首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The time variations in the Gutenberg–Richter b-value are minutely studied based on the data of highly accurate seismological observations at the Garm prognostic site, Tajikistan, where a stationary network of seismic stations of the Complex Seismological Expedition (CSE) of Schmidt Institute of Physics of the Earth (IPE) of the USSR (Russian) Academy of Sciences was in operation from 1955 to 1992. A total of 93035 local earthquakes ranging from 0.0 to 6.3 in the Ml magnitudes are considered. The spatiotemporal fluctuations in the minimal magnitude of completeness of the earthquakes, Mc, are analyzed. The study considers a 25-year interval of the observations at the center of the observation system within which Mc = 0.9. It is shown that in most cases, the b-value and log10E2/3 experience characteristic time variations before the earthquakes with magnitudes higher than the minimal magnitude of the predicted earthquake (MPE). The 6-year anomaly in the parameters’ b-value, log10E2/3, and log10N associated with the single strongest earthquake with M = 6.3 that occurred in the observation region on October 26, 1984 is revealed. The inversely proportional relationship is established between the time variations in the b-value and the time variations in the velocities of seismic waves Vp and Vp/Vs. It is shown that the exponent p in the power function which links the time variations of the b-value and log10E2/3 is higher in the zones of crustal compression than in the zones of extension. It is simultaneously confirmed that the average b-value in the zones of compression is lower than in the zones of extension. It is established that in the case of earthquakes with M ≥ 2.6, the time series of seismic activity log10Ni and the time series of the b-value are highly cross correlated with a coefficient of r ≈ 0.75, whereas in the case of earthquakes with M ≥ 0.9, the coefficient of cross correlation between these time series is close to zero (r ≈ 0.06). The law of variations in the slope of the lines approximating the relationship between the log10Ni time series in the different magnitude ranges (MMci) and b-value time series is obtained. It is hypothesized that the seismic activity of the earthquakes with high magnitudes can be estimated provided that the parameters of the time series of the b-value and time series of the number of earthquakes logNMi) in the range of low magnitudes are known. It is concluded that using the parameter log10N for prognostic estimates of the strong earthquakes only makes sense for earthquakes having moderate and large magnitudes. It is inferred that the time variations in the b-value are predominantly contributed by the time variations of the earthquakes with relatively large magnitudes.  相似文献   

2.
The Aki-Utsu method of Gutenberg-Richter (G-R) b value estimation is often misapplied so that estimations not using the G-R histogram are often meaningless because they are not based on adequate samples. We propose a method to estimate the likelihood Pr(b?b m , N, M 1, M 2) that an observed b m estimate, based on a sample of N magnitudes within an [M 1????≤?ΔM/2,?M 2?+?ΔM/2) range, where ΔM?=?0.1 is the usual rounding applied to magnitudes, is due to a “true” source b value, b, and use these likelihoods to estimate source b ranges corresponding to various confidence levels. As an example of application of the method, we estimate the b values before and after the occurrence of a 7.4-magnitude earthquake in the Mexican subduction zone, and find a difference of 0.82 between them with 100% confidence that the b values are different.  相似文献   

3.
We analyzed the most relevant seismic sequences that occurred from 1977 to 2007 in the Friuli-Venezia Giulia region (northeastern Italy) and western Slovenia. The eight aftershock sequences were triggered by low- to moderate-magnitude earthquakes with mainshock duration magnitude ranging from 3.7 to 5.6. The b-value of the Gutenberg–Richter law varies from 0.8 to 1.1. The modified Omori’s modeling of the sequences evidences values of the p exponent ranging from 0.8 to 1.0. Using the Reasenberg and Jones (Science 243:1173–1176, 1989; Science 265:1251–1252, 1994) approach, we computed the probabilistic estimate of the aftershock rates and the largest aftershock in given time intervals. The difference in magnitude between the mainshock and the largest aftershock is calculated according to the modified Båth law and using an approach that considers the partitioning of the radiated seismic energy between mainshock and aftershocks. The partitioning of the radiated seismic energy appears to play a significant role in the evolution of the sequences. We define the parameter R ES as the ratio between the radiated seismic energy of the mainshock and the summation of the seismic energy radiated by the aftershocks. The difference in magnitude between the mainshock and the largest aftershock, calculated with the parameter R ES, agrees well with the observed difference. In most sequences, the parameter R ES decreases very quickly until the occurrence of the largest aftershock and then becomes constant. By analyzing the values of R ES during the early hours following the mainshock, we found that the R ES values after 24 h are well related to the final ones, calculated on the whole sequence, and to the differences in magnitude between the mainshock and the largest aftershock.  相似文献   

4.
The Aki-Utsu maximum likelihood method is widely used for estimation of the Gutenberg-Richter b-value, but not all authors are conscious of the method’s limitations and implicit requirements. The Aki/Utsu method requires a representative estimate of the population mean magnitude; a requirement seldom satisfied in b-value studies, particularly in those that use data from small geographic and/or time windows, such as b-mapping and b-vs-time studies. Monte Carlo simulation methods are used to determine how large a sample is necessary to achieve representativity, particularly for rounded magnitudes. The size of a representative sample weakly depends on the actual b-value. It is shown that, for commonly used precisions, small samples give meaningless estimations of b. Our results give estimates on the probabilities of getting correct estimates of b for a given desired precision for samples of different sizes. We submit that all published studies reporting b-value estimations should include information about the size of the samples used.  相似文献   

5.
Seismicity has been identified as an example of a natural, nonlinear system for which the distribution of frequency and event size follow a power law called the “Gutenberg–Richter (G-R) law.” The parameters of the G-R law, namely b- and a-values, have been widely used in many studies about seismic hazards, earthquake forecasting models, and other related topics. However, the plausibility of the power law model and applicability of parameters were mainly verified by statistical error σ of the b-value, the effectiveness of which is still doubtful. In this research, we used a newly defined p value developed by Clausetet al. (Power-Law Distributions in Empirical Data, SIAM Rev. 51, 661–703, 2009) instead of the statistical error σ of the b-value and verified its effectiveness as a plausibility index of the power-law model. Furthermore, we also verified the effectiveness of K–S statistics as a goodness-of-fit test in estimating the crucial parameter \(M_{\text{c}}\) of the power-law model.  相似文献   

6.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

7.
A preliminary study of b value of rocks with two kinds of structural models has been made on the base of a new acoustic emission recording system. It shows that b value of the sample decreases obviously when the sample with compressive en echelon faults changes into a tensile one after interchange occurs between stress axis σ 1 and σ 2. A similar experiment is observed when the sample with tensile en echelon faults changes into that with a bend fault after two segments of the en echelon fault linking up. These facts indicate that the variation of b value may contain the information of the regional dominant structural model. Therefore, b-value analyses could be a new method for studying regional dominant structural models.  相似文献   

8.
The seismological data in the area of induced seismicity in the region of the Nurek reservoir are analyzed. The analysis is based on the developed database for the earthquakes that occurred from 1955 to 1989 and is aimed at finding the regularities in the variations of the parameters of the transitional seismic regime caused by filling a reservoir. These parameters include the b-value—the slope of the graph of the Gutenberg–Richter frequency–magnitude relationship, the fractal dimension d of the set of the epicenters, and fracture cycle parameter q = αb ? d, where coefficient α determines the ratio between the magnitude and source size M = α log l + β. It is shown that during the filling of a reservoir, these parameters undergo statistically reliable variations: at the initial stages, the b-value increases, the fractal dimension of the set of epicenters decreases, and the fracture cycle parameter q grows and becomes positive in the middle of the time interval of reservoir filling. After a reservoir is filled, these parameters recover their background values. The aftershock sequences of the three strongest earthquakes—before, in the beginning, and in the middle of the reservoir filling period—are studied. It is confirmed that the Omori parameter p for the aftershock sequences during filling is smaller than for the earthquake before filling. Based on the dynamics of the studied parameters, it is conjectured that the relaxation time of the transitional seismic regime after the emergence of induced seismicity is about 10 years.  相似文献   

9.
The purpose of this work is to define a seismic regionalization of Mexico for seismic hazard and risk analyses. This seismic regionalization is based on seismic, geologic, and tectonic characteristics. To this end, a seismic catalog was compiled using the more reliable sources available. The catalog was made homogeneous in magnitude in order to avoid the differences in the way this parameter is reported by various agencies. Instead of using a linear regression to converts from m b and M d to M s or M w , using only events for which estimates of both magnitudes are available (i.e., paired data), we used the frequency-magnitude relations relying on the a and b values of the Gutenberg-Richter relation. The seismic regions are divided into three main categories: seismicity associated with the subduction process along the Pacific coast of Mexico, in-slab events within the down-going COC and RIV plates, and crustal seismicity associated to various geologic and tectonic regions. In total, 18 seismic regions were identified and delimited. For each, the a and b values of the Gutenberg-Richter relation were determined using a maximum likelihood estimation. The a and b parameters were repeatedly estimated as a function of time for each region, in order to confirm their reliability and stability. The recurrence times predicted by the resulting Gutenberg-Richter relations obtained are compared with the observed recurrence times of the larger events in each region of both historical and instrumental earthquakes.  相似文献   

10.
Spatiotemporal mapping the minimum magnitude of completeness Mc and b-value of the Gutenberg–Richter law is conducted for the earthquake catalog data of Greece. The data were recorded by the seismic network of the Institute of Geodynamics of the National Observatory of Athens (GINOA) in 1970–2010 and by the Hellenic Unified Seismic Network (HUSN) in 2011–2014. It is shown that with the beginning of the measurements at HUSN, the number of the recorded events more than quintupled. The magnitude of completeness Mc of the earthquake catalog for 1970–2010 varies within 2.7 to 3.5, whereas starting from April 2011 it decreases to 1.5–1.8 in the central part of the region and fluctuates around the average of 2.0 in the study region overall. The magnitude of completeness Mc and b-value for the catalogs of the earthquakes recorded by the old (GINOA) and new (HUSN) seismic networks are compared. It is hypothesized that the magnitude of completeness Mc may affect the b-value estimates. The spatial distribution of the b-value determined from the HUSN catalog data generally agrees with the main geotectonic features of the studied territory. It is shown that the b-value is below 1 in the zones of compression and is larger than or equal to 1 in the zones dominated by extension. The established depth dependence of the b-value is pretty much consistent with the hypothesis of a brittle–ductile transition zone existing in the Earth’s crust. It is assumed that the source depth of a strong earthquake can probably be estimated from the depth distribution of the b-value, which can be used for seismic hazard assessment.  相似文献   

11.
In this paper changes in focal mechanisms, parameters of wave spectra, and stress drops for the M S=5.0 foreshock and M S=6.0 mainshock in February 2001 in Yajiang County, Sichuan, and seismicity in epicentral region are studied. Comparison of focal mechanisms for the Yajiang earthquakes with distribution patterns of aftershocks, the nodal plane I, striking in the direction of NEN, of the Yajiang M=5.0 event is chosen as the faulting plane; the nodal plane II, striking in the direction of WNW, of the M=6.0 event as the faulting plane. The strikes of the two faulting planes are nearly perpendicular to each other. The level of stress drops in the epicentral region before the occurrence of the M=6.0 earthquake increases, which is consistent with increase of seismicity in the epicentral region. The rate decay of the Yajiang earthquake sequence, changes in wave spectra for foreshocks and aftershocks, and focal mechanisms are complex.  相似文献   

12.
The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.  相似文献   

13.
A method for determining medium quality factor is developed on the basis of analyzing the attenuation dispersion of the arrived first period P wave. In order to enhance signal to noise ratio, improve the resolution in measurement and reduce systematic error we applied the data resampling technique. The group velocity delay of P wave was derived by using an improved multi-filtering method. Based on a linear viscoelastic relaxation model we deduced the medium quality factor Q m, and associated error with 95% confidence level. Applying the method to the seismic record of the Xiuyan M=5.4 earthquake sequences we obtained the following result: (1) High Q m started to appear from Nov. 9, 1999. The events giving the deduced high Q m value clustered in a region with their epicenter distances being between 32 and 46 km to the Yingkou station. This Q m versus distance observation obviously deviates from the normal trend of Q m linearly increasing with distance. (2) The average Q m before the 29 Dec. 1999 M=5.4 earthquake is 460, while the average Q m between the M=5.4 event and the 12 Jan. 2000 M=5.1 earthquake is 391, and the average Q m after the M=5.1 event is 204.  相似文献   

14.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

15.
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L)?=?A?+?B·(5 – M)?+?C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.  相似文献   

16.
In this study, we aim to improve the scaling between the moment magnitude (M W), local magnitude (M L), and the duration magnitude (M D) for 162 earthquakes in Shillong-Mikir plateau and its adjoining region of northeast India by extending the M W estimates to lower magnitude earthquakes using spectral analysis of P-waves from vertical component seismograms. The M W-M L and M W-M D relationships are determined by linear regression analysis. It is found that, M W values can be considered consistent with M L and M D, within 0.1 and 0.2 magnitude units respectively, in 90 % of the cases. The scaling relationships investigated comply well with similar relationships in other regions in the world and in other seismogenic areas in the northeast India region.  相似文献   

17.
One of the crucial components in seismic hazard analysis is the estimation of the maximum earthquake magnitude and associated uncertainty. In the present study, the uncertainty related to the maximum expected magnitude μ is determined in terms of confidence intervals for an imposed level of confidence. Previous work by Salamat et al. (Pure Appl Geophys 174:763-777, 2017) shows the divergence of the confidence interval of the maximum possible magnitude mmax for high levels of confidence in six seismotectonic zones of Iran. In this work, the maximum expected earthquake magnitude μ is calculated in a predefined finite time interval and imposed level of confidence. For this, we use a conceptual model based on a doubly truncated Gutenberg-Richter law for magnitudes with constant b-value and calculate the posterior distribution of μ for the time interval Tf in future. We assume a stationary Poisson process in time and a Gutenberg-Richter relation for magnitudes. The upper bound of the magnitude confidence interval is calculated for different time intervals of 30, 50, and 100 years and imposed levels of confidence α?=?0.5, 0.1, 0.05, and 0.01. The posterior distribution of waiting times Tf to the next earthquake with a given magnitude equal to 6.5, 7.0, and 7.5 are calculated in each zone. In order to find the influence of declustering, we use the original and declustered version of the catalog. The earthquake catalog of the territory of Iran and surroundings are subdivided into six seismotectonic zones Alborz, Azerbaijan, Central Iran, Zagros, Kopet Dagh, and Makran. We assume the maximum possible magnitude mmax?=?8.5 and calculate the upper bound of the confidence interval of μ in each zone. The results indicate that for short time intervals equal to 30 and 50 years and imposed levels of confidence 1???α?=?0.95 and 0.90, the probability distribution of μ is around μ?=?7.16???8.23 in all seismic zones.  相似文献   

18.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

19.
Aftershock hazard maps contain the essential information for search and rescue process, and re-occupation after a main-shock. Accordingly, the main purposes of this article are to study the aftershock decay parameters and to estimate the expected high-frequency ground motions (i.e., Peak Ground Acceleration (PGA)) for recent large earthquakes in the Iranian plateau. For this aim, the Ahar-Varzaghan doublet earthquake (August 11, 2012; M N =6.5, M N =6.3), and the Ilam (Murmuri) earthquake (August 18, 2014 ; M N =6.2) have been selected. The earthquake catalogue has been collected based on the Gardner and Knopoff (Bull Seismol Soc Am 64(5), 1363-1367, 1974) temporal and spatial windowing technique. The magnitude of completeness and the seismicity parameters (a,??b) and the modified Omori law parameters (P,??K,??C) have been determined for these two earthquakes in the 14, 30, and 60 days after the mainshocks. Also, the temporal changes of parameters (a,??b,??P,??K,??C) have been studied. The aftershock hazard maps for the probability of exceedance (33%) have been computed in the time periods of 14, 30, and 60 days after the Ahar-Varzaghan and Ilam (Murmuri) earthquakes. For calculating the expected PGA of aftershocks, the regional and global ground motion prediction equations have been utilized. Amplification factor based on the site classes has also been implied in the calculation of PGA. These aftershock hazard maps show an agreement between the PGAs of large aftershocks and the forecasted PGAs. Also, the significant role of b parameter in the Ilam (Murmuri) probabilistic aftershock hazard maps has been investigated.  相似文献   

20.
The homologues temperature of a crystalline material is defined as T/T_m, where T is temperature and T_m is the melting(solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystalline materials. The melting temperature of olivine system,(Mg,Fe)_2SiO_4, decreases with increasing iron content and water content, and increases with confining pressure. At high pressure, phase transition will lead to a sharp change in the melting curve of olivine. After calibrating previous melting experiments on fayalite(Fe_2SiO_4), the triple point of fayalite-Fe_2SiO_4 spinel-liquid is determined to be at 6.4 GPa and 1793 K. Using the generalized means, the solidus and liquidus of dry olivine are described as a function of iron content and pressure up to 6.4 GPa. The change of T/T_m of olivine with depth allows us to compare the strength of the upper mantle with different thermal states and olivine composition. The transition from semi-brittle to ductile deformation in the upper mantle occurs at a depth where T/T_m of olivine equals 0.5. The lithospheric mantle beneath cratons shows much smaller T/T_m of olivine than orogens and extensional basins until the lithosphere-asthenosphere boundary where T/T_m 0.66, suggesting a stronger lithosphere beneath cratons. In addition, T/T_m is used to analyze deformation experiments on olivine. The results indicate that the effect of water on fabric transitions in olivine is closely related with pressure. The hydrogen-weakening effect and its relationship with T/T_m of olivine need further investigation. Below 6.4 GPa(200 km), T/T_m of olivine controls the transition of dislocation glide from [100] slip to [001] slip. Under the strain rate of 10~(-12)–10~(-15) s~(-1) and low stress in the upper mantle, the [100](010) slip system(A-type fabric) becomes dominant when T/T_m 0.55–0.60. When T/T_m 0.55–0.60, [001] slip is easier and low T/T_m favors the operation of [001](100) slip system(C-type fabric). This is consistent with the widely observed A-type olivine fabric in naturally deformed peridotites, and the C-type olivine fabric in peridotites that experienced deep subduction in ultrahigh-pressure metamorphic terranes. However, the B-type fabric will develop under high stress and relatively low T/T_m. Therefore, the homologues temperature of olivine established a bridge to extrapolate deformation experiments to rheology of the upper mantle. Seismic anisotropy of the upper mantle beneath cratons should be simulated using a four-layer model with the relic A-type fabric in the upper lithospheric mantle, the B-type fabric in the middle layer, the newly formed A- or B-type fabric near the lithosphere-asthenosphere boundary, and the asthenosphere dominated by diffusion creep below the Lehmann discontinuity. Knowledge about transition mechanisms of olivine fabrics is critical for tracing the water distribution and mantle flow from seismic anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号