of the planetary wave component at higher altitudes through subsequent critical filtering or breaking of the gravity waves may provide an explanation for some of these characteristics. Alternatively the nonlinear interaction between planetary waves and tides, indicated in the E-region data, may play a role.  相似文献   

12.
Marine debris in the oceanic realm is an ecological concern, and many forms of marine debris negatively affect marine life. Previous observations and modeling results suggest that marine debris occurs in greater concentrations within specific regions in the North Pacific Ocean, such as the Subtropical Convergence Zone and eastern and western "Garbage Patches". Here we review the major circulation patterns and oceanographic convergence zones in the North Pacific, and discuss logical mechanisms for regional marine debris concentration, transport, and retention. We also present examples of meso- and large-scale spatial variability in the North Pacific, and discuss their relationship to marine debris concentration. These include mesoscale features such as eddy fields in the Subtropical Frontal Zone and the Kuroshio Extension Recirculation Gyre, and interannual to decadal climate events such as El Ni?o and the Pacific Decadal Oscillation/North Pacific Gyre Oscillation.  相似文献   

13.
利用降水、大气环流和海表温度等多种再分析资料和偏相关方法,研究了1951—2007年南太平洋年代际振荡(SPDO)和北太平洋年代际振荡(即PDO,本文称为NPDO)分别与华北盛夏(7—8月)降水在年代际时间尺度上的关系及其可能物理机制.结果表明:在去除SPDO和NPDO的相关性之前,它们与华北盛夏降水的关系均偏弱;但在去除两者相关性之后,SPDO(NPDO)与华北盛夏降水存在显著正(负)相关关系.去除两者相关性之后,当SPDO处于正位相时,热带西北太平洋海温异常显著偏暖,这将在对流层中下层从热带西太平洋—东亚沿岸激发出"气旋-反气旋-气旋"的负位相东亚—太平洋型遥相关(EAP)波列,该波列导致东亚夏季风异常增强,有利于低纬地区水汽输送至华北地区,从而使得华北盛夏降水异常偏多,反之,当SPDO处于负位相时,华北盛夏降水异常将偏少;对NPDO来说,当其处于正位相时,不仅热带西北太平洋异常显著偏冷,而且印度洋大部分海温异常显著偏暖,在两者共同作用下,对流层中下层从热带西太平洋—东亚沿岸出现"反气旋-气旋-反气旋"的正位相EAP波列,这将引起东亚夏季风异常减弱,不利于低纬地区水汽输送至华北地区,华北盛夏降水异常因此减少,反之,当NPDO处于负位相时,华北盛夏降水异常将偏多.  相似文献   

14.
A global in situ analysis and a global ocean simulation are used jointly to study interannual to decadal variability of temperature in the Bay of Biscay, from 1965 to 2003. A strong cooling is obtained at all depths until the mid-1970's, followed by a sustained warming over ~30 years. Strong interannual fluctuations are superimposed on this slow evolution. The fluctuations are intensified at the surface and are weakest at ~500 m. A good agreement is found between the observed and simulated temperatures, in terms of mean values, interannual variability and time correlations. Only the decadal trend is significantly underestimated in the simulation. A comparison to satellite sea surface temperature (SST) data over the last 20 years is also presented. The first mode of interannual variability exhibits a quasi-uniform structure and is related to the inverse winter North Atlantic Oscillation (NAO) index. Regarding the vertical structure, most cool and warm anomalies are generated at the surface, with the strongest ones penetrating down to 700 m and lasting up to 5 years. The complete heat budget from 1965 to 2004 is presented, including the contributions of vertical transport, freshwater flux and surface elevation. Interannual anomalies are mainly generated by the surface heat flux, while oceanic transports may become more important at longer time scales.  相似文献   

15.
热带平流层水汽的准两年周期振荡   总被引:5,自引:0,他引:5       下载免费PDF全文
施春华  郑彬  陈月娟  毕云 《地球物理学报》2009,52(10):2428-2435
分析了1993年到2002年10年间HALOE卫星资料的热带平流层水汽年际变率,结果表明:热带平流层水汽混合比在2~5 hPa、10~30 hPa、30~100 hPa有三组显著的准两年周期振荡(QBO)现象;其中2~5 hPa和10~30 hPa水汽QBO呈反位相循环;30~100 hPa水汽QBO有显著上传特性.SOCRATES3模式模拟和诊断结果表明,热带平流层水汽QBO是在纬向风QBO强迫下产生的次级动力、热力因子和化学作用耦合后的结果:上层主要是环流输送引起,中层是环流输送和温度扰动驱动下的化学作用引起,下层是对流层顶水汽冻结层的温度扰动和环流输送引起.  相似文献   

16.
In a real climate system there are multiple time-space scale atmosphere-ocean interactions, ranging from the planetary scale and basin scale to local air-sea interactions. The Zebiak-Cane (ZC) model with one-level atmosphere described only local air-sea interaction process. Thus the planetary scale Hadley cell and Walker cell anomalies should be introduced in the model. Including the planetary scale Hadley cell anomaly in the model improved the prediction skill. It showed that the improved model provided satisfactory prediction of the equatorial eastern Pacific SST anomaly with lead time of 9–10 months not only for 1970–1991 hut also for 1992–1995.  相似文献   

17.
We investigated the frequency domain relationships between four atmospheric teleconnections (Trans-Niño Index TNI, Pacific Decadal Oscillation PDO, Northern Annular Mode/Arctic Oscillation Index NAM/AO, and Pacific/North American PNA pattern) and water levels in the Great Lakes from 1948 to 2002 by quantifying the coherence between these time series. The levels in all Great Lakes are significantly correlated with the TNI in the frequency range (3–7)−1 cycles year−1, and with the PDO in interdecadal frequencies. The levels in Lakes Superior, Michigan, and Erie are significantly correlated with the PNA pattern in interdecadal frequencies, and the levels in all Great Lakes are significantly correlated with the NAM/AO in interannual frequencies.  相似文献   

18.
The northern portion of the Pacific coastal temperate rainforest (PCTR) is one of the least anthropogenically modified regions on earth and remains in many respects a frontier area to science. Rivers crossing the northern PCTR, which is also an international boundary region between British Columbia, Canada and Alaska, USA, deliver large freshwater and biogeochemical fluxes to the Gulf of Alaska and establish linkages between coastal and continental ecosystems. We evaluate interannual flow variability in three transboundary PCTR watersheds in response to El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and North Pacific Gyre Oscillation (NPGO). Historical hydroclimatic datasets from both Canada and the USA are analyzed using an up-to-date methodological suite accommodating both seasonally transient and highly nonlinear teleconnections. We find that streamflow teleconnections occur over particular seasonal windows reflecting the intersection of specific atmospheric and terrestrial hydrologic processes. The strongest signal is a snowmelt-driven flow timing shift resulting from ENSO- and PDO-associated temperature anomalies. Autumn rainfall runoff is also modulated by these climate modes, and a glacier-mediated teleconnection contributes to a late-summer ENSO-flow association. Teleconnections between AO and freshet flows reflect corresponding temperature and precipitation anomalies. A coherent NPGO signal is not clearly evident in streamflow. Linear and monotonically nonlinear teleconnections were widely identified, with less evidence for the parabolic effects that can play an important role elsewhere. The streamflow teleconnections did not vary greatly between hydrometric stations, presumably reflecting broad similarities in watershed characteristics. These results establish a regional foundation for both transboundary water management and studies of long-term hydroclimatic and environmental change.  相似文献   

19.
众多研究表明,太平洋年代际振荡(PDO)与东亚季风以及我国气候的年代际异常存在显著影响,然而其影响途径及机制仍不明确.本文分别分析了年代际尺度上的太平洋年代际振荡(PDO)、南北半球际大气质量振荡(IHO)以及东亚季风的变化特征,据此建立了三者之间的关系,并进一步分析了它们对我国东部冬夏两季年代际气候异常的影响,所得主要结果包括:(1)PDO与IHO以及东亚季风强度具有明显的年代际波动特征,三者之间存在较好联系,其中它们在70年代和90年代后期处于负位相,而在80年代至90年代中期均处于正位相期.PDO和IHO对全球大范围的低层气温异常,以及大气质量迁移尤其是东半球30°S-50°N区域的质量变化具有显著并且空间一致的影响;(2)当PDO为正位相时,整层大气质量年代际异常呈偶极型的自东半球向西半球太平洋区域输出,造成了南北半球际以及海陆间大气质量迁移,同时引起Walker环流的上升和下沉支位置变化,以及越赤道大气质量流的向北异常输送,并由此建立起东亚季风与PDO和IHO之间的联系;(3)PDO年代际异常与冬夏季节蒙古地区地表气压变动存在密切联系.当PDO指数增强时,冬夏季850hPa均出现显著反气旋风场异常,并在我国东部形成异常北风,从而显著影响东亚冬夏季风强度变化.与之对应,PDO指数与我国东部大部分地区的站点气温、降水的年代际分量保持显著的同期相关.  相似文献   

20.
Both the tropical Indian and tropical Pacific Oceans are active atmosphere-ocean interactive regions with robust interannual variability, which also constitutes a linkage between the two basins in the mode of variability. Using a global atmosphereocean coupled model, we conducted two experiments(CTRL and PC) to explore the contributions of Indian Ocean interannual sea surface temperature(SST) modes to the occurrence of El Ni?o events. The results show that interannual variability of the SST in the Indian Ocean induces a rapid growth of El Ni?o events during the boreal autumn in an El Ni?o developing year. However, it weakens El Ni?o events or even promotes cold phase conversions in an El Ni?o decaying year. Therefore, the entire period of the El Ni?o is shortened by the interannual variations of the Indian Ocean SST. Specifically, during the El Ni?o developing years, the positive Indian Ocean Dipole(IOD) events force an anomalous Walker circulation, which then enhances the existing westerly wind anomalies over the west Pacific. This will cause a warmer El Ni?o event, with some modulations by ocean advection and oceanic Rossby and Kelvin waves. However, with the onset of the South Asian monsoon, the Indian Ocean Basin(IOB) warming SST anomalies excite low level easterly wind anomalies over the west tropical Pacific during the El Ni?o decaying years. As a result, the El Ni?o event is prompted to change from a warm phase to a cold phase. At the same time, an associated atmospheric anticyclone anomaly appears and leads to a decreasing precipitation anomaly over the northwest Pacific. In summary, with remote forcing in the atmospheric circulation, the IOD mode usually affects the El Ni?o during the developing years, whereas the IOB mode affects the El Ni?o during the decaying years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号