首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In November 2004, a major magnetic storm occurred, a lengthy portion of which was recorded by the Upper Atmospheric Radar Chain. On the 9th and 10th, the Jicamarca Radar detected the highest magnitude penetrating electric fields (±3 mV/m) and vertical drifts (±120 m/s) ever seen at this premiere facility. These large and variable drifts were highly correlated with the interplanetary magnetic and electric fields and created a double F layer on the dayside and unusual TEC behavior throughout the low-latitude zone. These solar wind-induced drifts both suppressed and generated irregularities at the magnetic equator at different times. Large-scale thermospheric disturbances were generated by high-latitude heating and tracked through the middle- to low-latitude zones where both parallel and perpendicular plasma drifts created major ionospheric changes. The auroral oval was located at a magnetic L shell of about three for many hours.  相似文献   

2.
We present a study of ionospheric and thermospheric response during a November 9–10, 2004 major geomagnetic storm event (DsT ~?300 nT). We utilize the North American sector longitude chain of incoherent scatter radars at Arecibo, Millstone Hill, and Sondrestrom, operating as part of a coordinated international mesosphere/lower thermosphere coupling study experiment. Total electron content (TEC) determinations from global positioning system (GPS) ground receivers, ground magnetometer traces from the Canadian CANOPUS array, Defense Meteorological Satellite Platform (DMSP) topside data, and global convection patterns from the SuperDARN radar network are analyzed to place the detailed radar data in proper mesoscale context. The plasmaspheric boundary layer (PBL) expanded greatly in the dusk sector during ring current intensification to span more than 25° of magnetic latitude, reaching as far south as 30° invariant latitude. Strong sub-auroral polarization stream velocities of more than 1 km/s were accompanied by large upwards thermal O+ fluxes to the overlying magnetosphere. The large PBL expansion subsequently exposed both Millstone Hill and Sondrestrom to the auroral convection pattern, which developed a complex multicell and reverse convection response under strongly northward IMF conditions during a period of global interplanetary electric field penetration. Large traveling atmospheric and ionospheric disturbances caused significant neutral wind and ion velocity surges in the mid-latitude and tropical ionosphere and thermosphere, with substorm activity launching equatorward neutral wind enhancements and subsequent mid-latitude dynamo responses at Millstone Hill. However, ionosphere and thermosphere observations at Arecibo point to significant disturbance propagation modification in the post-dusk sector PBL region.  相似文献   

3.
A comparison between the modeled NmF2 and hmF2 and NmF2 and hmF2, which were observed by the Kokubunji, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders and by the middle and upper (MU) atmosphere radar, have been used to study the time-dependent response of the low-latitude ionosphere to geomagnetic forcing during a time series of geomagnetic storms from 22 to 26 April 1990. The reasonable agreement between the model results and data requires the modified equatorial meridional E×B plasma drift, the modified HWM90 wind, and the modified NRLMSISE-00 neutral densities. We found that changes in a flux of plasma into the nighttime equatorial F2-region from higher L-shells to lower L-shells caused by the meridional component of the E×B plasma drift lead to enhancements in NmF2 close to the geomagnetic equator. The equatorward wind-induced plasma drift along magnetic field lines, which cross the Earth equatorward of about 20° geomagnetic latitude in the northern hemisphere and about −19° geomagnetic latitude in the southern hemisphere, contributes to the maintenance of the F2-layer close to the geomagnetic equator. The nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess [Fejer, B.G., Scherliess, L., 1997. Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res. 102, 24047–24056] or Scherliess and Fejer [Scherliess, L., Fejer, B.G., 1999. Radar and satellite global equatorial F region vertical drift model. J. Geophys. Res. 104, 6829–6842) in combination with corrected equatorward nighttime wind-induced plasma drift along magnetic field lines in the both geomagnetic hemispheres are found to be the physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator over Manila during 22–26 April 1990. The model crest-to-trough ratios of the equatorial anomaly are used to study the relative role of the main mechanisms of the equatorial anomaly suppression for the 22–26 April 1990 geomagnetic storms. During the most part of the studied time period, a total contribution from geomagnetic storm disturbances in the neutral temperature and densities to the equatorial anomaly changes is less than that from meridional neutral winds and variations in the E×B plasma drift. It is shown that the latitudinal positions of the crests are determined by the E×B drift velocity and the neutral wind velocity.  相似文献   

4.
All-sky camera (ASC), Global Positioning System (GPS), and ionosonde measurements were used to investigate the upper atmospheric variations at mid-latitude during the strong geomagnetic storm on October 29–31, 2003. An arc-shaped 630.0 nm emission was observed in the northern sky on all-sky images taken at Mt. Bohyun (36.2°N, 128.9°E, GMLAT=29°N) in Korea during 17:48–8:58 UT in the main phase of the geomagnetic storm on October 29. The NmF2 and hmF2 from the ionosonde show strong disturbances at that time. The vertical profiles of electron densities, calculated by the ionospheric tomographic method using ground-based GPS slant total electron contents measurements, show the largest value at ∼440 km height at 18:30 UT on October 29 when the enhancements of OI 630.0 nm emission were observed. The arc-shaped red emission observed during the main phase of the magnetic storm is likely a low-latitude red aurora due to its short duration of ∼1 h. The result implies that the plasmapause was at L=1.4–1.6 during the geomagnetic storm. The fact that the arc did not follow a constant L-value appears to suggest that neutral precipitation and a traveling ionospheric disturbance could also be the cause of the arc.  相似文献   

5.
Continuous measurements of 3-dimensional winds, spectral parameters, and tropopause height for ~114 h during the passage of a tropical depression using mesosphere–stratosphere–troposphere (MST) radar at Gadanki (13.5°N, 79.2°E) are discussed. The spectral analysis of zonal and meridional winds shows the presence of inertia-gravity wave (IGW) with the dominant periodicity of 56 h and intrinsic period of 27 h in the upper troposphere and lower stratosphere (UTLS). The strengthening of easterly jet and associated wind shears during the passage of the depression is one of the causative mechanisms for exciting the IGW. A well-established radar method is used to identify the tropopause and to study its response to the propagating atmospheric disturbances. The significance of the present study lies in showing the response of tropopause height to the IGW during tropical depression for the first time, which will have implications in stratosphere–troposphere exchange processes.  相似文献   

6.
Rayleigh lidar observations at Gadanki (13.5°N, 79.2°E) show an enhancement of the nightly mean temperature by 10–15 K at altitudes 70–80 km and of gravity wave potential energy at 60–70 km during the 2009 major stratospheric warming event. An enhanced quasi-16-day wave activity is observed at 50–70 km in the wavelet spectrum of TIMED–SABER temperatures, possibly due to the absence of a critical level in the low-latitude stratosphere because of less westward winds caused by this warming event. The observed low-latitude mesospheric warming could be due to wave breaking, as waves are damped at 80 km.  相似文献   

7.
The climatology of ionospheric plasma bubbles is studied here by means of a comparison of the frequency of occurrence of the spread-F/plasma bubble events over the South American region using the images from two OI 630 nm imager systems located at the subequatorial station São João do Cariri—CA (7.4 S, 36.5 W, 20 S dip) and the low-latitude station Cachoeira Paulista—CP (22.5 S, 45 W, 33 S dip) in Brazil during the years of 2004 and 2005. The results are discussed in the light of current theory and geomagnetic parameters of the two observation stations.  相似文献   

8.
We present the first measurement of polar mesospheric cloud (PMC) occurrence frequency over the diurnal cycle from a satellite. The observations are made during the 2007 northern hemisphere PMC season by the Spatial Heterodyne IMager for MEsospheric Radicals (SHIMMER), which views the limb near 309 nm typically between 34 and 98 km. The PMC diurnal variation is derived between 50 and 58°N, where local times at the tangent point precess by ~30 min/day allowing for observations between 0330 and 2130 local time during the PMC season. We find that the occurrence frequencies exhibit a strong semidiurnal behavior with peaks near 0600 and 1800 local time and a minimum between 0900 and 1600 during which they are on average an order of magnitude less. The semidiurnal dependence is strongly correlated with concurrent ground-based measurements of meridional winds and temperatures measured at the same latitude. Our results for PMC frequency over the diurnal cycle can be used to help reconcile observations from other satellites that only permit cloud measurements at discrete local times.  相似文献   

9.
This study analyzes the TEC data during 1998–2007, observed by the AREQ (16.5°S, 71.5°W) GPS station to investigate the equatorial ionospheric variations under geomagnetic quiet-conditions. The diurnal TEC values generally have a maximum value between 1330 and 1500 LT and a minimum around 0500 LT. For the seasonal variation, the semi-annual variation apparently exists in the daytime TEC with two peaks in equinoctial months. In contrast, this semi-annual variation is not found in the nighttime. Furthermore, the results of the annual variation show that the correlation between the daytime TEC value and the solar activity factor is highly positive.  相似文献   

10.
Research results concerning the main ionospheric trough (MIT) in the afternoon sector are present. Data are used from the meridional chain of stations located in the East Asian region. The analysis of ionospheric storms with different intensities reveals that the depletion in the F2 layer ionization in the afternoon/evening sector can be observed in the subauroral latitudes in the storm recovery phase predominantly during equinoxes and is associated with the formation of the MIT equatorward wall. Model calculations of the evening trough show that its location coincides with the belt of westward drift in the geomagnetic latitudes 55–65° at 13–17 MLT. Hence the simulated results support the assumption that the narrow and deep trough in the afternoon sector is formed by the westward drift with high velocities (~700 m/s). the drift transports the low-density plasma from the night side. The eastward drift with high velocities (~1000–1200 m/s) transports the low-density plasma from the night to morning side forming a trough in the morning sector.  相似文献   

11.
Mid-latitude Digisonde Doppler velocities, auroral electrojet (AE) indices and cloud-to-ground (CG) lightning strokes during August 2003–2004 were used to study the perturbations in the F-region vertical drift associated with terrestrial thunderstorms. A superposed epoch analysis (SEA) showed that the F-region vertical drifts Vz had a net descent of ~0.6 m s?1 peaking ~3 h after lightning. Stronger downward perturbations of up to ~0.9 m s?1 were observed in the afternoon on the day prior to lightning days. The perturbations were less significant on the day after and insignificant during the remaining intervals up to 144 h on either side of the lightning. The stronger responses on the day before are consistent with causality because the lightning times were merely proxies for the physical mechanisms involved. The actual causes are unclear, but we discuss the possible roles of lightning-induced ionisation enhancements, intense electric fields penetrating upward from electrified clouds, and atmospheric gravity waves (AGWs) radiated from thunderstorms or from the accompanying tropospheric fronts. There is no doubt that the behaviour of the mid-latitude F-region is controlled by the thermospheric winds and the solar wind-magnetosphere electrical generators, but our results suggest that electrified clouds also account for a significant, albeit relatively small component of the ionospheric variability.  相似文献   

12.
The propagation features of nighttime whistlers to low-latitude station, Suva (−18.2°, 178.3°, geomag. lat. −22.1°, geomag. long. 253.5°, L=1.15), Fiji, from preliminary observations made during the period from September 2003–2005, are reported. The observations of ELF–VLF signals commenced in September 2003 using the VLF set-up of World Wide Lightning Location Network at our station. The whistlers were observed during the severe magnetic storm of 20–22 November 2003 and moderate magnetic storm of 17–19 July 2005. A whistler with dispersion D=12.7 s1/2 occurred on 22 November at 00:11 h LT. On 20 July at 01:00 h LT, a short whistler with dispersion D=20.9 s1/2 and two whistler events having two-component whistlers with D=15.8, 16.7 s1/2 and 16.7, 17.3 s1/2 were observed. Non-ducted pro-longitudinal mode of the whistler propagation supported by negative latitudinal electron density gradients in the ionosphere that are enhanced by magnetic storms, seems most likely mode of propagation for the whistlers with dispersion of 12.7–17.3 s1/2 to this low-latitude station.  相似文献   

13.
This paper investigates the ionospheric and geomagnetic responses during the 28 March 2005 and 14 May 2005 Sumatran earthquakes using GPS and magnetometer stations located in the near zone of the epicenters. These events occurred during low solar and geomagnetic activity. TEC oscillations with periods of 5–10 min were observed about 10–24 min after the earthquakes and have horizontal propagation velocities of 922–1259 m/s. Ionospheric disturbances were observed at GPS stations located to the northeast of the epicenters, while no significant disturbances were seen relatively east and south of the epicenters. The magnetic field measurements show rapid fluctuations of 4–5 s shortly after the earthquake, followed by a Pc5 pulsation of 4.8 min about 11 min after the event. The correlation between the ionospheric and geomagnetic responses shows a good agreement in the period and time lag of the peak disturbance arrival, i.e. about 11–13 min after the earthquake.  相似文献   

14.
The ionospheric responses to a large number (116) of moderate (?50≥Dst>?100 nT) geomagnetic storms distributed over the period (1980–1990) are investigated using total electron content (TEC) data recorded at Calcutta (88.38°E, 22.58°N geographic, dip: 32°N). TEC perturbations exhibit a prominent dependence on the local times of main phase occurrence (MPO). The storms with MPO during daytime hours are more effective in producing larger deviations and smaller time delays for maximum positive deviations compared to those with nighttime MPO. Though the perturbations in the equinoctial and winter solstitial months more or less follow the reported climatology, remarkable deviations are detected for the summer solstitial storms. Depending on the local times of MPO, the sunrise enhancement in TEC is greatly perturbed. The TEC variability patterns are interpreted in terms of the storm time modifications of equatorial electric field, wind system and neutral composition.  相似文献   

15.
In an effort to better understand the dynamics of westward velocities of the nocturnal F-region plasma, the climatology of the westward traveling plasma bubbles – WTB – occurring during quiettime is studied here. The climatology of the WTB is analyzed here based on airglow images obtained during 14 quiet days between 2001 and 2006 at the Brazilian station São João do Cariri (Geographic 7.45°S, 36.5°W, dip ~20°S). The frequency of occurrence of the WTB maximizes in the descending phase of the solar cycle. The WTB velocities ranged between ~20 and 40 ms?1. The frequency of occurrence had a peak value of only 3.65% at 2345 LT. The maximum occurrence of the WTB was in July–September. No WTB have been observed from November until April in all years 2001–2006. We show for the first time theoretically that the WTB dominant forcing mechanisms during geomagnetically quiet days are westward thermospheric winds.  相似文献   

16.
The equatorial ionosphere responses over Brazil to two intense magnetic storms that occurred during 2001 are investigated. The equatorial ionization anomaly (EIA) and variations in the zonal electric field and meridional winds at different storms phases are studied using data collected by digisondes and GPS receivers. The difference between the F layer peak density (foF2) at an equatorial and a low latitude sites was used to quantify the EIA; while the difference between the true heights (hF) at the equatorial and an off-equatorial site was used to calculate the magnetic meridional winds. The vertical drift was calculated as dhF/dt. The results show prompt penetration electric fields causing unusual early morning development of the EIA, and disturbed dynamo electric field producing significant modification in the F region parameters. Variations to different degrees in the vertical drift, the thermospheric meridional winds and the EIA developments were observed depending on the storm phases.  相似文献   

17.
The total electron content (TEC) is a key ionospheric parameter for various space weather applications. Over the last decade an extensive database of TEC measurements has become available from both space- and ground-based observations, and these measurements have established the general morphology of the global TEC distributions. In particular, the TOPEX TEC measurements have shown strong longitudinal variations of TEC in addition to the observed day-to-day variabilities. To better understand the observed TEC variations and to better guide its modeling, we have studied the sensitivity of quiet-time TEC to the following key atmospheric and ionospheric parameters: neutral density, neutral wind, plasma temperatures, plasmaspheric flux, and the O+–O collision frequency. These parameters are often only roughly known and can cause large uncertainties in model results. For this study, we have developed a numerical mid-latitude ionospheric model, which solves the momentum and continuity equations for the O+ density and a simplified set of equations for the H+ density. To obtain TEC, the calculated ion densities have been integrated from the bottom altitude (100 km) to the altitude of the TOPEX satellite (1336 km). Our study shows that during the day the neutral wind and the neutral composition have the most important effect on TEC. In particular, the zonal component of the neutral wind can have a large effect on TEC in the southern hemisphere where the magnetic declination angle is large. During the night, most of the above-mentioned parameters can play a significant role in the TEC morphology, except for the plasma temperature, which has only a small effect on TEC. Finally, the TEC varies roughly linearly with respect to all of the parameters except for the neutral wind.  相似文献   

18.
In situ measurements of electron density were made over Trivandrum (8.5°N, 76.9°E) during nighttime to study E-region plasma density irregularities. Irregularities, with vertical scale sizes from a few km to 15 cm, were detected during rocket ascent and descent. Electron density profiles during ascent and descent of an earlier nighttime rocket flight from Trivandrum are also presented. Some of the important results are as follows: (i) horizontal gradients in electron density exist in 110–120 km region with horizontal scale size of at least 40 km, (ii) based on the presence/absence of electron density structures during ascent and descent of both flights, the horizontal distance over which the gradient drift instability operates is found to be at least 80 km and 90 km, for both the flights, (iii) observed irregularities in regions of negative density gradient are suggested to be produced through the gradient drift instability (GDI) driven by vertical polarization electric field as well as by electric field produced through wind shears and those in positive gradient regions by wind driven GDI, (iv) largest irregularity amplitude (≈30%) was associated with steepest gradients and so was the presence of smallest vertical scale sizes (12 m to 15 cm), which were absent at other altitudes, (v) the spectral index of irregularities was in the range of ?2.2±0.2 for large scales (few kilometers>λ>50 m), ?3.25±0.25 for medium scales (50 m>λ>10 m) and ?2.6±0.1 for smaller scales (10 m>λ>1 m) and (vi) irregularities in large and medium scales are expected to be produced directly through GDI and the small and sum-meter scales through non-linear GDI.  相似文献   

19.
We study the solar dependence of the thermospheric dynamics based on more than 20 years Fabry–Perot interferometer O 6300 Å emission observation of polar cap thermospheric wind from three stations: Thule (76.53°N, 68.73°W, MLAT 86N), Eureka (80.06°N, 86.4°W, MLAT 89N), and Resolute (74.72°N, 94.98°W, MLAT 84N) in combination with the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). All three stations showed a dominant diurnal oscillation in both the meridional and zonal components, which is a manifestation of anti-sunward thermospheric wind in the polar cap. The three-station observations and the TIEGCM simulation exhibit varying degree of correlations between the anti-sunward thermospheric wind and solar F10.7 index. The diurnal oscillation is stronger at Eureka (∼150 m/s) than that at Resolute (∼100 m/s) according to both observations and TIEGCM simulation. The semidiurnal oscillation is stronger at Resolute (∼20 m/s) than that at Eureka based (∼10 m/s) on data and model results. These results are consistent with a two-cell convection pattern in the polar cap thermospheric winds. The Thule results are less consistent between the model and observations. The simulated meridional wind diurnal and semidiurnal oscillations are stronger than those observed.  相似文献   

20.
The fact that magnetic clouds are one of the main sources causing geomagnetic storms is a well-established fact. One of the issues is to establish those features of magnetic clouds determinant in the intensity of the Dst corresponding to geomagnetic storms. We examine measurements of geoeffective magnetic clouds during the period 1995–2006 providing geomagnetic storms with Dst indexes lower than ?100 nT. These involve 46 geomagnetic storm events. After establishing the different characteristics of the magnetic clouds (plasma velocity, maximum magnetic intensity, etc.) we show some results about the correlations found among them and the storms intensity, finding that maximum magnetic field magnitude is a determinant factor to establish the importance of magnetic clouds in generating geomagnetic storms, having a correlation as good as the electric convective field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号