首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At least 15 explosive eruptions from the Katmai cluster of volcanoes and another nine from other volcanoes on the Alaska Peninsula are preserved as tephra layers in syn- and post-glacial (Last Glacial Maximum) loess and soil sections in Katmai National Park, AK. About 400 tephra samples from 150 measured sections have been collected between Kaguyak volcano and Mount Martin and from Shelikof Strait to Bristol Bay (∼8,500 km2). Five tephra layers are distinctive and widespread enough to be used as marker horizons in the Valley of Ten Thousand Smokes area, and 140 radiocarbon dates on enclosing soils have established a time framework for entire soil–tephra sections to 10 ka; the white rhyolitic ash from the 1912 plinian eruption of Novarupta caps almost all sections. Stratigraphy, distribution and tephra characteristics have been combined with microprobe analyses of glass and Fe–Ti oxide minerals to correlate ash layers with their source vents. Microprobe analyses (typically 20–50 analyses per glass or oxide sample) commonly show oxide compositions to be more definitive than glass in distinguishing one tephra from another; oxides from the Kaguyak caldera-forming event are so compositionally coherent that they have been used as internal standards throughout this study. Other than the Novarupta and Trident eruptions of the last century, the youngest locally derived tephra is associated with emplacement of the Snowy Mountain summit dome (<250 14C years B.P.). East Mageik has erupted most frequently during Holocene time with seven explosive events (9,400 to 2,400 14C years B.P.) preserved as tephra layers. Mount Martin erupted entirely during the Holocene, with lava coulees (>6 ka), two tephras (∼3,700 and ∼2,700 14C years B.P.), and a summit scoria cone with a crater still steaming today. Mount Katmai has three times produced very large explosive plinian to sub-plinian events (in 1912; 12–16 ka; and 23 ka) and many smaller pyroclastic deposits show that explosive activity has long been common there. Mount Griggs, fumarolically active and moderately productive during postglacial time (mostly andesitic lavas), has three nested summit craters, two of which are on top of a Holocene central cone. Only one ash has been found that is (tentatively) correlated with the most recent eruptive activity on Griggs (<3,460 14C years B.P.). Eruptions from other volcanoes NE and SW beyond the Katmai cluster represented in this area include: (1) coignimbrite ash from Kaguyak’s caldera-forming event (5,800 14C years B.P.); (2) the climactic event from Fisher caldera (∼9,100 14C years B.P.—tentatively correlated); (3) at least three eruptions most likely from Mount Peulik (∼700, ∼7,700 and ∼8,500 14C years B.P.); and (4) a phreatic fallout most likely from the Gas Rocks (∼2,300 14C years B.P.). Most of the radiocarbon dating has been done on loess, soil and peat enclosing this tephra. Ash correlations supported by stratigraphy and microprobe data are combined with radiocarbon dating to show that variably organics-bearing substrates can provide reliable limiting ages for ash layers, especially when data for several sites is available.  相似文献   

2.
The first of four successive pulses of the 1974 explosive eruption of Fuego volcano, Guatemala, produced a small volume (∼0.02 km3 DRE) basaltic sub-plinian tephra fall and flow deposit. Samples collected within 48 h after deposition over much of the dispersal area (7–80 km from the volcano) have been size analyzed down to 8 φ (4 μm). Tephra along the dispersal axis were all well-sorted (σ φ = 0.25–1.00), and sorting increased whereas thickness and median grain size decreased systematically downwind. Skewness varied from slightly positive near the vent to slightly negative in distal regions and is consistent with decoupling between coarse ejecta falling off the rising eruption column and fine ash falling off the windblown volcanic cloud advecting at the final level of rise. Less dense, vesicular coarse particles form a log normal sub-population when separated from the smaller (Mdφ < 3φ or < 0.125 mm), denser shard and crystal sub-population. A unimodal, relatively coarse (Mdφ = 0.58φ or 0.7 mm σ φ = 1.2) initial grain size population is estimated for the whole (fall and flow) deposit. Only a small part of the fine-grained, thin 1974 Fuego tephra deposit has survived erosion to the present day. The initial October 14 pulse, with an estimated column height of 15 km above sea level, was a primary cause of a detectable perturbation in the northern hemisphere stratospheric aerosol layer in late 1974 to early 1975. Such small, sulfur-rich, explosive eruptions may substantially contribute to the overall stratospheric sulfur budget, yet leave only transient deposits, which have little chance of survival even in the recent geologic record. The fraction of finest particles (Mdφ = 4–8φ or 4–63 μm) in the Fuego tephra makes up a separate but minor size mode in the size distribution of samples around the margin of the deposit. A previously undocumented bimodal–unimodal–bimodal change in grain size distribution across the dispersal axis at 20 km downwind from the vent is best accounted for as the result of fallout dispersal of ash from a higher subplinian column and a lower “co-pf” cloud resulting from pyroclastic flows. In addition, there is a degree of asymmetry in the documented grain-size fallout pattern which is attributed to vertically veering wind direction and changing windspeeds, especially across the tropopause. The distribution of fine particles (<8 μm diameter) in the tephra deposit is asymmetrical, mainly along the N edge, with a small enrichment along the S edge. This pattern has hazard significance.  相似文献   

3.
Sumisu volcano was the site of an eruption during 30–60 ka that introduced ∼48–50 km3 of rhyolite tephra into the open-ocean environment at the front of the Izu-Bonin arc. The resulting caldera is 8 × 10 km in diameter, has steep inner walls 550–780 m high, and a floor averaging 900 m below sea level. In the course of five research cruises to the Sumisu area, a manned submersible, two ROVs, a Deep-Tow camera sled, and dredge samples were used to study the caldera and surrounding areas. These studies were augmented by newly acquired single-channel seismic profiles and multi-beam seafloor swath-mapping. Caldera-wall traverses show that pre-caldera eruptions built a complex of overlapping dacitic and basaltic edifices, that eventually grew above sea level to form an island about 200 m high. The caldera-forming eruption began on the island and probably produced a large eruption column. We interpret that prodigious rates of tephra fallback overwhelmed the Sumisu area, forming huge rafts of floating pumice, choking the nearby water column with hyperconcentrations of slowly settling tephra, and generating pyroclastic gravity currents of water-saturated pumice that traveled downslope along the sea floor. Thick, compositionally similar pumice deposits encountered in ODP Leg 126 cores 70 km to the south could have been deposited by these gravity currents. The caldera-rim, presently at ocean depths of 100–400 m, is mantled by an extensive layer of coarse dense lithic clasts, but syn-caldera pumice deposits are only thin and locally preserved. The paucity of syn-caldera pumice could be due to the combined effects of proximal non-deposition and later erosion by strong ocean currents. Post-caldera edifice instability resulted in the collapse of a 15° sector of the eastern caldera rim and the formation of bathymetrically conspicuous wavy slump structures that disturb much of the volcano’s surface.  相似文献   

4.
Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten–12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11–12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ∼2,600 to ∼2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1–83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ∼500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. W. Sisson and J. W. Vallance contributed equally to this study.  相似文献   

5.
Holocene explosive activity of Hudson Volcano, southern Andes   总被引:3,自引:1,他引:2  
 Fallout deposits in the vicinity of the southern Andean Hudson Volcano record at least 12 explosive Holocene eruptions, including that of August 1991 which produced ≥4 km3 of pyroclastic material. Medial isopachs of compacted fallout deposits for two of the prehistoric Hudson eruptions, dated at approximately 3600 and 6700 BP, enclose areas at least twice that of equivalent isopachs for both the 1991 Hudson and the 1932 Quizapu eruptions, the two largest in the Andes this century. However, lack of information for either the proximal or distal tephra deposits from these two prehistoric eruptions of Hudson precludes accurate volume estimates. Andesitic pyroclastic material produced by the 6700-BP event, including a  1 10-cm-thick layer of compacted tephra that constitutes a secondary thickness maximum over 900 km to the south in Tierra del Fuego, was dispersed in a more southerly direction than that of the 1991 Hudson eruption. The products of the 6700-BP event consist of a large proportion of fine pumiceous ash and accretionary lapilli, indicating a violent phreatomagmatic eruption. This eruption, which is considered to be the largest for Hudson and possibly for any volcano in the southern Andes during the Holocene, may have created Hudson's 10-km-diameter summit caldera, but the age of the caldera has not been dated independently. Received: 31 January 1997 / Accepted: 29 October 1997  相似文献   

6.
Explosive eruptions associated with tephra deposits that are only exposed in proximal areas are difficult to characterize. In fact, the determination of physical parameters such as column height, mass eruption rate, erupted volume, and eruption duration is mainly based on empirical models and is therefore very sensitive to the quality of the field data collected. We have applied and compared different modeling approaches for the characterization of the two main tephra deposits, the Lower Pumice (LP) and Upper Pumice (UP) of Nisyros volcano, Greece, which are exposed only within 5 km of the probable vent. Isopach and isopleth maps were compiled for two possible vent locations (on the north and on the south rim of the caldera), and different models were applied to calculate the column height, the erupted volume, and the mass eruption rate. We found a column height of about 15 km above sea level and a mass eruption rate of about 2 × 107 kg/s for both eruptions regardless of the vent location considered. In contrast, the associated wind velocity for both UP and LP varied between 0 and 20 m/s for the north and south vent, respectively. The derived erupted volume for the south vent (considered as the best vent location) ranges between 2 and 27 × 108 m3 for the LP and between 1 and 5 × 108 m3 for the UP based on the application of four different methods (integration of exponential fit based on one isopach line, integration of exponential and power-law fit based on two isopach lines, and an inversion technique combined with an advection–diffusion model). The eruption that produced the UP could be classified as subplinian. Discrepancies associated with different vent locations are smaller than the discrepancies associated with the use of different models for the determination of erupted mass, plume height, and mass eruption rate. Proximal outcrops are predominantly coarse grained with ≥90 wt% of the clasts ranging between −6ϕ and 0ϕ. The associated total grainsize distribution is considered to result from a combination of turbulent fallout from both the plume margins and the umbrella region, and as a result, it is fines-depleted. Given that primary deposit thickness observed on Nisyros for both LP and UP is between 1 and 8 m, if an event of similar scale were to happen again, it would have a significant impact on the entire island with major damage to infrastructure, agriculture, and tourism. Neighboring islands and the continent could also be significantly affected.  相似文献   

7.
吉林龙岗四海火山碎屑物粒度分析与地质意义   总被引:4,自引:2,他引:2       下载免费PDF全文
四海火山灰是龙岗火山群中的一次火山爆发形成的,这次火山爆发形成的玄武质空降堆积物分别组成金龙顶子火山渣锥和位于金龙顶子火山锥以东的、分布于辉南县红旗林场和靖宇县四海林场一带的低缓开阔的火山碎屑席。通过投点得知金龙顶子火山喷发类型为次布里尼式(Sub-Plinian)喷发,反映金龙顶子火山爆发强度很大。四海火山灰空降碎屑物7个样品的粒度累计频率曲线投点分布范围、集中区域均有较好的一致性,累计频率曲线表明碎屑物在空中搬运与沉降时都经过了类似的重力分选作用。近火口缘样品粗粒碎屑含量较高,随着与火口缘距离的增加,粗粒部分含量明显降低,细粒碎屑含量增加趋势明显。龙岗火山区内其它岩渣锥火山碎屑物粒度分布范围明显宽于四海火山灰粒度分布范围,累积频率曲线斜率较为一致。虽然样品距火山口距离均较近,但也出现了细粒富集程度变缓的现象,反映了龙岗火山区其它火山锥喷发强度明显小于四海火山。对比长白山天池火山碎屑物粒度分布特征发现,天池火山空降堆积物粒度分布斜率变化比较均匀,四海火山灰斜率有明显变化;四海火山灰最大粒度小于长白山天池火山空降堆积物,但是粗粒度碎屑物含量较高。细粒度碎屑物部分累计频率曲线上升趋势较缓,说明金龙顶子火山的喷发  相似文献   

8.
龙岗金龙顶子火山空降碎屑物数值模拟及概率性灾害评估   总被引:1,自引:0,他引:1  
空降碎屑物为爆炸式火山喷发产生的一种重要的灾害类型,数值模拟已成为一个快速有效地确定火山灰扩散和沉积范围的方法。本文根据改进的Suzuki(1983)二维扩散模型,编写了基于Windows环境下的火山灰扩散程序。通过对前人资料的分析,模拟了龙岗火山群中最新火山喷发——金龙顶子火山喷发产生的空降碎屑物扩散范围,与实测结果具有很好的一致性,证实了模型的可靠性和参数的合理性。根据该区10年的风参数,模拟了7021次不同风参数时金龙顶子火山灰的扩散范围,以此制作了火山灰沉积厚度超过1cm和0.5cm时的概率性空降碎屑灾害区划图。本文的研究可为龙岗火山区火山危险性分析和灾害预警与对策提供重要的科学依据。  相似文献   

9.
Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ± 8 to 1 ± 5 ka. Dated pre-caldera summit flows display two age populations at 95 ± 9 to 76 ± 4 ka and 27 ± 3 to 21 ± 4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ± 5 and 15 ± 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ± 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka.Editorial responsibility: Julie Donnelly-Nolan  相似文献   

10.
 The postglacial eruption rate for the Mount Adams volcanic field is ∼0.1 km3/k.y., four to seven times smaller than the average rate for the past 520 k.y. Ten vents have been active since the last main deglaciation ∼15 ka. Seven high flank vents (at 2100–2600 m) and the central summit vent of the 3742-m stratocone produced varied andesites, and two peripheral vents (at 2100 and 1200 m) produced mildly alkalic basalt. Eruptive ages of most of these units are bracketed with respect to regional tephra layers from Mount Mazama and Mount St. Helens. The basaltic lavas and scoria cones north and south of Mount Adams and a 13-km-long andesitic lava flow on its east flank are of early postglacial age. The three most extensive andesitic lava-flow complexes were emplaced in the mid-Holocene (7–4 ka). Ages of three smaller Holocene andesite units are less well constrained. A phreatomagmatic ejecta cone and associated andesite lavas that together cap the summit may be of latest Pleistocene age, but a thin layer of mid-Holocene tephra appears to have erupted there as well. An alpine-meadow section on the southeast flank contains 24 locally derived Holocene andesitic ash layers intercalated with several silicic tephras from Mazama and St. Helens. Microprobe analyses of phenocrysts from the ash layers and postglacial lavas suggest a few correlations and refine some age constraints. Approximately 6 ka, a 0.07-km3 debris avalanche from the southwest face of Mount Adams generated a clay-rich debris flow that devastated >30 km2 south of the volcano. A gravitationally metastable 2-to 3-km3 reservoir of hydrothermally altered fragmental andesite remains on the ice-capped summit and, towering 3 km above the surrounding lowlands, represents a greater hazard than an eruptive recurrence in the style of the last 15 k.y. Received: 24 June 1996 / Accepted: 6 December 1996  相似文献   

11.
Several lakes in Chile are near important volcanic areas where eruption impacts can limit the quality of lacustrine sediments for reconstructing past environmental changes. In this study, we report changes in diatoms, pollen, and chironomids assemblages after a tephra deposition in Lake Galletué (Chilean Andes). A sediment core obtained from Lake Galletué (40 m water depth) was sliced in 1 cm intervals and subsamples were taken to analyze each proxy. 210Pb and 137Cs activities were measured to obtain the geochronology and mineralogical analyses were performed to determine the mineral composition of the tephra. Diatom species composition and productivity were modified when the lake received the tephra; Aulacoseira granulata decreased and was later replaced by Cyclotella af. glomerata. After the tephra input, Aulacoseira granulata abundance increased to pre-disturbance levels and Cyclotella af. glomerata decreased. These changes seem to suggest a momentary increase in lake nutrient levels after the tephra deposition. Chironomid assemblages also decreased in head capsules just after the tephra deposition, but the most important change was the replacement of Ablabesmyia by Parakiefferiella, probably due to the sedimentological changes produced by the input of coarse tephra grains. Furthermore, unlike other studies, chironomid assemblages in Lake Galletué did not show a decrease drastically in diversity within the tephra layer. The pollen analysis indicated that, prior to the volcanic event, the vegetal community was dominated by Nothofagus sp., Araucaria araucana, and Blechnum sp.-type. After the tephra deposition, the same taxa are dominant, indicating that the volcanic event seems not produce changes in the vegetation. Nevertheless, within the tephra layer it is possible to see an increase in Poaceae, which represent – due to the percolation process – the effect of eruption on the vegetation. According to our results, diatoms were the most sensitive proxy for describing the changes produced by tephra deposition into the aquatic ecosystem and, despite the noticeable changes in its sedimentological properties; the lake seems to have a high resilience capacity, allowing it to return to pre-tephra input conditions.  相似文献   

12.
The violent August 16–17, 2006 Tungurahua eruption in Ecuador witnessed the emplacement of numerous scoria flows and the deposition of a widespread tephra layer west of the volcano. We assess the size of the eruption by determining a bulk tephra volume in the range 42–57 × 106 m3, which supports a Volcanic Explosivity Index 3 event, consistent with calculated column height of 16–18 km above the vent and making it the strongest eruptive phase since the volcano’s magmatic reactivation in 1999. Isopachs west of the volcano are sub-bilobate in shape, while sieve and laser diffraction grain-size analyses of tephra samples reveal strongly bimodal distributions. Based on a new grain-size deconvolution algorithm and extended sampling area, we propose here a mechanism to account for the bimodal grain-size distribution. The deconvolution procedure allows us to identify two particle subpopulations in the deposit with distinct characteristics that indicate dissimilar transport-depositional processes. The log-normal coarse-grained subpopulation is typical of particles transported downwind by the main volcanic plume. The positively skewed, fine-grained subpopulation in the tephra fall layer shares close similarities with the elutriated co-pyroclastic flow ash cloud layers preserved on top of the scoria flow deposits. The area with the higher fine particle content in the tephra layer coincides with the downwind prolongation of the pyroclastic flow deposits. These results indicate that the bimodal distribution of grain size in the Tungurahua fall deposit results from synchronous deposition of lapilli from the main plume and fine ash elutriated from scoria flows emplaced on the western flank of the volcano. Our study also reveals that inappropriate grain-size data processing may produce misleading determination of eruptive type.  相似文献   

13.
 The ca. 10,500 years B.P. eruptions at Ruapehu volcano deposited 0.2–0.3 km3 of tephra on the flanks of Ruapehu and the surrounding ring plain and generated the only known pyroclastic flows from this volcano in the late Quaternary. Evidence of the eruptions is recorded in the stratigraphy of the volcanic ring plain and cone, where pyroclastic flow deposits and several lithologically similar tephra deposits are identified. These deposits are grouped into the newly defined Taurewa Formation and two members, Okupata Member (tephra-fall deposits) and Pourahu Member (pyroclastic flow deposits). These eruptions identify a brief (<ca. 2000-year) but explosive period of volcanism at Ruapehu, which we define as the Taurewa Eruptive Episode. This Episode represents the largest event within Ruapehu's ca. 22,500-year eruptive history and also marks its culmination in activity ca. 10,000 years B.P. Following this episode, Ruapehu volcano entered a ca. 8000-year period of relative quiescence. We propose that the episode began with the eruption of small-volume pyroclastic flows triggered by a magma-mingling event. Flows from this event travelled down valleys east and west of Ruapehu onto the upper volcanic ring plain, where their distal remnants are preserved. The genesis of these deposits is inferred from the remanent magnetisation of pumice and lithic clasts. We envisage contemporaneous eruption and emplacement of distal pumice-rich tephras and proximal welded tuff deposits. The potential for generation of pyroclastic flows during plinian eruptions at Ruapehu has not been previously considered in hazard assessments at this volcano. Recognition of these events in the volcanological record is thus an important new factor in future risk assessments and mitigation of volcanic risk at Tongariro Volcanic Centre. Received: 5 July 1998 / Accepted: 12 March 1999  相似文献   

14.
Grain-specific analyses of Fe–Ti oxides and estimates of eruption temperature (T) and oxygen fugacity (fO2) have been used to fingerprint rhyolitic fall and flow deposits that are important for tephrostratigraphic studies in and around the Taupo volcanic zone of North Island, New Zealand. The analysed Fe–Ti oxides commonly occur in the rims of orthopyroxene crystals and appear to reflect equilibrium immediately prior to eruption because of geochemical correlation with the co-existing glass phase. The composition of the spinel phase is particularly diagnostic of eruptive centre for post-65 ka events and can be used to distinguish many tephra beds from the same volcano. The 29 different units examined were erupted over a wide range in T (690–990°C) and Δ log fO2 (–0.1 to 2.0). These parameters are closely related to the mafic mineral assemblage, with hydrous mineral-bearing units displaying higher fO2. Such trends are superimposed on larger differences in fO2 that are related to eruptive centre. At any given temperature, all post-65 ka Okataina centre tephra have higher fO2 values than post-65 ka Taupo centre tephra. This provides a useful criterion for identifying the volcanic source. There are no temporal T and fO2 trends in the tephra record; over intervals >20 ka, however, tephra sequences from Taupo centre form characteristic T-fO2 buffer trends mirroring the glass chemistry. Individual eruptive events display uniform spinel and rhombohedral phase compositions and thus narrow ranges in T (± <20°C) and log fO2 (± <0.5), allowing these features to identify individual magma batches. These criteria can help distinguish tephra deposits of similar bulk or glass composition that originated from the same volcano. Distal fall deposits record the same T-fO2 conditions as the proximal ignimbrite and enable distal–proximal correlation. Lateral and vertical compositional and T-fO2 variability displayed in large volume (>100 km3) ignimbrites, such as the Oruanui, Rotoiti and Ongatiti, is similar to that found in a single pumice clast and thus mainly reflects analytical error; however, thermal gradients of ca. 50°C may occur in some units. Received: 6 April 1998 / Accepted: 16 June 1998  相似文献   

15.
Products of the latest eruptions from the Valles caldera, New Mexico, consist of the El Cajete Pyroclastic Beds and Battleship Rock Ignimbrite, a sequence of pyroclastic fall and density current deposits erupted at ~ 55 ka, capped by the later Banco Bonito Flow erupted at ~ 40 ka, and collectively named the East Fork Member of the Valles Rhyolite. The stratigraphy of the East Fork Member has been the subject of conflicting interpretations in the past; a long-running investigation of short-lived exposures over a period of many years enables us to present a more complete event stratigraphy for these eruptions than has hitherto been possible. The volume of rhyolitic magma erupted during the 55 ka event may have been more than 10 km3, and for the 40 ka event can be estimated with rather more confidence at 4 km3. During the earlier event, plinian eruptions dispersed fallout pumice over much of the Valles caldera, the southern Jemez Mountains, and the Rio Grande rift. We infer a fallout thickness of several decimeters at the site of the city of Santa Fe, and significant ash fall in eastern New Mexico. In contrast, pyroclastic density currents were channeled within the caldera moat and southwestward into the head of Cañon de San Diego, the principal drainage from the caldera. Simultaneous (or rapidly alternating) pyroclastic fallout and density current activity characterized the ~ 55 ka event, with density currents becoming more frequent as the eruption progressed through two distinct stages separated by a brief hiatus. One early pyroclastic surge razed a forest in the southern caldera moat, in a similar manner to the initial blast of the May 18, 1980 eruption of Mt. St. Helens. Ignimbrite outflow from the caldera through the drainage notch may have been restricted in runout distance due to steep, rugged topography in this vicinity promoting mixing between flows and air, and the formation of phoenix clouds. Lavas erupted during both the ~ 55 and ~ 40 ka events were largely confined to the caldera moat. Any future rhyolitic eruptions of similar magnitude in the southern or western parts of the Valles caldera will likely affect similar areas.  相似文献   

16.
Volcanic ash fallout subsequent to a possible renewal of the Vesuvius activity represents a serious threat to the highly urbanized area around the volcano. In order to assess the relative hazard we consider three different possible scenarios such as those following Plinian, Sub-Plinian, and violent Strombolian eruptions. Reference eruptions for each scenario are similar to the 79 AD (Pompeii), the 1631 AD (or 472 AD) and the 1944 AD Vesuvius events, respectively. Fallout deposits for the first two scenarios are modeled using HAZMAP, a model based on a semi-analytical solution of the 2D advection–diffusion–sedimentation equation. In contrast, fallout following a violent Strombolian event is modeled by means of FALL3D, a numerical model based on the solution of the full 3D advection–diffusion–sedimentation equation which is valid also within the atmospheric boundary layer. Inputs for models are total erupted mass, eruption column height, bulk grain-size, bulk component distribution, and a statistical set of wind profiles obtained by the NCEP/NCAR re-analysis. We computed ground load probability maps for different ash loadings. In the case of a Sub-Plinian scenario, the most representative tephra loading maps in 16 cardinal directions were also calculated. The probability maps obtained for the different scenarios are aimed to give support to the risk mitigation strategies.  相似文献   

17.
Tephra fallout from the A-1 (March 29, 0532 UT), B (April 4, 0135 UT), and C (April 4, 1122 UT) 1982 explosive eruptions of El Chichon produced three tephra fall deposits over southeastern Mexico. Bidirectional spreading of eruption plumes, as documented by satellite images, was due to a combination of tropospheric and stratospheric transport, with heaviest deposition of tephra from the ENE tropospheric lobes. Maximum column heights for the eruptions of 27, 32, and 29 km, respectively, have been determined by comparing maximum lithic-clast dispersal in the deposits with predicted lithic isopleths based on a theoretical model of pyroclast fallout from eruption columns. These column heights suggest peak mass eruption rates of 1.1 × 108, 1.9 × 108, and 1.3 × 108 kg/s. Maximum column heights and mass eruption rates occured early in each event based on the normal size grading of the fall deposits. Sequential satellite images of plume transport and the production of a large stratospheric aerosol plume indicate that the eruption columns were sustained at stratospheric altitudes for a significant portion of their duration. New estimates of tephra fall volume based on integration of isopach area and thickness yield a total volume of 2.19 km3 (1.09 km3 DRE, dense rock equivalent) or roughly twice the amount of the deposit mapped on the ground. Up to one-half of the erupted mass was therefore deposited elsewhere as highly dispersed tephra.  相似文献   

18.
For regionally widespread Holocene tephra layers in southernmost Patagonia, correlations based on both chemical and chronological data indicate their derivation from five large-volume (>1 km3) explosive eruptions of four different volcanoes in the southernmost Andes. Bulk-tephra and tephra-glass major and trace-element chemistry and Sr isotopic ratios unambiguously distinguish different source volcanoes, and imply that two of the regionally widespread tephra (MB1 and MB2) were derived from Mt. Burney (52°S), one (R1) from Reclus (51°S), one (A1) from Aguilera (50°S) and one (H1) from Hudson volcano (46°S). The H1 tephra derived from the Hudson volcano, which is located at the southern end of the Andean Southern Volcanic Zone (SVZ; 33–46°S), contains distinctive greenish andesitic glass with FeO > 4.5 wt.% and TiO2 > 1.2 wt.%. In contrast, rhyolitic glass in tephra derived from the eruptions of Mt. Burney, Reclus and Aguilera volcanoes, which are located in the Andean Austral Volcanic Zone (AVZ; 49–55°S), is clear and transparent and has significantly lower FeO and TiO2. Tephra derived from these three AVZ volcanoes all contain plagioclase, orthopyroxene, minor clinopyroxene and amphibole. Biotite occurs only in the Aguilera A1 tephra, which also has the highest bulk-tephra and tephra-glass K2O and Rb contents. Averages of new and published 14C ages determined on organic material in soil and sediment samples above and below these tephra constrain the uncalibrated 14C age of the R1 eruption of Reclus volcano to 12,685 ± 260 years BP, the MB1 and MB2 eruptions of Mt. Burney to 8,425 ± 500 and 3,830 ± 390 years BP, the Hudson H1 eruption to 6,850 ± 160 years BP, and the A1 eruption of Aguilera volcano to 3,000 ± 100 years BP. The volume of the largest of these eruptions, H1 of the Hudson volcano, is estimated as >18 km3. The volume of the Reclus R1 eruption is estimated at >10 km3, the Aguilera A1 eruption at between 4 and 9 km3, and the younger Mt. Burney MB2 eruption at ≥2.8 km3. The volume of the older MB1 Mt. Burney eruption is the least well constrained, but must have been larger than the younger MB2 eruption. The data indicate that the frequency of explosive activity of volcanic centers in the AVZ is lower than in the southern SVZ.  相似文献   

19.
Despite their significance for estimating hazards and forecasting future activity, dating young volcanic deposits and landforms (<50,000 yrs old) remains a challenge due to the limitations inherent to the different isotopic chronometers used. The Trans-Mexican Volcanic Belt is one of the most active and populated continental arcs worldwide, yet its temporal pattern of activity is poorly constrained. Such deficiency is particularly problematic for the Sierra Chichinautzin Volcanic Field (SCVF) that is located at the doorstep of Mexico City and Cuernavaca and is hence a major source of risk for these cities. Existing ages for this area derive mostly from either radiocarbon on charcoal, which is rare and may be contaminated, or 40Ar/39Ar on rock matrix, which is poorly precise for this time period and rock type. Here, we focus on the Pelado monogenetic volcano, which is located in the central part of the SCVF and erupted both explosively and effusively, producing a large lava shield and a widespread tephra blanket. This unique eruptive event was previously dated at ∼12 calibrated (cal) kyrs BP, using radiocarbon dating on charcoal from deposits related to the eruption. To test alternative dating approaches and confirm the age of this significant eruption, we applied two less conventional techniques, radiocarbon dating of bulk paleosol samples collected below the complete tephra sequence at nine sites around the shield, and in-situ 36Cl exposure dating of two samples of an aphyric lava from the base of the shield. Radiocarbon paleosol ages span a continuous time interval from 13.2 to 20.2 cal kyrs BP (2σ), except for one anomalously young sample. This wide age spread, along with the low organic contents of the paleosols, may be due to erosive conditions, related to the sloping topography of the sampling sites and the cool and relatively dry climate of the Younger Dryas (11.7–12.9 ka), during which the Pelado eruption probably occurred. The two 36Cl-dated lava samples have consistent ages at 1σ analytical errors of 15.5 ± 1.4 ka and 13.2 ± 1.2 ka, respectively, yielding an average age of 14.3 ± 1.6 ka for this lava flow. The high full uncertainty in 36Cl ages (24%) is due to high rock Cl content. We conclude that paleosol radiocarbon dating is useful if numerous samples are analyzed and climatic and relief conditions at the time of the eruption and at the sites of tephra deposition are considered. The 36Cl dating technique is an alternative method to date volcanic eruptions, as it gave consistent results, but in the specific case of Pelado volcano, the high Cl content in the analyzed rocks increases the age uncertainties.  相似文献   

20.
We describe the products of the hitherto poorly known 512 AD eruption at Vesuvius, Italy. The deposit records a complex sequence of eruptive events, and it has been subdivided into eight main units, composed of stratified scoria lapilli or thin subordinate ash-rich layers. All the units formed by deposition from tephra fallout, pyroclastic density currents of limited extent being restricted to the initial stages of the eruption (U2). The main part of the deposit (U3 and U5) is characterized by a striking grain size alternation of fine to coarse lapilli, similar to that often described for mid-intensity, explosive eruptions. The erupted products have a phonotephritic composition, with progressively less evolved composition from the base to the top of the stratigraphic sequence. Based on different dispersal, sedimentological and textural features of the products, we identify five phases related to different eruptive styles: opening phase (U1, U2), subplinian phase (U3 to U5), pulsatory phreatomagmatic phase (U6), violent strombolian phase (U7) and final ash-dominated phase (U8). A DRE volume of 0.025 km3 has been calculated for the total fallout deposit. Most of the magma was erupted during the subplinian phase; lithic dispersal data indicate peak column heights of between 10 and 15 km, which correspond to a mass discharge rate (MDR) of 5 × 106 kg s−1. The lower intensity, violent strombolian phase coincided with the eruption of the least evolved magma; a peak column height of 6–9 km, corresponding to an MDR of 1 ×10 6 kg s −1, is estimated from field data. Phreatomagmatic activity played a minor role in the eruption, only contributing to the ash-rich deposits of U1, U4, U6 and U8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号