首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Embedded foundation in layered soil under dynamic excitations   总被引:1,自引:0,他引:1  
The critical step in the substructure approach for the soil–structure interaction (SSI) problem is to determine the impedance functions (dynamic-stiffness coefficients) of the foundations. In the present study, a computational tool is developed to determine the impedance functions of foundation in layered soil medium. Cone frustums are used to model the foundation soil system. Cone frustums are developed based on wave propagation principles and force-equilibrium approach. The model is validated for its ability to represent the embedded foundation in layered medium by comparing the results with the rigorous analysis results. Various degrees of freedom, such as, horizontal, vertical and rocking are considered for this study.  相似文献   

2.
A study on the seismic response of massive flexible strip-foundations embedded in layered soils and subjected to seismic excitation is presented. Emphasis is placed on the investigation of the system response with the aid of a boundary element–finite element formulation proper for the treatment of such soil–structure interaction problems. In the formulation, the boundary element method (BEM) is employed to overcome the difficulties that arise from modeling the infinite soil domain, and the finite element method (FEM) is applied to model the embedded massive flexible strip-foundation. The numerical solution for the soil–foundation system is obtained by coupling the FEM with the BEM through compatibility and equilibrium conditions at the soil–foundation and soil layer interfaces. A parametric study is conducted to investigate the effects of foundation stiffness and embedment on the seismic response.  相似文献   

3.
本文根据边界元方法建立了位不规则场上刚体的动阻抗和在入射平面波作用下的有效输入运动的分析模型,分析模型考虑了不规则场地和基础对入射波的散射作用以及土与基础的相互作用,通过验证确认了本方法的正确性,文中计算了凹陷,高地和盆地三种不规则场地土不同条件基础的动阻和有效输入的运动,并与半空间地基上相应基础的情况作了对比,计算表明,当基础尺寸与不规则场地范围可比时有必要用本文模型分析不规则场地的影响和土一结  相似文献   

4.
A new experimental method using a finite soil model with no special treatement on its boundaries is employed for soil-structure intration problems to simulate the semi-infinitenesss of the actual soil medium. The present method utlizies the characteristics of transient response to an impluse load to obtain the impedance functions and effective input motions for surface and embedded foundations. This technique is applicable to a linear elastic system whose impulse response decreases to a small enough value before observing the reflected waves. The experimentally obtained impedance functions and effective input motions are compared with those obtained by the direct boundary integral equation method and the hybrid approach. Good agreement between the xperimental and analytical results validates the present method as well as the accuracy of the numerical tools.  相似文献   

5.
In-plane foundation-soil interaction for embedded circular foundations   总被引:2,自引:0,他引:2  
Foundation soil interaction is studied using an analytical two-dimensional model, for circular foundations embedded in a homogeneous elastic half-space and for incident plane P- and SV- and for surface Rayleigh waves. The scattered waves are expanded in complete series of cyclindrical wave functions. A detailed analysis is presented of the foundation response to unit amplitude incident waves as a function of the type of incident waves and angle of incidence, the depth of the embedment and the foundation mass per unit length.It is shown that free-field translations and point rotation approximate well the foundation input motion only for very long incident waves. For shorter incident waves, those in general overestimate the foundation input motion. Neglecting the rotation of the foundation input motion (which is usually done in practice) may eliminate a major contribution to the base excitation of buildings and may cause nonconservative estimates of the forces in these buildings. Incident waves appear as ‘longer’ to a shallow foundation than to a deeper foundation. Therefore, deeper foundations are more effective in reflecting and scattering the short incident waves.  相似文献   

6.
7.
The problem of the dynamic response of rigid embedded foundations subjected to the action of external forces and seismic excitation is analysed. It is shown that to calculate the response of rigid embedded foundations, or the response of flat rigid foundations subjected to non-vertically incident seismic waves, it is necessary to obtain not only the impedance matrix for the foundation, but also the forces induced by the incident seismic waves. Under these general conditions, rocking and torsional motion of the foundation is generated in addition to translation. The case of a two-dimensional rigid foundation of semi-elliptical cross-section is used as an example to illustrate the effects of the embedment depth and angle of incidence of the seismic waves on the response of the foundation.  相似文献   

8.
In this paper, a simple two-dimensional soil–structure interaction model, based on Biot's theory of wave propagation in fluid saturated porous media, is used to explain the observed increase of the apparent frequencies of Millikan library in Pasadena, California, during heavy rainfall and recovery within days after the rain. These variations have been measured for small amplitude response (to microtremors and wind excitation), for which Biot's linear theory is valid. The postulated hypothesis is that the observed increases in frequency are due to the water saturation of the soil. The theoretical model used to explore this hypothesis consists of a shear wall supported by a circular foundation embedded in a poroelastic half-space. This rigid foundation model may be appropriate only for the NS response of Millikan library. This paper presents results for the foundation stiffness, and for the system response for model parameters similar to those for Millikan library (located on alluvium with shear wave velocity of about 300 m/s). The foundation impedance matrix, foundation input motion and system response are compared for dry and fully saturated half-space, with permeable and impermeable foundation. The results show that for embedded foundations, the effects of saturation on the horizontal foundation stiffness are as significant as for the vertical stiffness, contrary to what has been known for surface foundations investigated by other authors. Further, the results suggest a 1–2% increase in system frequency of the first two modes of vibration, depending on the drainage condition along the foundation–soil interface. Such increases agree qualitatively with the observations.  相似文献   

9.
A boundary element formulation of the substructure deletion method is presented for the seismic analysis of the dynamic cross-interaction between multiple embedded foundations. This approach is particularly suitable for three-dimensional foundations of any arbitrary geometrical shape and spatial location, since it requires only the discretization of the foundations’ surfaces. The surrounding soil is represented by a homogeneous viscoelastic half-space while the foundations are assumed to be rigid and subjected to incoming SH-, P-, and SV-waves arbitrarily inclined in both the horizontal and vertical planes. The proposed methodology is tested for the case of two identical embedded square foundations for different values of the foundations’ embedment and distance. The effects of the cross-interaction are outlined in the components of the impedance matrix and of the foundation input motion. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a study on the transient response of an elastic structure embedded in a homogeneous, isotropic and linearly elastic half-plane is presented. Transient dynamic and seismic forces are considered in the analysis. The numerical method employed is the coupled Finite-Element–Boundary-Element technique (FE–BE). The finite element method (FEM) is used for discretization of the near field and the boundary element method (BEM) is employed to model the semi-infinite far field. These two methods are coupled through equilibrium and compatibility conditions at the soil–structure interface. Effects of non-zero initial conditions due to the pre-dynamic loads and/or self-weight of the structure are included in the transient boundary element formulation. Hence, it is possible to analyse practical cases (such as dam–foundation systems) involving initial conditions due to the pre-seismic loads such as water pressure and self-weight of the dam. As an application of the proposed formulation, a gravity dam has been analysed and the results for different foundation stiffness are presented. The results of the analysis indicate the importance of including the foundation stiffness and thus the dam–foundation interaction.  相似文献   

11.
Foundation impedance functions provide a simple means to account for soil–structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.  相似文献   

12.
A study of soil–structure–fluid interaction (SSFI) of a lock system subjected to harmonic seismic excitation is presented. The water contained lock is embedded in layered soils supported by a half-space bedrock. The ground excitation is prescribed at the soil–bedrock interface. The response is numerically obtained through a hybrid boundary element (BEM) finite element method (FEM) formulation. The semi-infinite soil and the fluid are modeled by the BEM and the lock is modeled by the FEM. The equilibrium equation for the lock system is obtained by enforcing compatibility and equilibrium conditions at the fluid–structure, soil–structure and soil–layer interfaces under conditions of plane strain. To the authors’ knowledge this is the first study of a lock system that considers the effects of dynamic soil–fluid–structure interaction through a BEM–FEM methodology. A numerical example and parametric studies are presented to examine the effects of the presence of water, lock stiffness, and lock embedment on the response.  相似文献   

13.
A simple and fast evaluation method of soil–structure interaction (SSI) effects of embedded structures is presented via a cone model. The impedances and the effective input motions at the bottom of an embedded foundation are evaluated by means of the cone model. Those quantities are transformed exactly to the corresponding values at the top of the foundation. The evaluated quantities are combined with the super-structure at the top of the foundation. The transfer function amplitude of the interstory drift of a single-degree-of-freedom super-structure is computed for various cases, i.e. no SSI, SSI without embedment, SSI with shallow embedment, SSI with deep embedment. Soil properties are also varied to investigate in more detail the SSI effects of embedded structures. It is found that, while the transfer function amplitude is reduced by the increase of embedment in general, the characteristics of the transfer function amplitude for a very small ground shear wave velocity and large embedment are irregular and complicated.  相似文献   

14.
This study is concerned with the dynamic response of an arbitrary shaped rigid strip foundation embedded in an orthotropic elastic soil. The foundation is subjected to time-harmonic vertical, horizontal and moment loadings. The boundary-value problem related to an embedded foundation is analysed by using the indirect boundary integral equation method. The kernel functions of the integral equations are displacement and traction Green's functions of an anisotropic elastic half plane. Exact analytical solutions are used for the Green's functions. The boundary integral equation is solved by using numerical techniques. Selected numerical results are presented for the impedances of rectangular and semi-circular rigid strip foundations embedded in four types of anisotropic soils. A discussion on the influence of soil anisotropy and frequency of excitation on the impedances is presented. The versatility of the analysis is demonstrated by considering the through soil interaction between two semi-circular strip foundations.  相似文献   

15.
This paper is concerned with the dynamic response of rigid strip foundations of arbitrary geometry embedded in a homogeneous elastic half-space. The embedded rigid foundation is modelled by an equivalent domain in a uniform half-space which is subjected to an appropriate body force field. The components of the impedance matrix are determined through the solution of a linear simultaneous equation system which is established by invoking rigid body displacements of discrete locations within the equivalent domain and appropriate equilibrium consideration. It is found that high numerical efficiency and flexibility can be achieved using the body force model when compared to boundary integral formulations through the selection of appropriate displacement influence functions and a ‘parent domain’ in the analysis. Numerical results are presented to illustrate the influence of the embedment ratio, frequency of excitation, foundation geometry and Poisson's ratio on the vertical, horizontal, rocking and coupled impedances of a single embedded foundation. The effect on the impedance due to the presence of an adjacent embedment is investigated for various distances between foundations and embedment ratios.  相似文献   

16.
Vertical vibration of an embedded rigid foundation in a poroelastic soil   总被引:4,自引:0,他引:4  
This paper considers time-harmonic vertical vibration of an axisymmetric rigid foundation embedded in a homogeneous poroelastic soil. The soil domain is represented by a homogeneous poroelastic half space that is governed by Biot's theory of poroelastodynamics. The foundation is subjected to a time-harmonic vertical load and is perfectly bonded to the surrounding half space. The contact surface can be either fully permeable or impermeable. The dynamic interaction problem is solved by employing an indirect boundary integral equation method. The kernel functions of the integral equation are the influence functions corresponding to vertical and radial ring loads, and a ring fluid source applied in the interior of a homogeneous poroelastic half space. Analytical techniques are used to derive the solution for influence functions. The indirect boundary integral equation is solved by using numerical quadrature. Selected numerical results for vertical impedance of rigid foundations are presented to demonstrate the influence of poroelastic effect, foundation geometry, hydraulic boundary condition along the contact surface and frequency of excitation.  相似文献   

17.
Building foundation-soil interaction is studied in the frequency domain using a two-dimensional analytical model. The building is represented by an infinitely long shear wall resting on a circular foundation, embedded into an elastic homogeneous half-space. Deep and shallow foundations are considered (with depth-to-half-width ratios of 1 and 0·5). Both the dynamic interaction and the wave passage effects are included. The excitation is a plane P- or SV-wave,or a surface Rayleigh wave. The results show that for incident waves which are long relative to the width of the foundation, the foundation driving forces are larger when the embedment is deeper. For shorter incident waves, the input base rotation is larger for shallow foundations and, therefore, the relative building response may then be larger. It is also shown that the input base rotation may contribute significantly to the building excitation and that neglecting it may cause nonconservative estimates for the forces in the building.  相似文献   

18.
A direct time domain boundary element method is presented based on the Stokes fundamental solutions, discretized in both time and space, and an efficient time step-by-step solution that minimizes the accumulation of errors. A non-singular numerical integration procedure, in the Cauchy sense, is proposed for the generation of the associated influence matrices. This methodology is shown to be efficient for the solution of a number of computationally intensive problems in the area of soil–structure interaction. In addition, an algorithm for the direct calculation of the response of massive foundations to externally applied forces and/or obliquely incident seismic waves is introduced. The accuracy and computational efficiency of the proposed methodologies is established through a number of comparison studies.  相似文献   

19.
The nonlinearity of the soil affects soil–structure interaction to a considerable extent. For a reliable and safe analysis of soil interaction effects on the dynamic response of structures, a more realistic and relatively straightforward method incorporating the nonlinear hysteretic nature of the underlying soil–foundation system needs to be developed. The present paper models the soil–foundation system as a single degree of freedom spring–dashpot system with nonlinear hysteresis in form of elasto-perfectly plastic behavior. Analytical results for the lateral dynamic stiffness on footing have been presented. An example study has been carried out in case of circular footings. It is shown how the analytical results can be used to get a preliminary idea of the lateral dynamic stiffness of footings on a soil medium prior to a detailed computational geo-mechanics analysis provided the static nonlinear load–deformation characteristic of the soil medium is known and can be modeled by a hysteretic elasto-plastic behavior. The corresponding results are presented in a graphical form. The results have been computed showing parametric variations with the change in the amplitude and dimensionless frequency of the non-dimensional excitation force. Analytical results are also presented for the asymptotic cases at low and very high values of dimensionless frequency parameter.  相似文献   

20.
Local transmitting boundaries for transient elastic analysis   总被引:1,自引:0,他引:1  
The aim of this paper is to investigate and develop alternative methods of analyzing problems in dynamic soil–structure-interaction (SSI). The interaction means that the amplitude of structural response is effected by additional energy dissipation through radiation and material damping in the soil. The surrounding soft soil behaves as a natural damper for a massive and stiff structure supported or embedded in it. The main focus is the major difficulty posed by such an analysis — the phenomena of waves that radiate outward from the excited structures towards infinity. In numerical calculations only a finite region of the foundation medium is analyzed and something is done to prevent the outgoing radiation waves from reflecting at the boundary region.Development of a simple and efficient finite element (FE) procedure for the solution directly in the time domain of transient SSI problems is the main concern. The central feature of the procedure is local absorbing boundaries used to render the computational domain finite. These boundaries are local in both time and space and are completely defined by a pair of symmetric stiffness and damping matrices. As the effort for implementing them is the same as for the impedance boundary condition (BC) considering the angle of incidence, standard assembly procedure can be used. Due to the local nature they also preserve the overall structure of the global equations of motion. Even though the focus is in the time domain the same equations of motions can be used to determine the solution under time-harmonic excitation directly in the frequency domain. Explicit formulae for the element matrices are included in the paper and numerical examples for transient radiation model problems to illustrate the validity and accuracy of the new procedures, are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号