首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
This study analyzes and compares the P- and S-wave displacement spectra from local earthquakes and explosions of similar magnitudes. We propose a new approach to discrimination between low-magnitude shallow earthquakes and explosions by using ratios of P- to S-wave corner frequencies as a criterion. We have explored 2430 digital records of the Israeli Seismic Network (ISN) from 456 local events (226 earthquakes, 230 quarry blasts, and a few underwater explosions) of magnitudes Md?=?1.4–3.4, which occurred at distances up to 250 km during 2001–2013 years. P-wave and S-wave displacement spectra were computed for all events following Brune’s source model of earthquakes (1970, 1971) and applying the distance correction coefficients (Shapira and Hofstetter, Teconophysics 217:217–226, 1993; Ataeva G, Shapira A, Hofstetter A, J Seismol 19:389-401, 2015), The corner frequencies and moment magnitudes were determined using multiple stations for each event, and then the comparative analysis was performed.The analysis showed that both P-wave and especially S-wave displacement spectra of quarry blasts demonstrate the corner frequencies lower than those obtained from earthquakes of similar magnitudes. A clear separation between earthquake and explosion populations was obtained for ratios of P- to S-wave corner frequency f 0(P)/f 0(S). The ratios were computed for each event with corner frequencies f 0 of P- and S-wave, which were obtained from the measured f 0 I at individual stations, then corrected for distance and finally averaged. We obtained empirically the average estimation of f 0(P)/f 0(S)?=?1.23 for all used earthquakes, and 1.86 for all explosions. We found that the difference in the ratios can be an effective discrimination parameter which does not depend on estimated moment magnitude M w .The new multi-station Corner Frequency Discriminant (CFD) for earthquakes and explosions in Israel was developed based on ratios P- to S-wave corner frequencies f 0(P)/f 0(S), with the empirical threshold value of the ratio for Israel as 1.48.  相似文献   

2.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

3.
During the ruptures of an earthquake,the strain energy.△E,.will be transferred into,at least,three parts,i.e..the seismic radiation energy(E_s),fracture energy(E_g),and frictional energy(E_f),that is,△E = E_s + E_g + E_f.Friction,which is represented by a velocity- and state-dependent friction law by some researchers,controls the three parts.One of the main parameters of the law is the characteristic slip displacement.D_c.It is significant and necessary to evaluate the reliable value of D_c from observed and inverted seismic data.Since D_c controls the radiation efficiency.η_R = E_s/(E_s+ E_g),the value of η_r is a good constraint of estimating D_c.Integrating observed data and inverted results of source parameters from recorded seismograms.the values of E_s and E_g of an earthquake can be measured,thus leading to the value of η_R.The constraint used to estimate the reliable value of D_c will be described in this work.An example of estimates of D_c.based on the observed and inverted values of source parameters of the September 20,1999 M_S 7.6 Chi-Chi(Ji-Ji).Taiwan region,earthquake will be presented.  相似文献   

4.
The regularities in the radiation and propagation of seismic waves in the regions of the North Caucasus are analyzed for estimating the ground motion parameters during the probable future strong earthquakes. Based on the records of the regional earthquakes with magnitudes MW ~ 3.9–5.6 within epicentral distances up to ~300 km obtained during the period of digital measurements at the Sochi and Anapa seismic stations, the Q-factors in the vicinities of these sites are estimated at ~55 f0.9 and ~90f0.7, respectively. The estimates were obtained by the coda normalization method developed by Aki, Rautian, and other authors. This method is based on the phenomenon of suppression of the earthquake (source) effects and local (site) responses by coda waves in the S-wave spectra. The obtained Q-factor estimates can be used for forecasting the ground shaking parameters for the future probable strong earthquakes in the North Caucasus in the vicinities of Sochi and Anapa.  相似文献   

5.
In this study, continuous wavelet transform is applied to estimate the frequency-dependent quality factor of shear waves, Q S , in northwestern Iran. The dataset used in this study includes velocigrams of more than 50 events with magnitudes between 4.0 and 6.5, which have occurred in the study area. The CWT-based method shows a high-resolution technique for the estimation of S-wave frequency-dependent attenuation. The quality factor values are determined in the form of a power law as Q S (f)?=?(147?±?16)f 0.71?±?0.02 and (126?±?12)f 0.73?±?0.02 for vertical and horizontal components, respectively, where f is between 0.9 and 12 Hz. Furthermore, in order to verify the reliability of the suggested Q S estimator method, an additional test is performed by using accelerograms of Ahar-Varzaghan dual earthquakes on August 11, 2012, of moment magnitudes 6.4 and 6.3 and their aftershocks. Results indicate that the estimated Q S values from CWT-based method are not very sensitive to the numbers and types of waveforms used (velocity or acceleration).  相似文献   

6.
Attenuation of P and S waves has been investigated in Alborz and north central part of Iran using the data recorded by two permanent and one temporary networks during October 20, 2009, to December 22, 2010. The dataset consists of 14,000 waveforms from 380 local earthquakes (2 < M L < 5.6). The extended coda normalization method (CNM) was used to estimate quality factor of P (Q P) and S waves (Q S) at seven frequency bands (0.375, 0.75, 1.5, 3, 6, 12, 24 Hz). The Q P and Q S values have been estimated at lapse times from 40 to 100 s. It has been observed that the estimated values of Q P and Q S are time independent; therefore, the mean values of Q P and Q S at different lapse times have been considered. The frequency dependence of quality factor was determined by using a power-law relationship. The frequency-dependent relationship for Q P was estimated in the form of (62 ± 7)f (1.03 ± 0.07) and (48 ± 5)f (0.95 ± 0.07) in Alborz region and North Central Iran, respectively. These relations for Q S for Alborz region and North Central Iran have estimated as (83 ± 8)f (0.99 ± 0.07) and (68 ± 5)f (0.96 ± 0.05), respectively. The observed low Q values could be the results of thermoelastic effects and/or existing fracture. The estimated frequency-dependent relationships are comparable with tectonically active regions.  相似文献   

7.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

8.
This paper aims at investigating possible regional attenuation patterns in the case of Vrancea(Romania) intermediate-depth earthquakes.Almost 500 pairs of horizontal components recorded during 13 intermediate-depth Vrancea earthquakes are employed in order to evaluate the regional attenuation patterns.The recordings are grouped according to the azimuth with regard to the Vrancea seismic source and subsequently,Q models are computed for each azimuthal zone assuming similar geometrical spreading.Moreover,the local soil amplification which was disregarded in a previous analysis performed for Vrancea intermediate-depth earthquakes is now clearly evaluated.The results show minor differences between the four regions situated in front of the Carpathian Mountains and considerable differences in attenuation of seismic waves between the forearc and backarc regions(with regard to the Carpathian Mountains).Consequently,an average Q model of the type Q(f) = 115×f~(1.25) is obtained for the four forearc regions,while a separate Q model of the type Q(f) = 70×f~(0.90) is computed for the backarc region.These results highlight the need to evaluate the seismic hazard of Romania by using ground motion models which take into account the different attenuation between the forearc/backarc regions.  相似文献   

9.
The time variations in the Gutenberg–Richter b-value are minutely studied based on the data of highly accurate seismological observations at the Garm prognostic site, Tajikistan, where a stationary network of seismic stations of the Complex Seismological Expedition (CSE) of Schmidt Institute of Physics of the Earth (IPE) of the USSR (Russian) Academy of Sciences was in operation from 1955 to 1992. A total of 93035 local earthquakes ranging from 0.0 to 6.3 in the Ml magnitudes are considered. The spatiotemporal fluctuations in the minimal magnitude of completeness of the earthquakes, Mc, are analyzed. The study considers a 25-year interval of the observations at the center of the observation system within which Mc = 0.9. It is shown that in most cases, the b-value and log10E2/3 experience characteristic time variations before the earthquakes with magnitudes higher than the minimal magnitude of the predicted earthquake (MPE). The 6-year anomaly in the parameters’ b-value, log10E2/3, and log10N associated with the single strongest earthquake with M = 6.3 that occurred in the observation region on October 26, 1984 is revealed. The inversely proportional relationship is established between the time variations in the b-value and the time variations in the velocities of seismic waves Vp and Vp/Vs. It is shown that the exponent p in the power function which links the time variations of the b-value and log10E2/3 is higher in the zones of crustal compression than in the zones of extension. It is simultaneously confirmed that the average b-value in the zones of compression is lower than in the zones of extension. It is established that in the case of earthquakes with M ≥ 2.6, the time series of seismic activity log10Ni and the time series of the b-value are highly cross correlated with a coefficient of r ≈ 0.75, whereas in the case of earthquakes with M ≥ 0.9, the coefficient of cross correlation between these time series is close to zero (r ≈ 0.06). The law of variations in the slope of the lines approximating the relationship between the log10Ni time series in the different magnitude ranges (MMci) and b-value time series is obtained. It is hypothesized that the seismic activity of the earthquakes with high magnitudes can be estimated provided that the parameters of the time series of the b-value and time series of the number of earthquakes logNMi) in the range of low magnitudes are known. It is concluded that using the parameter log10N for prognostic estimates of the strong earthquakes only makes sense for earthquakes having moderate and large magnitudes. It is inferred that the time variations in the b-value are predominantly contributed by the time variations of the earthquakes with relatively large magnitudes.  相似文献   

10.
Actual evapotranspiration(ET_a) over the Tibetan Plateau(TP) is an important component of the water cycle,and greatly influences the water budgets of the TP lake basins.Quantitative estimation of ET_a within lake basins is fundamental to physically understanding ET_a changes,and thus will improve the understanding of the hydro logical processes and energy balance throughout the lake basins.In this study,the spatiotemporal dynamic changes of ET_α within the Lake Selin Co(the TP's largest lake) and its surrounding small lakes and land area during 2003-2012 are examined at the basin scale.This was carried out using the well-established Water and Energy Budget-based Distributed Hydrological Model(WEB-DHM) for the land area,the Penman method for the water area when unfrozen,and a simple sublimation estimation approach for the water area when frozen.The relationships between ET_a changes and controlling factors are also discussed.Results indicate that the simulated land ET_a from the WEB-DHM reasonably agrees with the estimated ET_a values from the nonlinear complementary relationship model using appropriately calibrated parameter values at a point scale.Land ET_a displayed a non-significant increase of 7.03 mm year~(-1),and largely depends on precipitation.For the water area,the combined effects of reduced wind speed and net radiation offset the effect of rising temperature and vapor pressure deficit,and contributed to a non-significant decrease in evaporation of 4.17 mm year~(-1).Sensitivity analysis shows that vapor pressure deficit and wind speed are the most sensitive variables to the changes of evaporation from the water area.  相似文献   

11.
Based on the Anapa (ANN) seismic station records of ~40 earthquakes (MW > 3.9) that occurred within ~300 km of the station since 2002 up to the present time, the source parameters and quality factor of the Earth’s crust (Q(f)) and upper mantle are estimated for the S-waves in the 1–8 Hz frequency band. The regional coda analysis techniques which allow separating the effects associated with seismic source (source effects) and with the propagation path of seismic waves (path effects) are employed. The Q-factor estimates are obtained in the form Q(f) = 90 × f 0.7 for the epicentral distances r < 120 km and in the form Q(f) = 90 × f1.0 for r > 120 km. The established Q(f) and source parameters are close to the estimates for Central Japan, which is probably due to the similar tectonic structure of the regions. The shapes of the source parameters are found to be independent of the magnitude of the earthquakes in the magnitude range 3.9–5.6; however, the radiation of the high-frequency components (f > 4–5 Hz) is enhanced with the depth of the source (down to h ~ 60 km). The estimates Q(f) of the quality factor determined from the records by the Sochi, Anapa, and Kislovodsk seismic stations allowed a more accurate determination of the seismic moments and magnitudes of the Caucasian earthquakes. The studies will be continued for obtaining the Q(f) estimates, geometrical spreading functions, and frequency-dependent amplification of seismic waves in the Earth’s crust in the other regions of the Northern Caucasus.  相似文献   

12.
The Q-factor estimates of the Earth’s crust and upper mantle as the functions of frequency (Q(f)) are obtained for the seismic S-waves at frequencies up to ~35 Hz. The estimates are based on the data for ~40 earthquakes recorded by the Kislovodsk seismic station since 2000. The magnitudes of these events are MW > 3.8, the sources are located in the depth interval from 1 to 165 km, and the epicentral distances range from ~100 to 300 km. The Q-factor estimates are obtained by the methods developed by Aki and Rautian et al., which employ the suppression of the effects of the source radiation spectrum and local site responses in the S-wave spectra by the coda waves measured at a fixed lapse time (time from the first arrival). The radiation pattern effects are cancelled by averaging over many events whose sources are distributed in a wide azimuthal sector centered at the receiving site. The geometrical spreading was specified in the form of a piecewise-continuous function of distance which behaves as 1/R at the distances from 1 to 50 km from the source, has a plateau at 1/50 in the interval from 50–70 km to 130–150 km, and decays as \({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {\sqrt R }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\sqrt R }$}}\) beyond 130–150 km. For this geometrical spreading model and some of its modifications, the following Q-factor estimates are obtained: Q(f) ~ 85f0.9 at the frequencies ranging from ~1 to 20 Hz and Q(f) ~ 75f1.0 at the frequencies ranging from ~1 to 35 Hz.  相似文献   

13.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

14.
The long-term and continuous carbon fluxes of Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical evergreen coniferous forest (QYZ), Dinghushan subtropical evergreen mixed forest (DHS) and Xishuangbana tropical rainforest (XSBN) have been measured with eddy covariance techniques. In 2003, different responses of carbon exchange to the environment appeared across the four ecosystems. At CBS, the carbon exchange was mainly determined by radiation and temperature. 0°C and 10°C were two important temperature thresholds; the former determined the length of the growing season and the latter affected the magnitude of carbon exchange. The maximum net ecosystem exchange (N EE) of CBS occurred in early summer because maximum ecosystem photosynthesis (G PP) occurred earlier than maximum ecosystem respiration (R e). During summer, QYZ experienced severe drought and N EE decreased significantly mainly as a result of the depression of G PP. At DHS and XSBN, N EE was higher in the drought season than the wet season, especially the conversion between carbon sink and source occurring during the transition season at XSBN. During the wet season, increased fog and humid weather resulted from the plentiful rainfall, the ecosystem G PP was dispressed. The Q 10 and annual respiration of XSBN were the highest among the four ecosystems, while the average daily respiration of CBS during the growing season was the highest. Annual N EE of CBS, QYZ, DHS and XSBN were 181.5, 360.9, 536.2 and ?320.0 g·C·m?2·a?1, respectively. From CBS to DHS, the temperature and precipitation increased with the decrease in latitude. The ratio of N EE/R e increased with latitude, while R e/G PP, ecosystem light use efficiency (L UE), precipitation use efficiency and average daily G PP decreased gradually. However, XSBN usually escaped such latitude trend probably because of the influence of the south-west monsoon climate which does not affect the other ecosystems. Long-term measurement and more research were necessary to understand the adaptation of forest ecosystems to climate change and to evaluate the ecosystem carbon balance due to the complexity of structure and function of forest ecosystems.  相似文献   

15.
Cushion is a layer of granular materials between the raft and the ground. The shear behavior of the interface between the cushion and the raft may influence the seismic performance of the superstructure. In order to quantify such influences, horizontal shear tests on the interfaces between different cushion materials and concrete raft under monotonic and cyclic loading were carried out. The vertical pressure P_v, material type and cushion thickness h_c were taken as variables. Conclusions include: 1) under monotonic loading, P_v is the most significant factor; the shear resistance P_(hmax) increases as P_v increases, but the normalized factor of resistance μ_n has an opposite tendency; 2) for the materials used in this study, μ_n varies from 0.40 to 0.70, the interface friction angle δ_s varies from 20° to 35°, while u_(max) varies from 3 mm to 15 mm; 3) under cyclic loading, the interface behavior can be abstracted as a "three-segment" back-bone curve, the main parameters include μ_n, the displacement u_1 and stiffness K_1 of the elastic stage, the displacement u_2 and stiffness K_2 of the plastic stage; 4) by observation and statistical analysis, the significance of different factors, together with values of K_1, K_2 and μ_n have been obtained.  相似文献   

16.
Statistical tests have been used to adjust the Zemmouri seismic data using a distribution function. The Pareto law has been used and the probabilities of various expected earthquakes were computed. A mathematical expression giving the quantiles was established. The extreme values limiting law confirmed the accuracy of the adjustment method. Using the moment magnitude scale, a probabilistic model was made to predict the occurrences of strong earthquakes. The seismic structure has been characterized by the slope of the recurrence plot γ, fractal dimension D, concentration parameter Ksr, Hurst exponents Hr and Ht. The values of D, γ, Ksr, Hr, and Ht diminished many months before the principal seismic shock (M = 6.9) of the studied seismoactive zone has occurred. Three stages of the deformation of the geophysical medium are manifested in the variation of the coefficient G% of the clustering of minor seismic events.  相似文献   

17.
In the Tarim Basin, black shale series at the bottom of Cambrian is one of the important marine facies hydrocarbon source rocks. This research focuses on the analysis of the isotope of noble gas of 11 cherts. The R/R a ratio of chert in the Keping area is 0.032–0.319, and 40Ar/36Ar is 338–430. In Quruqtagh the R/R a ratio is 0.44–10.21, and 40Ar/36Ar is 360–765. The R/R a ratio of chert increases with 40Ar/36Ar from the west to the east accordingly. They have evolved from the crust source area to the mantle source area in a direct proportion. Surplus argon 40ArE in chert is in direct proportion to the R/R a ratio, indicating that it has the same origin of excess argon as in fluid and mantle source helium. Comparison of the R/R a ratios between the west and the east shows that the chert in the eastern part formed from the activity system of the bottom hydrothermal venting driven by the mantle source, where the material and energy of crust and mantle had a strong interaction in exchange; whereas in the western part, chert deposited from the floating of hydrothermal plume undersea bottom, which is far away from the centre of activities of the hydrothermal fluid of ocean bottom. In addition, from noble gas isotope composition of chert, it is suggested that the ocean anoxia incident happened at the black shale of the Cambrian bottom probably because of the large-scaled ocean volcanoes and the following hydrothermal activities.  相似文献   

18.
The seismic performance of bridges depends on the ductile behavior of its column, as the deck and other substructural components except pile foundations are normally designed to be elastic to facilitate bridge retrofitting.Codes such as AASHTO, Caltrans, IRC: 112 etc.give guidelines for the seismic performance enhancement of columns through ductile detailing.In the present study, a methodology for the seismic performance enhancement of bridges is discussed by using a "Parameter-Based Influence Factor"(PIF) developed from factorial analysis.The parameters considered in the factorial analysis are: percentage of longitudinal reinforcement(P_t), compressive strength of concrete(f'_c), yield strength of steel(f_y), spacing of lateral ties(S) and column height(H).The influence of each parameter and their combination on the limit states considered is estimated.Pushover analysis is used to evaluate the capacity of columns, considering shear failure criteria.A total of 243(3~5 combinations) analysis results are compiled to develop ‘PIF’ used in the performance enhancement process.The study also encompasses other sub-objectives such as evaluating the discrepancies in using the Importance Factor(I) in designing bridges of varied functional importance; and estimating the aspect ratio and slenderness ratio values of bridge columns for its initial sizing.  相似文献   

19.
An earthquake withM=6.5 happened on January 15, 2000 in Yao’an of Yunnan Province. After the earthquake, a temporary digital network with 6 detectors around the epicenter area was set up. 402 aftershocks were located more precisely. According to coda short recording observed, the coda averaging quality factor has been acquired via Sato’s single scattering model analyses,Q c(f)=49f 0.95,f=1.5~20.0 Hz, which has the attenuation characteristics of high structural active region.  相似文献   

20.
Analysis of the frequency dependence of the attenuation coefficient leads to significant changes in interpretation of seismic attenuation data. Here, several published surface-wave attenuation studies are revisited from a uniform viewpoint of the temporal attenuation coefficient, denoted by χ. Theoretically, χ( f) is expected to be linear in frequency, with a generally non-zero intercept γ?=?χ(0) related to the variations of geometrical spreading, and slope dχ/df = π/Q e caused by the effective attenuation of the medium. This phenomenological model allows a simple classification of χ( f) dependences as combinations of linear segments within several frequency bands. Such linear patterns are indeed observed for Rayleigh waves at 500–100-s and 100–10-s periods, and also for Lg from ~2 s to ~1.5 Hz. The Lg χ( f) branch overlaps with similar linear branches of body, Pn, and coda waves, which were described earlier and extend to ~100 Hz. For surface waves shorter than ~100 s, γ values recorded in areas of stable and active tectonics are separated by the levels of \(\gamma _{D} \approx 0.2 \times 10^{-3}\) s???1 (for Rayleigh waves) and 8 ×10???3 s???1 (for Lg). The recently recognized discrepancy between the values of Q measured from long-period surface waves and normal-mode oscillations could also be explained by a slight positive bias in the geometrical spreading of surface waves. Similarly to the apparent χ, the corresponding linear variation with frequency is inferred for the intrinsic attenuation coefficient, χ i , which combines the effects of geometrical spreading and dissipation within the medium. Frequency-dependent rheological or scattering Q is not required for explaining any of the attenuation observations considered in this study. The often-interpreted increase of Q with frequency may be apparent and caused by using the Q-based model of attenuation and following preferred Q( f) dependences while ignoring the true χ( f) trends within the individual frequency bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号