首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The propagation of cosmic rays in the Earth??s atmosphere is simulated. Calculations of the omnidirectional differential flux of neutrons for different solar activity levels are illustrated. The solar activity effect on the production rate of cosmogenic radiocarbon by the nuclear-interacting and muon components of secondary cosmic radiation in polar ice is studied. It has been obtained that the 14C production rates in ice by the cosmic ray nuclear-interacting component are lower or higher than the average value by 30% during periods of solar activity maxima or minima, respectively. Calculations of the altitudinal dependence of the radiocarbon production rate in ice by the cosmic radiation components are illustrated.  相似文献   

2.
A joint analysis of paleodata on variations in cosmic ray fluxes, solar activity, geomagnetic field, and climate during the period from ~10000 to ~100000 years ago has been performed. Data on the time variations in the concentration of 14C and 10Be cosmogenic isotopes, which are generated in the Earth’s atmosphere under the action of cosmic ray fluxes modulated by solar activity and geomagnetic field variations, were used to detect variations in solar activity and the geomagnetic dipole. Information about climate changes has been obtained mainly from variations in the concentration of stable isotopes in the natural archives. A performed analysis indicates that the variations in cosmic ray fluxes under the action of variations in the geomagnetic field and solar activity are apparently one of the most effective natural factors of long-term climate changeability on a large time scale.  相似文献   

3.
The possible mechanism by which cosmic rays affect the formation of neutral water droplets and ice crystals in the Earth’s atmosphere has been considered. This mechanism is based on changes in atmospheric transparency and vertical temperature distribution. It has been indicated that a change in the optical thickness for visible and IR radiation by several percents, which can take place when cosmic-ray particles penetrate into the atmosphere, results in a change in the temperature vertical distribution, affecting the growth of water droplets, concentration of active condensation nuclei, and the formation of ice particles. This mechanism makes it possible to explain the correlation between the intensity of galactic cosmic rays at low altitudes and the absence of this correlation at middle altitudes.  相似文献   

4.
Direct and indirect data on variations in cosmic rays, solar activity, geomagnetic dipole moment, and climate from the present to 10–12ka ago (the Holocene Epoch), registered in different natural archives (tree rings, ice layers, etc.), have been analyzed. The concentration of cosmogenic isotopes, generated in the Earth’s atmosphere under the action of cosmic ray fluxes and coming into the Earth archives, makes it possible to obtain valuable information about variations in a number of natural processes. The cosmogenic isotopes 14C in tree rings and 10Be in ice layers, as well as cosmic rays, are modulated by solar activity and geomagnetic field variations, and time variations in these concentrations gives information about past solar and geomagnetic activities. Since the characteristics of natural reservoirs with cosmogenic 14C and 10Be vary with climate changes, the concentrations of these isotopes also inform about climate changes in the past. A performed analysis indicates that cosmic ray flux variations are apparently the most effective natural factor of climate changes on a large time scale.  相似文献   

5.
The diurnal variations in the electric conductivity, electric-field strength, and meteorological parameters in the near-Earth’s atmosphere during the solar events in October 21–31, 2003, have been studied. It has been indicated that the conductivity and electric-field strength strongly depend on the air temperature and humidity. It has been found that the conductivity increased for 2 days before the geomagnetic storm on October 29–30 as a result of the effect of solar cosmic rays and decreased during a Forbush decrease in galactic cosmic rays, which was accompanied by a corresponding increase in the electric-field strength. It has been found that the air temperature and humidity anomalously increased in the process of solar activity, which resulted in the formation of different clouds, including thunderclouds accompanied by thunderstorm processes and showers. Simultaneous disturbances of the regular meteorological processes, solar flare series, and emission intensification in the near ultraviolet band, and visible and infrared spectral regions make it possible to consider these processes as a source of additional energy inflow into the lower atmosphere.  相似文献   

6.
We report on the recent studies on the long-term influence of cosmic rays on the Earth's environment. While on short time-scales solar activity is the driver for atmospheric changes suspected to be due to cosmic rays, for long time-scales the heliosphere, i.e. the circumsolar region occupied by the expanding part of the Sun's atmosphere, has to be considered. The heliosphere is identified as an important shield against interstellar influences and hazards. It has been demonstrated by quantitative modelling that a change of the interstellar medium surrounding the heliosphere as a result of the Sun's quasi-Keplerian motion around the galactic center triggers significant changes of planetary environments caused by enhanced fluxes of neutral atoms as well as by the increased cosmic ray fluxes. We give a compilation of recent space science results of interest to the atmospheric science community.  相似文献   

7.
A gigantic noctilucent cloud field was formed and different solar halos were observed after the Tunguska catastrophe. To explain these anomalous phenomena, it is necessary to assume that a large quantity of water was carried into the atmosphere, which indicates that the Tunguska cosmic body was of a comet origin. According to rough estimates, the quantity of water that is released into the atmosphere as a result of a cosmic body’s destruction is more than 1010 kg. The observation of a flying object in an area with a radius of ≥700 km makes it possible to state that the Tunguska cosmic body looked like a luminous coma with a diameter not smaller than ≥10 km and became visible at heights of >500 km. The assumption that the Tunguska cosmic body started disintegrating at a height of ∼1000 km explains the formation of an area where its mater diffused and formed a luminous area above Europe.  相似文献   

8.
The production rate profiles of21Ne and22Ne as a function of depth in meteoroids due to spallation by solar flare cosmic rays (SCR) and galactic cosmic rays (GCR) are calculated and their dependence on size and composition of meteoroids has been evaluated. The GCR production rate at a given depth increases with size for radii<25cm and then decreases whereas the22Ne21Ne ratio (NeR) generally decreases with size and depth. The calculated GCR production rates and NeR are consistent with the measurements in several Chondrites. A plot of track production rate vs. NeR shows that some chondrites have NeR values smaller than those expected for their sizes. Thes obeervation suggestsat least a two-stage irradiation for such meteorites; the meteoroid exposure as a small body in the interplanetary space must have been preceded by exposure under deep shielding, possibly in its parent body.  相似文献   

9.
Data on variations in the content of the 14C cosmogenic isotope in tree rings and the Earth’s atmosphere (Δ14C) make it possible to study the behavior of solar activity (SA) in previous centuries and millenniums. The latter is related to the fact that SA temporal variations result in a change in the IMF (Interplanetary Magnetic Field) parameters and, as a consequence, in the galactic cosmic ray (GCR) flux, under the action of which the 14C isotope is produced in the Earth’s atmosphere. This makes it possible to study SA history based on data on the 14C isotope content in tree rings. However, in this case we have several difficulties related to climate change. Climate changes result in carbon redistribution between natural reservoirs, which is reflected in radiocarbon data and results in solar signal distortion. The effect of variations in the global temperature and carbon dioxide concentration on the reconstruction of the heliospheric modulation potential and Wolf numbers from the late 14th century to the early 19th century is considered. It has been shown that the radiocarbon data do not make it possible to conclude that SA during the Maunder minimum was extremely low as compared to SA during the Dalton minimum.  相似文献   

10.
The seasonal effect of the daily variations in the cosmic ray intensity on the conductivity of the Earth-high-conductivity layer column has been analyzed based on the observations of the cosmic ray intensity, atmospheric current, and electric field vertical component, performed from summer 2006 to spring 2007 at Apatity station. The method for correcting the measurements of the atmospheric current and electric field vertical component under complex tropospheric conditions by numerically simulating the spatial structure of the current and field lines in the observation region has been proposed. It has been indicated that cosmic rays are the main source of ions in the winter polar lower atmosphere and are responsible for the type of daily variations in the conductivity, whereas the daily variations in the atmospheric current more depends on the conductivity rather than on the vertical electric field.  相似文献   

11.
Detailed calculations of the time-variable spatial distribution of cosmic ray-induced ionization of the lower atmosphere are presented using a physical model. Using the differential energy spectrum of cosmic rays obtained from the worldwide neutron monitor network since 1951 and taking into account also the slow changes in the geomagnetic dipole, we have calculated the corresponding 3D (geographical coordinates and altitude) equilibrium ion concentration in the lower atmosphere as a function of time for the period 1951–2000. A comparison to the results of measurements validates the calculation method, as the calculated cosmic ray-induced ionization reproduces in general the observed altitudinal and latitudinal profiles of the ion concentration. The results of the present work provide a basis for a quantitative study of the solar–terrestrial relationships on long time scales.  相似文献   

12.
The main data have been summarized, and the results, achieved using data from the worldwide network during the entire period of ground-based observations of solar cosmic rays (SCRs) from February 28, 1942, when they were discovered, have been generalized. The methods and equipment for registering SCRs have been described. The physical, methodical, and applied aspects, related to the SCR generation, as well as the SCR interaction with the solar atmosphere, transport in the IMF, motion in the Earth’s magnetosphere, and the affect on the Earth’s atmosphere, have been discussed. It has been indicated that the fundamental results were achieved in this field of space physics during 70 years of studies. Special attention has been paid to up-to-date models and concepts of ground-level enhancement (GLE). The most promising tendencies in the development and application of this effective method of solar-terrestrial physics have been outlined.  相似文献   

13.
Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial—perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic field and by the galactic environment of Earth. Two different classes of microphysical mechanisms have been proposed to connect cosmic rays with clouds: firstly, an influence of cosmic rays on the production of cloud condensation nuclei and, secondly, an influence of cosmic rays on the global electrical circuit in the atmosphere and, in turn, on ice nucleation and other cloud microphysical processes. Considerable progress on understanding ion–aerosol–cloud processes has been made in recent years, and the results are suggestive of a physically-plausible link between cosmic rays, clouds and climate. However, a concerted effort is now required to carry out definitive laboratory measurements of the fundamental physical and chemical processes involved, and to evaluate their climatic significance with dedicated field observations and modelling studies.  相似文献   

14.
The mechanism by which lightning is initiated by preliminary ionization of the atmosphere by extensive atmospheric showers (EASs) of cosmic particles with the following development of relativistic run-away electron avalanches (RREAs) is analyzed. The two-dimensional numerical model of conducting channel evolution in a thunderstorm electric field has been constructed. The calculations, performed for different field strength values, energy initiating cosmic particle EASs, and dimensions of the region occupied by the field indicate, indicate that lightning discharges cannot be initiated by a joint action of EASs and RREAs.  相似文献   

15.
The most reliable data on a change in the intensity of cosmic rays and geomagnetic field on large time scales have been analyzed, and the relations between changes in these processes and climate during the last 1.5 Myr have been studied. An analysis indicated that the climate of the Earth is affected by changes in the Earth’s orbit parameters and geomagnetic dipole values; however, the climate responds to these changes with a delay of 10 kyr and immediately, respectively. In this case about two thirds of the effect of eccentricity on 18O is implemented via an intermediate chain: virtual axial dipole moment, changes in which can be related to changes in eccentricity. Thus, an analysis of the accumulated data on the processes, proceeding in the Earth’s atmosphere during the interaction with cosmic rays on the scales of several years to several hundreds of thousand years, indicates that the cosmophysical factor of influence on climate cannot be rejected. To make the conclusion more convincing, it is necessary to collect data for the studied time interval in a much wider region, to more accurately date samples, and to study the response of the climatic system to the external influence.  相似文献   

16.
The spatial and temporal structure of the effects of solar activity (SA) and galactic cosmic ray (GCR) flux variations on the lower atmosphere circulation has been studied based on NCEP/NCAR reanalysis archive for 1948–2006 and MSLP (Climatic Research Unit, UK) data for 1873–2000. It has been shown that the GCR effects on pressure variations are characterized by a strong latitudinal and regional dependence, which is determined by specific features of the tropospheric circulation in the studied regions. The distribution of the correlation coefficients for mean yearly values of atmospheric pressure with the GCR flux intensity is closely related to the position of the main climatological fronts. The periodic (∼60 years) changes in the correlation sign of the pressure at high and middle latitudes with Wolf numbers have been revealed. It has been suggested that the changes of the sign of SA/GCR effects on atmospheric pressure are caused by the changes of the macrocirculation epochs, which, in turn, may be related to large-scale processes on the Sun.  相似文献   

17.
This article considers the process of entry of cosmic substance into the Earth’s atmosphere and the further evolution of the formed extraterrestrial aerosol. It is shown that meteorite-derived aerosol generated in the atmosphere may affect the Earth’s climate in two ways: (a) particles of meteoric haze may serve as condensation nuclei in the troposphere and stratosphere; (b) charged meteor particles residing in the mesosphere may markedly change (by a few percent) the total atmospheric resistance and, thereby, affect the global current circuit. Changes in the global electric circuit, in turn, may influence cloud formation processes. The obtained results argue for the fact that the meteoric dust in the Earth’s atmosphere is potentially one of the important climate-forming agents. It is shown that the amount of interstellar dust in the Earth’s atmosphere is too small to have a considerable affect on atmospheric processes.  相似文献   

18.
The singularities of the wave disturbance spectra of the nonequilibrium atmosphere in the range of acoustic gravity waves (AGWs) have been analyzed. Using the dispersion ratio for AGWs in the nonequilibrium atmosphere, it has been established that the spectra in the daytime and nighttime hours are different and this difference, caused by a nonequilibrium spectrum sensitivity to atmospheric temperature, can reach several percent in certain atmospheric regions. For the spectrum of the equilibrium model of the atmosphere, the difference between the daytime and nighttime spectra makes up several fractions of percent. As a result of the spectral treatment of variations in pressure and intensity of cosmic rays (CRs), it has been found out that the daytime AGW spectrum is higher-frequency than the nighttime spectrum. A comparison of the theoretical calculations of the AGW spectrum with observations has made it possible to distinguish the effect of nonequilibrium in the AGW spectral composition.  相似文献   

19.
Ionization of the earth’s atmosphere by solar and galactic cosmic rays   总被引:1,自引:0,他引:1  
A brief review of the research of atmospheric effects of cosmic rays is presented. Numerical models are discussed, that are capable to compute the cosmic ray induced ionization at a given location and time. Intercomparison of the models, as well as comparison with fragmentary direct measurements of the atmospheric ionization, validates their applicability for the entire atmosphere and the whole range of the solar activity level variations. The effect of sporadic solar energetic particle events is shown to be limited on the global scale, even for the most severe event, but can be very strong locally in polar regions, affecting the physical-chemical properties of the upper atmosphere, especially at high altitudes. Thus, a new methodology is presented to study cosmic ray induced ionization of the atmosphere in full detail using realistic numerical models calibrated to direct observations.  相似文献   

20.
Etch rates and etchable lengths of cosmic ray tracks in meteoritic crystals have been used by several workers to derive the charge spectrum of ancient cosmic rays. This is done by comparing the fossil cosmic ray track record with fresh accelerator-produced calibration tracks. These calibration tracks are generally produced at room temperature, while meteorites spend a high proportion of their lifetimes orbiting at large distances from the Sun ( 3–5 AU) and are, consequently, at much lower temperatures (typically 100–150 K) during most of their cosmic ray exposure ages. We have irradiated crystals of apatite, olivine, enstatite and diopside held at 77, 293, 473 and 573 K, with 2 MeV/nucleon81Br ions, and then etched them. We find that their track etching properties are dependent upon the temperature of the mineral during registration. The track etch velocity generally increases with registration temperature up to 300 or 500 K (the upper limit depending upon the type of crystal). Our results also indicate that the annealing sensitivity of fission tracks in fluorapatite may be influenced by the registration temperature. This temperature dependence has important implications not only for cosmic ray particle identification but also for fission track dating of meteorites in view of the fact that the meteorite parent bodies were at elevated temperatures at the beginning af their life when244Pu fission tracks were being generated abundantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号