首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statistical research on relationship between the Corioli force effect and the maximum attershock magnitude of 20 earth-quakes with M≥7.5 in Chinese mainland, and then the variation tendency of attershock activity of the M=8.1 earthquake is discussed. The result shows: a) Analyzing the Corioli force effect is an effective method to predict maximum attershock magnitude of large earthquakes in Chinese mainland. For the sinistral slip fault and the reverse fault with its hanging wall moving toward the right side oftbe cross-focus meridian plane, their Corioli force pulls the two fault walls apart, decreasing frictional resistance on fault plane during the fault movement and releasing elastic energy of the mainshock fully, so the maximum magnitude of aftershocks would be low. For the dextral slip fault, its Corioli force presses the two walls against each other and increases the frictional resistance on fault plane, prohibiting energy release of the mainshock, so the maximum magnitude of attershocks would be high.b) The fault of the M--8. l Kunlun Mountain earthquake on Nov. 14, 2001 is essentially a sinistral strike-slip fault,and the Corioli force pulled the two fault walls apart. Magnitude of the induced stress is about 0.06 MPa. Alter a comparison analysis, we suggest that the attershock activity level will not be high in the late period of this earth-quake sequence, and the maximum magnitude of the whole aftershocks sequence is estimated to be about 6.0.  相似文献   

2.
The Longling-Ruili fault is an important active fault in Southwestern China,striking generally northeast.The fault controls the development of the sedimentary series and magmatic action on its two sides,as well as the development of the Longling basin,Mangshi basin and the Zhefang basin along it.Due to limited Quaternary sediments and harsh natural conditions,the study of late Quaternary fault activity on the northern segment of the Longling-Ruili fault is lacking and the time of the newest faulting and the Quaternary slip rate are not clear at present.Based on the interpretation of remote images,quantitative geomorphologic deformation measurements and dating of young terrace deposits and alluvial fans,this paper obtains some new results as follows.The northern segment of the Longling-Ruili fault is a Holocene dextral strike-slip fault with some component of a normal slip.The terrace T 1 composing mainly of alluvial deposits formed during 4ka B.P.was offset by the northern segment of the Longling-Ruili fault and its left-lateral and its vertical displacements are 8m ~ 12m and 2m,respectively.The late Pleistocene alluvial fan was displaced with a left-lateral and vertical displacement of 70m and 18m,respectively.The strike-slip rate of the Longling-Ruili fault is 2.2mm/a ~ 2.5mm/a and the vertical slip rate is 0.6mm/a since the late Pleistocene epoch.The strike-slip rate of the Longling-Ruili fault is 1.8mm/a ~ 3.0mm/a and vertical slip rate is 0.5mm/a during the Holocene epoch.The proportion of horizontal to vertical displacement is about 4:1,which means that the vertical slip rate on the northern segment of the Longling-Ruili fault is about 25% of the horizontal slip rate.The left-lateral slip rate in the late Holocene is consistent with the GPS measurement.The strike slip rate is of great consistency in different time scales since the late Pleistocene epoch,indicating that the activity of the Longling-Ruili fault is of great stability.  相似文献   

3.
A remarkable earthquake struck Yutian, China on June 26~(th), 2020. Here, we use Sentinel-1 images to investigate the deformation induced by this event. We invert the In SAR observations using a two-step approach: a nonlinear inversion to constrain fault geometries with uniform slip based on the rectangular plane dislocation in an elastic half-space, followed by a linear inversion to retrieve the slip distribution on the fault plane. The results show that the maximum LOS displacement is 22.6 cm, and the fault accessed to the ruptured characteristics of normal faults with the minor left-lateral strike-slip component. The fault model indicates a 210° strike. The main rupture zone concentrates in the depth of 5–15 km, and the fault slip peaks at 0.89 m at the depth of 9 km. Then, we calculate the variation of the static Coulomb stress based on the optimal fault model, the results suggest that the Coulomb stress of the Altyn Tagh fault and other neighboring faults has increased and more attention should be paid to possible seismic risks.  相似文献   

4.
Inversion for the seismic fault rupture history is an important way to study the nature of the earthquake source. In this paper, we have selected two Taiwan earthquakes that occurred closely in time and located in the same region, inversed the distribution of the slip amplitudes, rakes, risetimes and the rupture times on the fault planes by using GDSN broad-band and long-period records and the adaptive hybrid global search algorithm, and compared the two events. The slip rate of every subfault calculated provides information about the distribution of tectonic stress and fault strength. To the former event (MS=6.0), the maximum slip amplitude 2.4 m and the minimum risetime 1.2 s are both located at the hypocentre. The latter earthquake (MS=6.6) consisted of two subevents and the second source has 4 s delay. The maximum slip amplitude 0.9 m located near hypocentre is corresponding to the minimum risetime 1.4 s, and the corresponding maximum slip rate 0.7 m.s-1 is similar to the peak value of other large slip rate areas. We consider that the latter event has more complicated temporal-spatial distribution than the former.  相似文献   

5.
In this paper, the new LDDA (Lagrangian Discontinuous Deformation Analysis) method is used in modeling the dynamic process of the MS=7.8 Tangshan earthquake on July 28, 1976 and obtain directly the dynamic and quasi-static dislocations, shear stress drops, fracture velocities of the Tangshan earthquake fault. The simulation shows that the slip history at each point of the fault is different. The displacement vectors at the concave side of the fault is greater than that of the convex side of the fault. The "over shoot" of the fault slip is greatest at the middle part of the fault and attenuates to its ends. The rupture velocities of the fault from the epicenter towards south-west and towards north-east are 3.08 m/s and 1.18 m/s, respectively, the average one is 2.13 m/s. The maximum dynamic and quasi-static dislocations are 7.1 m and 6.2 m respectively, the average quasi-static one on the fault is 4.5 m. The maximum dynamic and quasi-static shear stress drops are 8.1 MPa and 5.4 MPa, respectively, the average quasi-static shear stress drop is 3.9 MPa.We found that the rupture velocities and shear stress are related to the initial stress states of the fault.  相似文献   

6.
Seismic and field observations indicate that the M_w7.4 Maduo earthquake ruptured the Jiangcuo fault,which is a secondary fault~85 km south of the northern boundary of the Bayan Hor block in western China.The kinematic characteristics of the Jiangcuo fault can shed lights on the seismogenic mechanism of this earthquake.Slip rate is one of the key parameters to describe the kinematic features of a fault,which can also provide quantitative evidences for regional seismic hazard assessments.However,due to lack of effective observations,the slip rate of the Jiangcuo fault has not been studied quantitatively.In this study,we consider the interaction between the Jiangcuo fault and the eastern Kunlun fault,and estimate the slip rates of the two faults using the interseismic GPS observations across the seismogenic region.The inferred results show that the slip rates of the Jiangcuo fault and the Tuosuo Lake segment of the Kunlun fault are 1.2±0.8 and 5.4±0.3 mm a~(–1),respectively.Combining the slip rate with the average slip inferred from the coseismic slip model,the earthquake recurrence interval of the Jiangcuo fault is estimated to be 1800_(700)~(+3700)years (1100–5500 years).Based on the results derived from previous studies,as well as calculations in this study,we infer that the slip rate of the Kunlun fault may decrease gradually from the Tuosuo Lake segment to the eastern tip.The Jiangcuo fault and its adjacent parallel secondary faults may have absorbed the relative motion of blocks together with the Kunlun fault.  相似文献   

7.
The Qilian Mountain active source network data was processed using the methods of stacking, cross-correlation and interpolation, and the airgun travel time variation characteristics of P and S waves around the January 21, 2016 MS6.4 Menyua, Qinghai earthquake. The results show that about 6 months before the earthquake, the relative travel time of three stations near the epicenter showed a declined change (travel time decrease), and such a change of low value anomaly was recovered about 3 months before the earthquake. The travel time decrease then appeared again, and the earthquake occurred during the recovery process. The maximum decrease of the S-wave travel time was 18ms, and the change in travel time returned to normal after the earthquake. The variation trend of the 3 stations is consistent, including the S-wave travel time change of station ZDY38, which is nearest to the epicenter and changed obviously, and the variation range of the travel time is smaller at the stations afar. This variation pattern is related to the position of the seismic source. The shorter travel time means the velocity increase, which may be related to the regional stress accumulation.  相似文献   

8.
On October 27, 2001, a large earthquake with Ms6.0, named the Yongsheng earthquake, occurred along the Jinshajiang segment of Chenghai fault in Yongsheng County, Yuunan Province. It is the largest event to occur along the Chenghai fault in the last 200 years. The seismo-geological survey shows that the seismogenic fault, which is the Jinshajiang segment of Chenghal fault, takes left-lateral strike-slip as its dominant movement pattern. According to differences in vertical motion, motion time, landforms and scales, the Chenhai fault can be divided into eight segments. The Jinshajiang segment has a vertical dislocation rate of 0.4mm/a, far lower than the mean rate of the Chenghai fault, about 2.0 mm/a. It‘ s deduced that the two sides of Jinshajiang segment “stuck“ tightly and hindered the strike-slip of the Chenghai fault. The strong earthquake distribution before this event shows that the Jinshajiang segment was in the seismic gap. The Chenghai fault, as a boundary of tectonic sub-blocks, makes the Northwest Yunnan block and the Middle Yunnan block move clockwise, and their margins move oppositely along the Chenghai fault. In the motion process of the Chenghai fault, structural hindrance and the seismic gap of strong earthquakes are propitious to the concentration and accumulation of structure stress. As a result, the Yongsheng Ms6.0 earthquake occurred. The Sujiazhuang-Shangangfu segment is similar to the Jinshajiang segment with a low vertical motion rate of 0.3 mm/a and in the seismic gap. So it‘s postulated that the segment may become a new structure hindrance, and the Yongsheng Ms6.0 earthquake may trigger the occurrence of future large earthquakes along this segment.  相似文献   

9.
The Yuguang basin is a half-graben basin in the basin-range tectonic zone in northwest Beijing, located at the northern end of the Shanxi graben system, and the Yuguang basin southern marginal fault (YBSMF) controls the formation of this basin. A linear fault escarpment has formed in the proluvial fan on the piedmont fault zone of the Tangshankou segment of YBSMF. A trench across this escarpment reveals three paleo-earthquake events on two active faults. One fault ruptured at about 9ka for the first time, and then faulted again at about 7.3ka, causing the formation and synchronous activity of another fault. Finally, they faulted for the third time, but we cannot determine the faulting time due to the lack of relevant surface deposition. The accumulative vertical displacement of these three events is about 8.1m. We estimate that the average recurrence period of the piedmont fault is about 1.7ka, and the average slip rate of the piedmont fault is about 1.6mm/a. We also estimate the reference magnitude of each event according to the empirical formula.  相似文献   

10.
Comparative analysis between the quantitative data of active faults and seismicity reveals that a complete earthquake recurrence cycle includes the characteristic earthquake and the submaxima earthquakes in-between. The magnitude of the sub-maxima events is correlated with the elapsed time of the characteristic earthquake and the slip rate of the fault. The fault displacement includes the major stick-slip generated by the characteristic earthquakes and the minor stick-slip by the sub-maxima ones. The magnitude-frequency relationship still works in the complete recurrence cycle. The energy accumulation in the cycle is divided approximately into four phases, and the seismicity differs at each phase. The relation of the maximum displacement with the average displacement of the characteristic earthquake suggests the partitioning of deformation between the characteristic and the sub-maxima earthquakes. Based on the above analysis, relevant mathematical equations are put forward for the quantitative assessment of the potential magnitude and earthquake risk of seismogenic tectonics. Tentative study has been carried out in this aspect in some areas of Tianshan.  相似文献   

11.
The nucleation process of stick-slip instability was analyzed based on the experimental measurements of strain and fault slip on homogeneous and non-homogeneous faults. The results show that the nucleation process of stick-slip on the homogeneous fault is of weak slip-weakening behavior under constant loading point velocity. The existence of a short "weak segment" on the fault makes slip-weakening phenomenon in nucleation process more obvious, while the existence of a long "weak segment" on the fault makes the nucleation process changed. The nucleation is characterized by accelerating slip in a local region and rapid increase of shear stress along the fault in this case, which is more coincident with the rate and state friction law. During the period when fault is locked, increasing of shear stress causes lateral elastic dilation near the fault, and the rebound of the dilation at the time of instability causes an instantaneous increase of normal stress in the fault plane, which is an important factor making fault be rapidly locked and its strength recovered.  相似文献   

12.
The nucleation process of stick-slip instability was analyzed based on the experimental measurements of strain and fault slip on homogeneous and non-homogeneous faults. The results show that the nucleation process of stick-slip on the homogeneous fault is of weak slip-weakening behavior under constant loading point velocity. The existence of a short “weak segment” on the fault makes slip-weakening phenomenon in nucleation process more obvious, while the existence of a long “weak segment” on the fault makes the nucleation process changed. The nucleation is characterized by accelerating slip in a local region and rapid increase of shear stress along the fault in this case, which is more coincident with the rate and state friction law. During the period when fault is locked, increasing of shear stress causes lateral elastic dilation near the fault, and the rebound of the dilation at the time of instability causes an instantaneous increase of normal stress in the fault plane, which is an important factor making fault be rapidly locked and its strength recovered.  相似文献   

13.
This paper selectively reviews physical models of earthquake instability. In these models, instability arises as a result of interaction of a fault constitutive relation with deformation of the surrounding material that occurs in response to remote tectonic loading. In contrast to kinematic models in which the fault slip is imposed, it is calculated in physical models and, consequently, these models are essential for understanding precursory processes. Some kind of weakening behavior for the fault constitutive relation is required to produce an instability analogous to an earthquake. Two commonly employed idealizations discussed here are rate-independent slip weakening and rate/state-dependent friction. When these constitutive models are employed on surfaces embedded in elastic half-spaces or layers, possibly coupled to a viscoelastic substrate, the results are capable of simulating realistically some aspects of earthquake occurrence. Common to all models is the prediction that earthquake instability is preceded by precursory slip which produces a departure of surface strain-rate from the background level. Near the epicenter of a moderate to large earthquake, the magnitude of this departure appears to be well within the range of current geodetic measurement accuracy, and its duration is of the order of months to years. However, details depend on a variety of factors, including the modelling of the constitutive relation near peak stress, coupling of elastic crust to the asthenosphere, and coupling of deformation with pore fluid diffusion.  相似文献   

14.
科里奥利力对断层作用的统计研究   总被引:2,自引:1,他引:1  
首先给出了分解到已知断层面法向和切向上的断层错动科里奥利应力(简称为科里奥利法向应力和切向应力)表达式,然后从哈佛大学矩心矩张量目录中选取主余震资料进行分析,按断层分类研究了科里奥利法向应力和主震震级与其最大余震震级差及主震地震矩与余震地震矩总和之差的折合矩震级间的关系.研究结果显示:地震断层错动过程中虽然产生了使断层两盘相互拉离(或挤压)的科里奥利法向应力,它降低(或增加)了断层错动时断层面上的摩擦阻力,但是应力量值太小(科里奥利法向应力估计最大不到0.1MPa,即不到一个大气压),不足以对断层错动及主震能量释放产生影响,从而影响余震的最大震级和总体水平.  相似文献   

15.
1976年11月7日,我国川滇两省交界处的盐源、宁蒗一带发生6.7级走滑断层型地震.震前约一年,作者根据附近约二万平方公里范围内的波速比普查结果,对未来主震的震级和地点作了比较符合实际的中期预报.发震时间的预报是后来根据其它前兆观测结果的综合分析作出的.本文可以作为走滑断层型地震前观测到波速比变化的一个新的实例.根据剪切破裂和粘滑运动之间的差别以及膨胀造成的各向异性,对有关结果作了初步讨论.   相似文献   

16.
Laboratory experiments on simulated faults in rocks clearly show the temperature dependence of dynamic rock friction. Since rocks surrounding faults are permeable, we have developed a numerical method to describe the thermo-mechanical evolution of the pre-seismic sliding phase which takes into account both the rate-, state- and temperature-dependent friction law and the heat advection term in the energy equation. We consider a laminar fluid motion perpendicular to a vertical fault plane and assume that fluids move away from the fault plane. A semi-analytical temperature solution which accounts for the variability of slip velocity and stress on the fault has been found. This solution has been generalized to the case of a time varying fluid velocity and then was used to include the thermal pressurization effect. After discretizing the temperature solution, the evolution of the system is obtained by the solution of a system of first order differential equations which allows us to determine the evolution of slip, slip rate, friction coefficient, effective normal stress, temperature and fluid velocity. The numerical solutions are found using a Runge-Kutta method with an adaptative stepsize control in time. When the thermal pressurization effects can be neglected, the heat advection effect gives rise to a delay, with respect to the purely conductive case, of the earthquake occurrence time. This delay increases with increasing permeability H of the system. When the thermal pressurization effects are taken into account the situation is opposite, i.e. the onset of instability tends to precede that of the purely conductive case. The advance in the time of occurrence of instability increases with increasing coefficient of thermal pressurization. In the small permeability range (H  10?18 m2), the seismic moment and nucleation length of the pre-seismic phase are significantly smaller than those predicted by the purely conductive model.  相似文献   

17.
Current methods for calculation of long-term probabilities for the recurrence of large earthquakes on specific fault segments are based upon models of the faulting process that implicitly assume constant stress rates during the interval separating earthquakes and instantaneous failure at a critical stress threshold. However, observations indicate that the process of stress recovery following an earthquake involves rate variations at all time scales in addition to stress steps caused by nearby earthquakes. Additionally, the existence of foreshocks, aftershocks and possible precursory processes suggest that there may be significant time dependence of the earthquake nucleation process. A method for determining the conditional probabilities for earthquake occurrence under conditions of irregular stressing is developed that could be useful at all time scales including those pertinent to short-and intermediate-term prediction. Used with models for earthquake occurrence at a stress threshold, the addition of variable stressing introduces a simple scaling of the conditional probabilities by stress level and stress rate. A model for the time-dependent nucleation of earthquake slip has been proposed recently that is based upon laboratory observations of fault strength. This failure criterion results in large but relatively short duration changes in the probability of earthquake recurrence particularly following stress steps. Applied to populations of earthquakes the models predicts a 1/t decay of seismicity following stress steps as observed for aftershocks and for frequency of foreshock-mainshock pairs. The model suggests that variations of seismicity rates of small earthquakes in the nucleation zone of the expected earthquake directly indicate variations in probability of recurrence of the large earthquake.  相似文献   

18.
黏滑实验的震级评估和应力降分析   总被引:2,自引:0,他引:2       下载免费PDF全文
本文通过三种结构模型的黏滑地震模拟实验,利用高频速度连续观测系统获得了地震失稳过程的速度特征,讨论了最大位移量的选取方法,估算了实验室黏滑型地震的矩震级,探讨了黏滑类型、应力降大小与震级的关系.结果表明,黏滑型地震的应力降过程可能包含一次到多次高频振荡,对应若干次黏滑子事件.高频振荡的摆动幅度很大,包含有多种频率成分,峰值速度0.003~0.008 m·s-1.初步估计黏滑型地震的震级范围为-4.4~-3级,断层构造面的差异对各种黏滑模型的地震震级分布有明显影响.总体来看应力降与地震震级没有明显相关性,决定地震震级的主要因素应当是震源尺度.  相似文献   

19.
构造地震一般由断层摩擦失稳所致.断层内部及周边所累积的剪切形变则通过同震滑动位移得到局部释放.因此,震后断层内部及近断层周边的静态剪切应力变化量的空间分布可通过断层面上的滑动位移分布计算得到.本文采用傅氏变换方法(FTM)计算单一有限断层同震滑移场所形成的静态剪切应力变化分布,近断层两侧的应力变化计算可由波数域内应力近似算法获得.结果表明,FTM快速有效、易于实现,有效地避免了常规应力计算中奇异值的出现.以2008年Mw7.9中国汶川大地震为例,采用前人所得有限断层滑动位移模型,得到了断层面和近断层周边准3D剪切应力分布解,并同主震后中强余震的空间分布特征作了比较.结果表明,大部分的中强余震震源位置处于剪切应力变化值为正的区域,由同震位移所产生的局部应力降峰值和均值大小同应力变化的正值大致相当,从而表明了快速且有效地计算断层内部及近断层附近的应力变化分布可以为主震后强余震发生的潜在区域提供指示意义.需要强调的是,应力变化空间分布特征的获取强烈地依赖于有限断层滑移模型解.有关滑动位移反演解的多解性对应力变化计算结果的影响,本文作了必要的讨论.  相似文献   

20.
断层失稳错动热场前兆模式:雁列断层的实验研究   总被引:14,自引:4,他引:14       下载免费PDF全文
在实验室使用红外热像仪和接触式测温仪同步观测记录了压性和张性雁列断层失稳错动前后的热场变化过程.从实验记录中发现,在断层失稳引起温度场和热红外辐射亮温温度场上升之前,在两断层段之间的岩桥区发生降温变化.断层带开始升温发生在失稳前2~3 s内,岩桥区的降温却发生在失稳前约20s,这两个超前时间长度相差近一个量级.此类热场先降后升变化过程在雁列构造变形中有一定的普遍性,可能作为雁列断层失稳错动的热场前兆模式.根据实验观测结果,详细描述了上述热场变化的时间过程及其空间分布特征,分析了产生此种失稳前兆模式的机制,显著异常出现的条件及有利观测部位,讨论了它在地震前兆探索等研究中的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号