首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Jeju Island, the largest Quaternary volcanic island in Korea, has formed mostly since the early Pleistocene, but its latest chronology of volcanism and sedimentation is still poorly constrained. Here we report optically stimulated luminescence (OSL) ages for two hydromagmatic volcanoes on the southwestern coast of Jeju Island, i.e., the Songaksan and Suwolbong tuff rings. The basaltic tuffs of these volcanoes contain abundant quartz sands from underlying marine sedimentary sequences. Two samples collected from the middle part of the Songaksan Tuff yielded highly reproducible quartz single-aliquot regenerative-dose (SAR) OSL ages of 7.0±0.3 ka, providing the first direct age estimate of Holocene volcanism in Jeju Island. The quartz OSL age estimate of 5.1±0.3 ka for the younger reworked basaltic tuff (the Hamori Formation) is comparable with previous radiocarbon and U-series disequilibrium dating of fossil mollusk shells. Two samples from the Suwolbong Tuff show quartz OSL age estimates of 18.3±0.7 and 18.6±0.9 ka, which are identical within error ranges and younger than the quartz OSL age estimate of 23.2±1.0 ka for the underlying Gosan Formation. This study confirms that volcanism and attendant sedimentation were active in Jeju Island until very recently.  相似文献   

2.
Optical dating of liquefied sand structures formed during major earthquakes in Upper Assam, northeast of India, has been carried out to constrain the timing of prehistoric earthquakes in this seismically active region. The bleaching of source material and of the same material during the creation of a liquefaction feature was tested using quartz extracted from 21 samples associated with two different liquefaction structures in Upper Assam. Due to the poor sensitivity of quartz from this region, a sensitisation procedure was used in our SAR protocol to reduce the scatter in optical ages. Various internal consistency tests of the measurement protocol and the excellent reproducibility of the OSL ages indicate that the dose estimates from the quartz are accurate and the optical ages reliable. The preliminary OSL ages indicate that the liquefaction features were formed between 1430 AD and 1630 AD. This study demonstrates that using OSL, ‘direct dating’ of prehistoric earthquakes may be possible, if sand blows from liquefied dykes are preserved.  相似文献   

3.
Optically stimulated luminescence (OSL) dating of a series of glaciofluvial/glaciodeltaic sediments in central Buchan and Aberdeen has recently been undertaken. The aims of this project are to test the chronological model proposed by the most recent regional review and the suggestion that parts of Buchan may have remained ice-free during the last glacial maximum (late marine isotope stage (MIS) 3 and MIS 2 29–15 ka). The preliminary results indicate that during the Devensian (ca. 116–12 ka), extensive areas of Buchan may have been glaciated earlier than previously believed (possibly during MIS 4, 72–60 ka), but parts of the region show no depositional evidence of later glaciation. Some waterlain sediments from the Ugie Valley have yielded OSL ages indicating deposition during MIS 5d to MIS 5a (116–72 ka). We discuss whether the absence of overlying glaciogenic sediments at these locations raises questions about the reliability of the OSL ages or about existing models of the Devensian glaciation of Buchan.  相似文献   

4.
The timing of glacial advances, periglacial phenomena, and the ages of two marker tephras in northern Hokkaido were estimated by OSL dating. It appears that the glacier of Yamunai 2 stage on Rishiri Island expanded between 24 and 15 ka. In northern Hokkaido, OSL ages indicate ice wedge formation during the period 24–18 ka. These results indicate that both the glacial advance and the development of ice wedges were synchronous phenomena relating to the Last Glacial Maximum.  相似文献   

5.
Optically stimulated luminescence (OSL) dating was applied to glacial and loess deposits in the north flank of the Terskey-Alatoo Range, Kyrgyz Republic, to elucidate the glacier chronology of the central Asian mountains during the Last Glacial. Moraines in five parts of study area were classified into four stages (Terskey Stages I–IV) based on their geographical position and elevation, and their moraine rock weathering. According to this classification, the oldest moraines (Terskey Stage I) were at 2100–2250 m a.s.l. and the second-oldest moraines (Terskey Stage II) were at 2400–2700 m a.s.l. Quartz samples from moraines of these two stages were used for OSL dating. The OSL ages of the quartz samples indicate that glacier expansion in the Terskey Stage II occurred between 21 and 29 ka BP.  相似文献   

6.
To reconstruct the evolution of Late-Quaternary river network in the southeastern part of the Great Hungarian Plain, we have used optically stimulated luminescence (OSL) and heavy mineral analysis of 25 sand samples from the upper 2–8 m of the fluvial units, complemented by four radiocarbon ages. The estimated OSL depositional ages vary between 10 and 47 ka. The heavy mineral composition of the OSL samples was compared to the compositional data of recent river sediments using cluster analysis. The new OSL and heavy mineral data show that from 47 to 10 ka ago the sediments were transported mainly from the northeast direction into the southeastern part of the Great Hungarian Plain by the ancestor of the Tisza river and its northern tributaries, and probably by another large river which also flowed northeast–southwest, parallel to the modern Tisza. Between 23 and 14 ka sediments periodically came from the east and reached the eastern part of our study area. Between 15 and 12 ka ago, sands transported from the southeast also occur in the southeastern and central part of the study area. These data suggest that the modern rivers occupied their present courses only in the last 10 ka.  相似文献   

7.
Optically stimulated luminescence (OSL) dating is becoming a useful technique to yield absolute age of organic-poor sandy deposits. The buried tidal sand body (BTSB) in the coastal zone of northern Jiangsu Province, China, has been suggested to have the same origin as the offshore radial sand ridge in the Yellow Sea. However, chronological constrain of the BSTB is still quite limited. In this study, OSL measurements were conducted using silt-sized multi-grain and coarse-grained single-grain quartz to constrain the depositional history of a 25.6 m core from the BTSB. A low luminescence sensitivity of quartz was observed, and only ∼1.04% of the grains passed the standard rejection criterion for single-grain measurement. Analysis of paired OSL ages from two grain-size fractions using different protocols showed that silt-sized quartz ages were underestimated of 0.14–1.35 ka in comparison to coarse-grained quartz in the depth interval of 5.8–22.4 m. We interpret such an age discrepancy as the effects of lateral infiltration of fine-grained sediment into the sand body due to dynamic feature of channel-ridge system on the shelf. As far as we know, it is the first time that such infiltration is demonstrated through OSL dating. Our OSL data indicated that there is a significant hiatus between the Late Pleistocene stiff clay layer (50–18 ka) and the Holocene sequence. Holocene deposits only occurred in the last 2 ka, with rapid accumulation of ∼17 m-thick sediments at ∼2–1 ka, a slower accumulation between ∼1 and 0.1 ka and rapid land emergence through an accretion of ∼4 m-thick sediment over the past ∼0.1 ka. This study highlights the complexity of OSL dating in highly dynamic sedimentary environments. Therefore, examining different grain size fractions and comparing different measurement protocols are highly deserved in carrying out OSL dating in such environments.  相似文献   

8.
In this study, we explored the spatial and temporal relations between boulders and their original in-situ locations on sandstone bedrock cliffs. This was accomplished by combining field observations with dating methods using cosmogenic isotopes (10Be and 14C) and optically stimulated luminescence (OSL). Our conclusions bear both on the landscape evolution and cliff retreat process in the hyperarid region of Timna and on the methodology of estimating exposure ages using cosmogenic isotopes.

We recognize three discrete rock fall events, at 31 ka, 15 ka, and 4 ka. In this hyperarid region, the most plausible triggering mechanism for rock fall events is strong ground acceleration caused by earthquakes generated by the nearby Dead Sea fault (DSF). Our record, however, under represents the regional earthquake record implying that ongoing development of detachment cracks prior to the triggering event might be slower than the earthquake cycle.

Cliff retreat rates calculated using the timing of rock fall events and estimated thickness of rock removed in each event range between 0.14 m ky− 1 and 2 m ky− 1. When only full cycles are considered, we derive a more realistic range of 0.4 m ky− 1 to 0.7 m ky− 1. These rates are an order of magnitude faster than the calculated rate of surface lowering in the area. We conclude that sandstone cliffs at Timna retreat through episodic rock fall events that preserve the sharp, imposing, landscape characteristic to this region and that ongoing weathering of the cliff faces is minor.

A 10%–20% difference in the 10Be concentrations in samples from matching boulder and cliff faces that have identical exposure histories and are located only a few meters apart indicates that cosmogenic nuclide production rates are sensitive to shielding and vary spatially over short distances. However, uncertainties associated with age calculations yielded boulder and matching cliff face ages that are similar within 1 σ . The use of external constraints in the form of field relations and OSL dating helped to establish each pair's age. The agreement between calculated 14C and 10Be ages indicates that the accumulation of 10Be at depth by the capture of slow deep-penetrating muons was properly accounted for in the study.  相似文献   


9.
Activities of 26Al and 10Be in five chert clasts sampled from two beach ridges of late Pleistocene Lake Lisan, precursor of the Dead Sea in southern Israel, indicate low rates of chert bedrock erosion and complex exposure, burial, and by inference, transport histories. The chert clasts were derived from the Senonian Mishash Formation, a chert‐bearing chalk, which is widely exposed in the Nahal Zin drainage basin, the drainage system that supplied most of the material to the beach ridges. Simple exposure ages, assuming only exposure at the beach ridge sampling sites, range from 35 to 354 ky; using the ratio 26Al/10Be, total clast histories range from 0·46 to 4·3 My, unrelated to the clasts' current position and exposure period on the late Pleistocene beach ridges, 160–177 m below sea level. Optically stimulated luminescence dating of fine sediments from the same and nearby beach ridges yielded ages of 20·0 ± 1·4 ka and 36·1 ± 3·3 ka. These ages are supported by the degree of soil development on the beach ridges and correspond well with previously determined ages of Lake Lisan, which suggest that the lake reached its highest stand around 27 000 cal. years BP . If the clasts were exposed only once and than buried beyond the range of significant cosmogenic nuclide production, then the minimum initial exposure and the total burial times before delivery to the beach ridge are in the ranges 50–1300 ky and 390–3130 ky respectively. Alternatively, the initial cosmogenic dosing could have occurred during steady erosion of the source bedrock. Back calculating such rates of rock erosion suggests values between 0·4 and 12 m My?1. The relatively long burial periods indicate extended sediment storage as colluvium on slopes and/or as alluvial deposits in river terraces. Some clasts may have been stored for long periods in abandoned Pliocene and early Pleistocene routes of Nahal Zin to the Mediterranean before being transported again back into the Nahal Zin drainage system and washed on to the shores of Lake Lisan during the late Pleistocene. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Glacifluvial deposits along an ice-marginal zone in Småland, southern Sweden, have been dated using post-IR blue OSL. To test for incomplete bleaching, we adopted two strategies: analysis of modern analogues and small-aliquot dose distributions. Samples of modern fluvial sediments show no significant incomplete bleaching; they yield equivalent doses of only 0.5–2 Gy (0.25–4% of our glacifluvial sediment doses). Small-aliquot dose distributions do not provide any evidence for incomplete bleaching.

The sediments are believed to have been deposited during deglaciation and appear to fall into two age groups: 19–25 ka (mainly sandur sediments) and 33–73 ka (mainly deltaic sediments). Compared to the expected ages (13–15 ka), even the younger glacifluvial OSL ages appear up to 10 000 years (25 Gy) too old. The ages are nevertheless stratigraphically consistent and correspond between sites; we deduce that the 19–25 ka ages are true deposition ages. For glacifluvial sedimentation to take place on the South Swedish Upland at this time either a very early deglaciation is required, or alternatively ice-free conditions just prior to the LGM. The deltaic sediments (33–73 ka) were most likely not significantly bleached during deposition and thus they date events prior to the latest ice advance.  相似文献   


11.
We report single-grain quartz luminescence ages for the Puritjarra rock shelter, with the aim of resolving an apparent discrepancy between ages obtained by 14C and a variety of luminescence methods, previously reported. Ages now found at all depths to 75 cm (ages to 30 ka) can be interpreted as largely resolving the differences. This implied caveat arises because single-grain methods are statistically inefficient. As a consequence, a degree of interpretation is inevitable in analysing the data. The emphasis in the present paper is an analysis making use of weighted histograms. The measurements by single grain OSL and 14C, including ABOX–SC, taken together, can be regarded as compatible. They indicate human occupation of the Puritjarra rock shelter at least as early as 30 ka BP.  相似文献   

12.
The palaeolake evolution across the Tibetan Plateau and adjacent areas has been extensively studied, but the timing of late Pleistocene lake highstands remains controversial. Robust dating of lacustrine deposits is of importance in resolving this issue. This paper presents 14 C or optically stimulated luminescence(OSL) age estimates from two sets of late Quaternary lacustrine sequences in the Qaidam Basin and Tengger Desert(northeastern Tibetan Plateau). The updated dating results show:(1) the radiocarbon dating technique apparently underestimated the age of the strata of >30 ka BP in Qaidam Basin;(2) although OSL and 14 C dating agreed with each other for Holocene age samples in the Tengger Desert area, there was a significant offset in dating results of sediments older than ~30 ka BP, largely resulting from radiocarbon dating underestimation;(3) both cases imply that most of the published radiocarbon ages(e.g., older than ~30 ka BP) should be treated with caution and perhaps its geological implication should be revaluated; and(4) the high lake events on the Tibetan Plateau and adjacent areas, traditionally assigned to MIS 3a based on 14 C dating, are likely older than ~80 ka based on OSL chronology.  相似文献   

13.
The applicability of two different approaches in the luminescence dating of old (>70 ka) Chinese loess is investigated. Both SAR-OSL ages obtained on 63–90 μm quartz grains and SAR-IRSL ages obtained on 4–11 μm polymineral grains, for samples collected from two sites in the Chinese Loess Plateau (Luochuan and Dongchuan) are presented. The characteristics of the luminescence signals stimulated by blue and infrared light are investigated in terms of dose response and dose recovery, and as a function of age. Additionally, anomalous fading measurements from the 410 nm IRSL emission in polymineral fine-grains are reported. An average value of g2days amounting to 3% per decade was measured and seems to be independent of site location and age. For the samples from Luochuan, independent age control (pedostratigraphy and palaeomagnetism) is available. At both sites, the SAR-OSL ages are always lower than the SAR-IRSL ages after they have been corrected for anomalous fading. It seems that the quartz-based SAR-OSL ages are accurate for the younger ages, but that they underestimate the true age of deposition for loess that was deposited about 60–70 ka ago. The fading-corrected SAR-IRSL ages are in better agreement with the pedostratigraphic age control (75 and 130 ka) and allow dating beyond the quartz OSL range. Based on our results, we suggest that conventional SAR-OSL and SAR-IRSL protocols at these sites should be restricted to samples of ages not exceeding 40–50  and 100–120 ka, respectively.  相似文献   

14.
The ability to position landscapes in a context of time and space is a particular goal of Quaternary science research. The lack of context for dating samples published previously for MacCauley's Beach, an important site for the reconstruction of Australian sea levels, warranted a re‐evaluation of both the site stratigraphy and chronology. In this study, we combined optically stimulated luminescence (OSL) dating of sedimentary quartz grains and soil micromorphology of the same samples to improve our understanding of the depositional history and chronology of the sediments. This combination allowed the contextualization of samples not only in time and space, but also in terms of their depositional histories. The latter is important in OSL dating, where pre‐, syn‐ and post‐depositional processes can all influence the accuracy and precision of the final age estimates. The sediment profile at MacCauley's Beach is made up of three major units. The basal mottled mud layer has undergone extensive pedogenesis since deposition, and only a minimum age of 14.7 ± 2.7 ka could be calculated. The overlying grey mud, with OSL ages from the bottom and top of the unit of 10.0 ± 0.7 and 7.7 ± 0.5 ka, respectively, shows evidence of soil structure collapse. This unit correspond to the onset of the mid‐Holocene sea‐level high stand for this region. The overlying sand layer was first deposited at 7.5 ± 0.4 ka, with deposition continuing beyond 6.6 ± 0.4 ka. Not only does the chronology presented constrain the timing of deposition (and the extent of post‐depositional processes) at MacCauley's Beach, but the methodological approach used here can be applied to any site to aid in the interpretation of formation processes and assess their influence on OSL age determination. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The Horqin sand-field in northeastern Inner Mongolia, China, had been the fertile grassland in North China, but desertification and sand-dust storm have increasingly occurred in the past decades [Zhu and Wang, 1992. Theory and practice of sandy desertification in China (in Chinese with English abstract). Quaternary Sciences 2, 97]. To understand the Holocene sand dune activities in this region, five sand dune profiles were investigated, and 32 coarse grain quartz samples were dated by OSL using the single-aliquot regenerative-dose (SAR) protocol [Murray and Wintle, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73]. For cross-checking, six organic-rich samples from the paleosols and sandy peat/mud were dated by both 14C and quartz OSL. With one exception, 14C and quartz OSL dating results show good agreements. Based on the consistent results of five sand dune profiles, a chronology of Holocene dune activity in Horqin sand-field is established as follows: (i) active sand dunes built up widely before 10 ka; (ii) dunes semi-stabilized between 10 and 7.5 ka ago; (iii) the dunes solidify and chernozem soils developed between 7.5 and 2.0 ka ago; and (iv) partially re-mobilization of dunes occurred since about 2.0 ka ago.  相似文献   

16.
Recent developments have opened up the possibilities of using potassium feldspar for dating Pleistocene sediments; a stable (less-fading) part of the infrared stimulated luminescence (IRSL) signal can be selected by largely depleting the unstable part of the IR signal, using a combination of thermal and IR stimulation: post IR-IRSL dating (pIR-IRSL).This study aims to test the validity of pIR-IRSL dating on feldspars. We obtained pIR-IRSL ages on a large suite of samples from several locations in the Netherlands area, covering a wide range of depositional environments and ages. Age control was provided by quartz optically stimulated luminescence (OSL) ages on the same samples; these ages were shown to accord with geological age constraints. Comparison with IRSL ages enabled us to evaluate the improvement that pIR-IRSL dating provides over conventional IRSL methods.The majority of feldspar ages obtained with pIR-IRSL showed good agreement with both the quartz OSL ages and the geological age constraints. Our study demonstrates that pIR-IRSL dating is more robust than conventional IRSL and should be the method of choice in feldspar luminescence dating of Pleistocene sediments.  相似文献   

17.
A chronology based on optically stimulated luminescence (OSL) dating is presented for the late- and post-glacial evolution of the southern Baltic Sea (15 ka to present). During this period, large water level and salinity changes occurred in the Baltic Basin due to opening and closing of connections to the North Atlantic. Previous attempts to establish a chronology for these palaeoenvironmental changes have mainly been conducted in coastal settings where organic material for 14C dating is abundant. Many of these records are, however, discontinuous due to the large water level fluctuations. In contrast, in the relatively deep water of the Arkona Basin, the sediment record is expected to be more or less continuous. The single aliquot regenerative dose (SAR) procedure was used to date 32 samples of fine quartz sand from a 10.86 m long sediment core from the centre of this basin (45 m water depth). Tests of luminescence characteristics confirmed the suitability of the material for OSL dating and the ages agree well with the available AMS 14C ages on shells. The Baltic Ice Lake drainage to the North Atlantic appears to occur 11.6 ka, agreeing with other published evidence. However, we suggest that the main marine Littorina transgression appears in the Arkona Basin at about 6.5 ka, rather than at 8.5 ka, as previously thought.  相似文献   

18.
Late Pleistocene records of loess deposition are a critical archive for understanding terrestrial paleoenvironment changes in Central Asia. The age of loess is not well known for the deserts regions and surrounding high plateaus in Central Asia. Previous studies have shown that there remains a disparity between ages for loess deposition by luminescence and 14C dating. This study evaluates the potential of optically stimulated luminescence (OSL) to date a loess sequence resting on fluvial sands in the east Ili Basin, Central Asia. The single-aliquot regenerative-dose (SAR) protocol on coarse grain quartz was employed for equivalent dose determinations. The basal fluvial sand returned a secure OSL age, with low overdispersion value in equivalent doses (19 ± 2%) of ca. 36 ka and provides a close, but maximum age estimate (within 5 ka) on the initiation of loess deposition. However, the loess yielded high overdispersion values for equivalent doses and age reversals, coincident with diffuse paleosols; indicating that pedoturbation with loess deposition may be a dominant process. OSL ages between ca. 45 and 14 ka calculated using a maximum age model and OSL ages from other sites in the Basin suggests that the latest major period of loess deposition was between 70 and 10 ka ago. A future hypothesis to test based on these analyses is that there may be three periods of heightened loess deposition at ca. 45, 35 to 19 and 14 ka, when desert source areas to the west were particularly dry.  相似文献   

19.
The paleogeography of Amazonia lowlands during the Pleistocene remains hampered by the lack of reliable absolute ages to constrain sediment deposition in the hundred thousand to few million years timescales. Optically stimulated luminescence (OSL) dating applied to quartz has provided important chronological control for late Quaternary sediments, but the method is limited to the last ∼150 ka. In order to extend the age range of luminescence dating, new signals from quartz have been investigated. This study tested the application of isothermal thermoluminescence (ITL) and thermally transferred optically stimulated luminescence (TT-OSL) signals of quartz for dating of fluvial terraces from eastern Amazonia. ITL and TT-OSL signals measured in a modern fluvial sediment sample have shown small residual doses (4 and 16 Gy), suggesting adequate bleached sediments for the target dose range (>150 Gy). This sample responded well to dose recovery test, which showed that the ITL and TT-OSL signals grow to higher doses compared to the doses estimated by the conventional OSL signal. The ITL signal saturated for doses significantly lower than doses reported in the literature. Most dating samples were beyond the ITL saturation doses and only TT-OSL signals were suitable to estimate equivalent doses. Burial ages ranging from 107 to 340 ka were estimated for the fluvial terraces in the lower Xingu River. The main ages uncertainties are related to dose rate changes through time. Despite the uncertainties, these ages should indicate a higher channel base level during the Middle Pleistocene followed by channel incision, possibly due to episodes of increased precipitation in the Xingu watershed.  相似文献   

20.
天山北麓活动背斜区河流阶地与古地震事件   总被引:2,自引:2,他引:2       下载免费PDF全文
利用航空遥感照片和Google earth卫星影像,对天山北麓独山子活动背斜区奎屯河两侧的河流地貌进行解释,结合野外调查发现,奎屯河流经独山子背斜段发育7级基座阶地,阶地基座为上新统独山子组泥岩,其上部为2.5 ~ 15m厚的砂砾石层和砂质黏土.在开挖或剥离的各级阶地堆积物剖面中采集细粒堆积物样品,实验室中采用细粒石英...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号