首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
贺兰山—银川地堑及邻区重力异常特征及构造意义   总被引:1,自引:0,他引:1       下载免费PDF全文
贺兰山—银川地堑及邻区地质结构复杂,对该区域深浅结构特征的研究具有重要意义.本文采用重力归一化总梯度成像和二维小波多尺度分解方法对研究区内重力异常进行了垂向和横向构造分析.重力归一化总梯度成像结果显示高低转换带的倾角、倾向与地质上的贺兰山东麓断裂、银川断裂和黄河断裂分布吻合较好,贺兰山西麓断裂与贺兰山东麓断裂汇交深度约18 km,银川断裂与黄河断裂汇交深度约25 km;二维小波多尺度分解成像结果表明正谊关断裂、贺兰山西麓断裂、芦花台断裂和银川断裂为上地壳断裂,贺兰山东麓断裂、青铜峡—固原断裂以及黄河断裂为下地壳断裂,且这三大断裂可能分别是阿拉善地块东南边界和鄂尔多斯地块西南边界;1739年平罗M 8.0古地震震中与银川断裂在重力剖面深度约15 km汇交,其垂向高低梯度为强变形带,同时古地震震中位于重力正负异常转换部位的低值区,据此可推断此次古地震的发震构造是银川断裂.这些结论可提高对贺兰山—银川地堑及邻区地质结构的认识,为该区地壳动力学过程及强震的孕震机理研究提供一定的科学依据.  相似文献   

2.
银川断陷盆地地壳结构与构造的地震学证据   总被引:12,自引:6,他引:6       下载免费PDF全文
通过跨银川断陷盆地,完成了一条长68.9 km的高分辨深地震反射探测剖面,首次获得了银川盆地地壳精细结构、地堑型断陷盆地深部断裂系(黄河断裂、银川断裂、贺兰山东麓断裂)特征及深浅构造关系.结果表明:银川断陷盆地上地壳为双程走时8 s(深度约20 km)反射面以上的区域,上地壳上部地层层位丰富,地层分段连续性较好,上地壳下部地层分层特征不明显,地质构造简单;下地壳(8~13 s)反射能量较弱,反射同相轴不明显;下地壳下部壳幔过渡带(13 s附近)由一组能量较强、持续时间较长(1.5 s)的反射波组组成,厚度约4.5 km.芦花台断裂、银川断裂分别于12~12.5 km、18~19 km深处交汇于贺兰山东麓断裂,贺兰山东麓断裂于28~29 km深处交汇于黄河断裂,黄河断裂为错断Moho面的深大断裂,银川地堑为以黄河断裂为主,其他断裂为辅组合而成的负花状构造.根据贺兰山东麓断裂和银川断裂的相互关系,认为贺兰山东麓断裂对1739年平罗—银川8级地震起主要控制作用.  相似文献   

3.
1739年银川-平罗8级地震灾害的历史辨析   总被引:1,自引:0,他引:1  
在查阅了大量有关1739年银川-平罗8级大震历史资料的基础上,结合建国以来对银川平原地震的研究成果,研究了1739年银川-平罗8级地震的地震烈度分布及其灾害特点。研究认为:该地震的发震构造为贺兰山东麓断裂,而极震区位于其东南的银川-平罗一带,与银川地堑第四纪沉降中心相吻合,这主要是受到工程地质条件的影响。其震害特点对减轻未来地震灾害、城市规划等都有参考价值。  相似文献   

4.
在查阅了大量有关1739年银川—平罗8级大震历史资料的基础上,结合建国以来对银川平原地震的研究成果,研究了1739年银川—平罗8级地震的地震烈度分布及其灾害特点。研究认为:该地震的发震构造为贺兰山东麓断裂,而极震区位于其东南的银川—平罗一带,与银川地堑第四纪沉降中心相吻合,这主要是受到工程地质条件的影响。其震害特点对减轻未来地震灾害、城市规划等都有参考价值。  相似文献   

5.
初论贺兰山前洪积扇断层陡坎   总被引:2,自引:0,他引:2       下载免费PDF全文
银川盆地是个四周被断裂围限的新生代地堑,活动断层屡见不鲜。地堑西侧的洪积扇上,多处见有陡坎,著名的红果子沟长城错动正位于两条洪积扇陡坎上。但是,盆地中最长、最壮观的还是贺兰山中段苏峪口外的洪积扇陡坎(图1)。此陡坎曾被一些研究者推测为断层。但另一些地质学家由于没有直接见到断层面和其  相似文献   

6.
位于南北构造带北段的贺兰山和银川盆地是华北克拉通西部的一个板内构造变形带和活动构造带,有着复杂的形成和演化历史,对该区复杂的地质构造和现代地震活动有着重要的控制作用.2014年初,跨银川盆地和贺兰山完成的长度135km的深地震反射剖面揭示了该区的岩石圈层结构和断裂的深浅构造特征.研究结果表明,沿剖面莫霍面埋深自东向西逐渐加深,地壳厚度40~48km,且不同构造部位的地壳反射结构图像、速度分布、壳内界面形态和莫霍面起伏存在着明显差异.深地震反射剖面揭示,贺兰山两侧有着不同的断裂构造特征,在贺兰山东侧,黄河断裂、贺兰山东麓断裂以及银川盆地内的多条隐伏断裂均为第四纪以来仍在活动的正断层,控制了银川盆地的新生代沉积,在剖面上呈"负花状"构造展布;在贺兰山西侧,巴彦浩特断裂和贺兰山西麓断裂在剖面上表现为东倾的逆冲断层,使得贺兰山隆起区的中生代地层发生褶皱、冲断和结构变形;地壳深断裂位于银川盆地的西侧,该断裂倾角陡直,向下错断中-下地壳和莫霍面,向上可能与两组上地壳断裂相联系;这套不同时期形成的走滑、逆冲和正断并存的深浅断裂系统是该区盆山耦合、地壳结构变形和壳幔结构变化的构造条件.深地震反射剖面揭示的另外一个重要现象是,在贺兰山和银川盆地之下还存在有一组强能量的上地幔反射波组(UMR),其界面深度约为82~92km,暗示该区上地幔中存在有速度跃变层或速度间断面,反映了该区上地幔结构的纵向不均匀性.探测结果为进一步分析研究华北克拉通西部复杂的深部结构、不同地块的结构差异和深浅构造关系等提供了地震学证据.  相似文献   

7.
钻探揭示的黄河断裂北段活动性和滑动速率   总被引:5,自引:2,他引:3       下载免费PDF全文
黄河断裂是银川盆地内展布最长、切割最深的一条深大断裂,也是银川盆地的东边界。由于其北段呈隐伏状,因此,该段的活动性和滑动速率长期未知,影响了对盆地演化和地震危险性的认识。文中选择具有石油地震勘探基础的陶乐镇为研究场点,以人工浅层地震勘探结果为依据,在黄河断裂北段布设了一排钻孔联合剖面,并对标志层进行年代测试,获得了断裂的活动时代和滑动速率。结果表明,黄河断裂北段在晚更新世末期或全新世有过活动,在(28.16±0.12)ka BP 以来的累积位移为0.96m,晚第四纪以来的平均滑动速率为0.04mm/a,该值明显低于南段灵武断层(0.24mm/a);尽管向下切割了莫霍面,黄河断裂晚第四纪活动强度和发震能力均要低于切割相对浅的贺兰山东麓断裂;黄河断裂可能在新生代之前已经强烈活动并深切莫霍面,新生代以来,银川盆地的构造活动迁移分解到以贺兰山东麓断裂为主的多条断裂之上,地壳双层伸展模型可解释银川盆地现今深浅部构造活动间的联系。  相似文献   

8.
银川盆地是华北克拉通西部构造活动较为强烈的一个新生代断陷盆地.为了研究银川盆地的地壳浅部结构和活动断裂特征,我们利用2014年在银川盆地完成的深地震反射剖面数据,采用初至波层析成像方法得到了银川盆地高精度的基底P波速度结构和构造形态;考虑到仅根据速度结构剖面还难以确定断裂的准确位置、断层上断点埋深、断层的近地表构造组合样式等特征,研究中还采用浅层地震反射波勘探方法对银川盆地内的隐伏断裂和1739年平罗8.0级地震的地表破裂带浅部结构进行了高分辨率成像.研究结果表明:银川盆地与两侧地块的浅层P波速度结构和沉积盖层厚度差异较大,银川盆地总体呈现出明显的低速结构特征,盆地基底面起伏变化较大,基底最深处位于芦花台断裂和银川断裂之间的银川市下方,其深度约为7000~7200 m;贺兰山隆起区显示为明显的高速特征,地表出露中-古生代基岩地层,缺失新生代地层;鄂尔多斯地块西缘的浅层P波速度明显高于银川盆地,基底埋深相对较浅,推测其新生界地层厚度小于2500 m.浅层地震反射剖面揭示的地层反射界面形态和断裂的浅部构造特征非常清楚,黄河断裂、贺兰山东麓断裂、银川断裂和芦花台断裂不仅是错断盆地基底的断裂,而且还是第四纪以来的隐伏活动断裂,这些断裂的交替活动形成了"堑中堑"的盆地结构,并对银川盆地的形成、盆地内的新生代地层厚度和第四纪沉降中心具有重要的控制作用;在近地表这些断裂表现为由2~3条断层组成的"Y字形"断裂构造,且主断裂的最新活动可追踪至晚更新世末期或全新世,是构造继承性活动的结果.本文的研究结果不仅可为进一步分析银川盆地的基底结构、隐伏断裂特征和活动构造研究等提供新的地震学证据,而且还可为该区城市规划中避让活动断层提供科学依据.  相似文献   

9.
以往对郯庐断裂带沂沭段各条断层第四纪活动性研究工作都集中在有历史地震记录的东地堑断层,而对断裂带西地堑断层却极少涉及,仅有的关于西地堑2条断层活动性的研究也至今没有定论。针对沂沭断裂带南段西地堑2条断层开展系统的浅层地震勘探和钻孔联合剖面相结合的研究,明确了鄌郚-葛沟断裂(F4)可能是第四纪早期断裂,而活动性较强的沂水-汤头断裂(F3)属于晚更新世活动断裂,其最新1次活动时间发生在距今(91.2±4.4)~(97.0±4.8)ka。结合断裂带其他断层的最新研究成果,对比东、西地堑活动断层最新活动时间,揭示出沂沭断裂带南段晚第四纪活动是断裂带对来自两侧应力的构造响应。沂水-汤头断裂可能是该区域未来中强地震的潜在发震构造。  相似文献   

10.
银川地堑地壳挤压应力场:深地震反射剖面   总被引:6,自引:4,他引:2       下载免费PDF全文
银川地堑位于南北地震带北段,地质结构复杂,活动构造发育.为了调查银川地堑的构造特征及断裂分布情况,布设了NW向跨银川地堑的深地震反射剖面,首次获得银川地堑地壳的精细结构.结果表明,银川地堑具有典型的拉张-挤压型沉积盆地特征,上地壳反射连续性好,层位丰富,能量强,断裂发育.下地壳和莫霍面记录了挤压与拉张的发展过程.奠霍面...  相似文献   

11.
断层破裂面倾角变化对断陷盆地强地面运动的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
地震事件中,断层破裂面的倾角大小直接影响到地表强地震动的分布状态,尤其在断陷盆地中,强地面运动特征还可能受到盆地结构及盆地内多条围限断层的影响.本文模拟了银川断陷盆地内的活动断层--银川隐伏断层南段发生Mw6.5特征地震时,断层破裂面倾角在30°~85°范围内变化时引起的强地面运动,探讨了断层破裂面倾角变化对盆地内强地面运动分布特征和强度的影响.结果表明:破裂面倾角较缓时,银川盆地内的强地面运动分布区域不仅仅决定于发震断层的产状,同时还受到断层上盘距离最近的芦花台断层的影响,致使强地面运动集中于两条断层所围限的区域;随着发震断层破裂面的倾角逐渐增大,强地面运动以发震断层产状的影响为主,强震集中区向发震断层靠近并分布于发震断层上盘,且沿断层走向方向出现了强度不同的地震动反射区;尤其是发震断层破裂面倾角接近垂直时,受银川盆地"西陡东缓"结构和盆地西边界贺兰山东麓断裂反射作用的影响,竖向地震动反射区强度在远离发震断层的西北方向明显增大,致使芦花台断层附近区域与银川断层南段上盘区域成为地震发生时可能遭受震害最严重的地区.本文探讨结果提醒我们在类似区域的活动断层附近进行建(构)筑规划和地震工程设计时,有必要考虑发震断层破裂面倾角大小和盆地内其它断层构造的共同影响,综合评价潜在地震对盆地内近断层地表及各类建(构)筑物的危害性.  相似文献   

12.
合浦-北流断裂带西支合浦盆地段断裂活动性研究   总被引:2,自引:1,他引:1       下载免费PDF全文
合浦-北流断裂起于北部湾海域,经合浦、博白后继续向NE延伸,断裂总长度为400余千米,断裂总体走向为40°~60°,分东、西2支,其中西支自南流江下游合浦盆地西南段一直向NE延伸。文中主要采用地质地貌、地震探测、钻探以及年代学方法,对合浦-北流断裂西支合浦盆地段的活动性进行判定,结果表明:合浦-北流断裂西支合浦盆地段最后1次活动应发生在早更新世中晚期,错距约为10m,断裂被中更新世中、晚期地层覆盖,即中更新世中、晚期以来,断裂的活动趋于减弱或停止  相似文献   

13.
对在地理位置上具有一定代表性的鄂尔多斯块体西缘及西南缘的3 条大地电磁剖面进行了分析。盐池—阿拉善左旗剖面:整条剖面上均有壳内低阻层和上地幔低阻层分布,低阻层在银川断陷盆地上隆。定边—景泰剖面:壳内低阻层仅出现在弧形断裂带区,但上地幔低阻层在整个剖面上都有分布。在弧形断裂带区上地幔低阻层埋藏深度加大,但并不上隆,这与北面银川断陷盆地的上地幔上隆形成反照。分析认为,银川断陷盆地属于拉张性质,而弧形断裂带区属于挤压性质,由于均衡调整作用,造成了两者上地幔结构的反差。成县—西吉剖面:以天水太京测点为界,其南、北两段的电性结构差异较大,这为划分南、北两个地质单元提供了深部结构上的依据  相似文献   

14.
小店子—茅埠段是沂沭断裂带安丘-莒县断裂的组成部分,北起莒县小店子东北,南至莒县茅埠以南,总体走向10°~20°,倾向NW或SE,倾角60°以上,长约30km。可细分为5小段,从北到南依次是小店子—齐家庄、源河、库山—西莲池、青峰岭和三庄—宅科小段。各小段之间为左阶或右阶斜列,平面上呈向北收敛、向南撒开的帚状。断裂在卫片和航片上都显示出清楚的线性影像,地貌上表现为清楚的基岩陡坎。根据野外所获得的天然和探槽剖面以及年龄样品测试结果,确定其最新活动时代为全新世早期,活动性质是以右旋走滑为主兼挤压逆断。距今约70ka以来,断裂的右旋位移量64~73m,位移速率0.91~1.04mm/a。距今约12ka以来,断裂的右旋位移量5.5~7.8m,位移速率0.46~0.65mm/a;垂直位移量2~3.8m,位移速率0.17~0.32mm/a  相似文献   

15.
以银川活动断层试验探测为例,介绍了第四纪巨厚沉积区隐伏断层多手段、多层次探测的步骤与方法。在对前人资料综合分析的基础上,选择银川市兴庆区新渠梢村为综合探测试验场。首先,分层次布施道间距10m、5m和1m的浅层人工地震勘探,由深至浅将银川隐伏断层主断层逐步控制在可以布施浅钻勘探的程度。然后,实施钻孔联合剖面探测,确定了断层的准确位置和倾角,获得了由钻探资料可分辨的断层上断点埋深8.3m的信息。最后,通过大型探槽开挖,查明了断层实际上断点埋深1.5m和5期古地震活动事件。结合地层年龄的初步测定,得出了银川隐伏断层主断层中—晚全新世活动的结论  相似文献   

16.
赵瑞斌  李军  向志勇  葛鸣  罗刚 《地震地质》2003,25(4):574-580
20 0 1年 11月 14日昆仑山口西 8.1级地震的地表破裂带 ,宏观上可明显分为东、西两段。野外考察表明 ,8.1级地震地表西破裂带分布于库水浣湖—太阳湖之间 ,总体走向为 2 85°~ 2 90° ,全长约 2 5km ,以左旋走滑为主。西破裂带具有典型的左旋走滑末端效应 ,该段西端位于库水浣湖以西的冲沟沟床中 ,破裂带总体走向由NWW向转为 2 4 0°方向 ,表现为一系列走向 30°~ 4 0°、长 5~ 15m不等的斜列张裂缝及走向NW -SE的挤压脊组合 ;东端位于太阳湖西岸阶地上 ,破裂带总体走向由 10 5°~110°转为N5 0°E左右 ,NE向构造张裂缝与NW向挤压脊交错排列 ,总体表现为棋盘格状 ,并在太阳湖边消失。分析认为 ,昆仑山口西 8.1级地震地表西破裂带为一独立的地震事件所形成的形变带 ,昆仑山口西 8.1级地震具有多点破裂的特征  相似文献   

17.
Beijing plain area has been always characterized by the tectonic subsidence movement since the Pliocene. Influenced and affected by the extensional tectonic environment, tensional normal faulting occurred on the buried NE-trending faults in this area, forming the "two uplifts and one sag" tectonic pattern. Since Quaternary, the Neocathaysian stress field caused the NW-directed tensional shear faulting, and two groups of active faults are developed. The NE-trending active faults include three major faults, namely, from west to east, the Huangzhuang-Gaoliying Fault, Shunyi Fault and Xiadian Fault. The NW-trending active faults include the Nankou-Sunke Fault, which strikes in the direction of NW320°~330°, with a total length of about 50km in the Beijing area. The northwestern segment of the fault dips SW, forming a NW-directed collapse zone, which controls the NW-directed Machikou Quaternary depression. The thickness of the Quaternary is more than 600 meters; the southeastern segment of the fault dips NE, with a small vertical throw between the two walls of the fault. Huangzhuang-Gaoliying Fault is a discontinuous buried active fault, a boundary line between the Beijing sag and Xishan tectonic uplift. In the Beijing area, it has a total length of 110km, striking NE, dipping SE, with a dip angle of about 50~80 degrees. It is a normal fault, with the maximum fault throw of more than 1 000m since the Tertiary. The fault was formed in the last phase of Yanshan movement and controls the Cretaceous, Paleogene, Neogene and Quaternary sediments.There are four holes drilled at the junction between Nankou-Sunhe Fault and Huangzhuang-Gaoliying Fault in Beijing area. The geographic coordinates of ZK17 is 40°5'51"N, 116°25'40"E, the hole depth is 416.6 meters. The geographic coordinates of ZK18 is 40°5'16"N, 116°25'32"E, the hole depth is 247.6 meters. The geographic coordinates of ZK19 is 40°5'32"N, 116°26'51"E, the hole depth is 500.9 meters. The geographic coordinates of ZK20 is 40°4'27"N, 116°26'30"E, the hole depth is 308.2 meters. The total number of paleomagnetism samples is 687, and 460 of them are selected for thermal demagnetization. Based on the magnetostratigraphic study and analysis on the characteristics of sedimentary rock assemblage and shallow dating data, Quaternary stratigraphic framework of drilling profiles is established. As the sedimentation rate of strata has a good response to the activity of the basin-controlling fault, we discussed the activity of target fault during the Quaternary by studying variations of deposition rate. The results show that the fault block in the junction between the Nankou-Sunhe Fault and the Huangzhuang-Gaoliying Fault is characteristic of obvious differential subsidence. The average deposition rate difference of fault-controlled stratum reflects the control of the neotectonic movement on the sediment distribution of different tectonic units. The activity of Nankou-Sunhe Fault shows the strong-weak alternating pattern from the early Pleistocene to Holocene. In the early Pleistocene the activity intensity of Huangzhuang-Gaoliying Fault is stronger than Nankou-Sunhe Fault. After the early Pleistocene the activity intensity of Nankou-Sunhe Fault is stronger than Huangzhuang-Gaoliying Fault. The activity of the two faults tends to consistent till the Holocene.  相似文献   

18.
渭河盆地北缘断裂带活动特征的初步研究   总被引:8,自引:1,他引:7       下载免费PDF全文
本文从渭河盆地北缘断裂的形成和活动时代,活动特征等资料出发,结合北缘断裂带及整个盆地历史地震活动和新生界地层发育特征的综合分析,对北缘断裂带的活动期次,主要断层的运动幅度和滑动速率及其时空演变规律和机制等问题进行了探讨。文章指出,北缘断裂带的形成是一个由盆地中心向北逐渐扩展的过程,自上新世起,断层活动明显有东强西弱的变化特征,而且扩展方向也发生了偏转。这一转变及活动强度的东西差异与山西剪切带对渭河盆地的影响密切相关  相似文献   

19.
Due to the interaction between the Tibetan plateau, the Alxa block and the Ordos block, the western margin of Ordos(33.5°~39°N, 104°~108°E)has complex tectonic features and deformation patterns with strong tectonic activities and active faults. Active faults with different strikes and characteristics have been developed, including the Haiyuan Fault, the Xiangshan-Tianjingshan Fault, the Liupanshan Fault, the Yunwushan Fault, the Yantongshan Fault, the eastern Luoshan Fault, the Sanguankou-Niushoushan Fault, the Yellow River Fault, the west Qinling Fault, and the Xiaoguanshan Fault. In this study, 7 845 earthquakes(M≥1.0)from January 1st, 1990 to June 30th, 2018 were relocated using the double-difference location algorithm, and finally, we got valid locations for 4 417 earthquakes. Meanwhile, we determined focal mechanism solutions for 54 earthquakes(M≥3.5)from February 28th, 2009 to September 2nd, 2017 by the Cut and Paste(CAP)method and collected 15 focal mechanism solutions from previous studies. The spatial distribution law of the earthquake, the main active fault geometry and the regional tectonic stress field characteristics are studied comprehensively. We found that the earthquakes are more spatially concentrated after the relocation, and the epicenters of larger earthquakes(M≥3.5) are located at the edge of main active faults. The average hypocenter depth is about 8km and the seismogenic layer ranges from 0 to 20km. The spatial distributions and geometry structures of the faults and the regional deformation feature are clearly mapped with the relocated earthquakes and vertical profiles. The complex focal mechanism solutions indicate that the arc-shaped tectonic belt consisting of Haiyuan Fault, Xiangshan-Tianjingshan Fault and Yantongshan Fault is dominated by compression and torsion; the Yellow River Fault is mainly by stretching; the west Qinling Fault is characterized by shear and compression. The structural properties of the fault structure are dominated by strike-slip and thrust, with a larger strike-slip component. The near-north-south Yellow River Fault is characterized by high angle NW dipping and normal fault motion. Based on small earthquake relocation and focal mechanism solution results, and in combination with published active structures and geophysical data in the study area, it is confirmed that the western margin of Ordos is affected by the three blocks of the Tibetan plateau, the Alax and the Ordos, presenting different tectonic deformation modes, and there are also obvious differences in motion among the secondary blocks between the active faults. The area south of the Xiangshan-Tianjingshan Fault has moved southeastward since the early Quaternary; the Yinchuan Basin and the block in the eastern margin of the Yellow River Fault move toward the SE direction.  相似文献   

20.
The northern margin of the Qinghai-Tibet Plateau is currently the leading edge of uplift and expansion of the plateau. Over the years, a lot of research has been carried out on the deformation and evolution of the northeastern margin of the Qinghai-Tibet Plateau, and many ideas have been put forward, but there are also many disputes. The Altyn Tagh Fault constitutes the northern boundary of the Qinghai-Tibet Plateau, and there are two active faults on the north side of the Altyn Tagh Fault, named Sanweishan Fault with NEE strike and Nanjieshan Fault with EW strike. Especially, studies on the geometric and kinematic parameters of Sanweishan Fault since the Late Quaternary, which is nearly parallel with the Altyn Tagn Fault, are of great significance for understanding the deformation transfer and distribution in the northwestward extension of the Qinghai-Tibet Plateau. Therefore, interpretation of the fault landforms and statistical analysis of the horizontal displacement on the Sanweishan Fault and its newly discovered western extension are carried out in this paper. We believe that the Sanweishan Fault is an important branch of the eastern section of the Altyn Tagh fault zone. It is located at the front edge of the northwestern Qinghai-Tibet Plateau and is a left-lateral strike-slip and thrust active fault. Based on the interpretation of satellite imagery and microgeomorphology field investigation of Sanweishan main fault and its western segments, it's been found that the Sanweishan main fault constitutes the contact boundary between the Sanweishan Mountain and the alluvial fans. In the bedrock interior and on the north side of the Mogao Grottoes, there are also some branch faults distributed nearly parallel to the main fault. The main fault is about 150km long, striking 65°, mainly dipping SE with dip angles from 50° to 70°. The main fault can be divided into three segments in the spatial geometric distribution:the western segment(Xizhuigou-Dongshuigou, I), which is about 35km long, the middle segment(Dongshuigou-Shigongkouzi, Ⅱ), about 65km long, and the east segment(Shigongkouzi-Shuangta, Ⅲ), about 50km long. The above three segments are arranged in the left or right stepovers. In the west of Mingshashan, it's been found that the fault scarps are distributed near Danghe Reservoir and Yangguan Town in the west of Minshashan Mountain, and we thought those scarps are the westward extension of the main Sanweishan Fault. Along the main fault and its western extension, the different levels of water system(including gullies and rills)and ridges have been offset synchronously, forming a series of fault micro-geomorphology. The scale of the offset water system is proportional to the horizontal displacement. The frequency statistical analysis of the horizontal displacement shows that the displacement has obvious grouping characteristics, which are divided into 6 groups, and the corresponding peaks are 3.4m, 6.7m, 11.4m, 15m, 22m and 26m, respectively. Among them, 3.4m represents the coseismic displacement of the latest ancient earthquake event, and the larger displacement peak represents the accumulation of coseismic displacements of multi-paleoearthquake events. This kind of displacement characterized by approximately equal interval increase indicates that the Sanweishan Fault has experienced multiple characteristic earthquakes since the Late Quaternary and has the possibility of occurrence of earthquakes greater than magnitude 7. The distribution of displacement and structural transformation of the end of the fault indicate that Sanweishan Fault is an "Altyn Tagh Fault"in its infancy. The activities of Sanweishan Fault and its accompanying mountain uplift are the result of the transpression of the northern margin of the Qinghai-Tibet Plateau, representing one of the growth patterns of the northern margin of the plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号