首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have relocated seismic events registered within the Barents and Kara sea region from early twentieth century to 1989 with a view to creating a relocated catalog. For the relocation, we collected all available seismic bulletins from the global network using data from the ISC Bulletin (International Seismological Centre), ISC-GEM project (International Seismological Centre–Global Earthquake Model), EuroSeismos project, and by Soviet seismic stations from Geophysical Survey of the Russian Academy of Sciences. The location was performed by applying a modified method of generalized beamforming. We have considered several travel time models and selected one with the best location accuracy for ground truth events. Verification of the modified method and selection of the travel time model were performed using data on four nuclear explosions that occurred in the area of the Novaya Zemlya Archipelago and in the north of the European part of Russia. The modified method and the Barents travel time model provide sufficient accuracy for event location in the region. The relocation procedure was applied to 31 of 36 seismic events registered within the Barents and Kara sea region.  相似文献   

2.
v--v Continuous seismic threshold monitoring is a technique that has been developed over the past several years to assess the upper magnitude limit of possible seismic events that might have occurred in a geographical target area. The method provides continuous time monitoring at a given confidence level, and can be applied in a site-specific, regional or global context.¶In this paper (Part 1) and a companion paper (Part 2) we address the problem of optimizing the site-specific approach in order to achieve the highest possible automatic monitoring capability of particularly interesting areas. The present paper addresses the application of the method to cases where a regional monitoring network is available. We have in particular analyzed events from the region around the Novaya Zemlya nuclear test site to develop a set of optimized processing parameters for the arrays SPITS, ARCES, FINES, and NORES. From analysis of the calibration events we have derived values for beam-forming steering delays, filter bands, short-term average (STA) lengths, phase travel times (P and S waves), and amplitude-magnitude relationships for each array. By using these parameters for threshold monitoring of the Novaya Zemlya testing area, we obtain a monitoring capability varying between mb 2.0 and 2.5 during normal noise conditions.¶The advantage of using a network, rather than a single station or array, for monitoring purposes becomes particularly evident during intervals with high global seismic activity (aftershock sequences), high seismic noise levels (wind, water waves, ice cracks) or station outages. For the time period November-December 1997, all time intervals with network magnitude thresholds exceeding mb 2.5 were visually analyzed, and we found that all of these threshold peaks could be explained by teleseismic, regional, or local signals from events outside the Novaya Zemlya testing area. We could therefore conclude within the confidence level provided by the method, that no seismic event of magnitude exceeding 2.5 occurred at the Novaya Zemlya test site during this two-month time interval.¶As an example of particular interest in a monitoring context, we apply optimized threshold processing of the SPITS array for a time interval around 16 August 1997 mb 3.5 event in the Kara Sea. We show that this processing enables us to detect a second, smaller event from the same site (mb 2.6), occurring about 4 hours later. This second event was not defined automatically by standard processing.  相似文献   

3.
—?A crustal velocity model has been developed for Fennoscandia, the Baltic shield and adjacent areas. This model represents a simplified average of various models developed for parts of this region. We show that P-wave travel times calculated with this model provide an excellent fit to observations at the Fennoscandian, KRSC and IRIS station networks for a set of seismic events with known or very well-constrained locations. The station-event paths cover large parts of Western Russia and the Barents Sea, thus indicating that this model, which we denote the Barents model, is appropriate for this entire region. We show by examples that significant improvements in event location precision can be achieved compared to using the IASPEI model. We finally use the Barents model to calculate locations of recent small seismic events in the Novaya Zemlya region of interest in a CTBT monitoring context.  相似文献   

4.
—?In this paper, we use data from seismic stations operated by NORSAR, the Kola Regional Seismological Centre (KRSC) and IRIS to study the characteristics of regional phases in the European Arctic, with emphasis on the P/S ratio discriminant. While the detection and location capability of the regional station network is outstanding, source classification of small seismic events has proved very difficult. For example, the m b ?=?3.5 seismic event near Novaya Zemlya on 16 August, 1997 has been the subject of extensive analysis in order to locate it reliably and to classify the source type. We consider the application of the P/S discriminant in the context of this event and other events observed at regional distances in the European Arctic. We show that the P/S ratios of Novaya Zemlya nuclear explosions measured in the 1–3?Hz filter band scale with magnitude, indicating a need for caution and further research when applying P/S discriminants. Using mainly data from the large NORSAR array, we note that observed P/S amplitude ratios in the European Arctic show large variability for the same source type and similar propagation paths, even when considering closely spaced observation points. This effect is most pronounced at far regional distances and relatively low frequencies (typically 1–3?Hz), but it is also significant on closer recordings (around 10 degrees) and at higher frequencies (up to about 8?Hz). Our conclusion from this study is that the P/S ratio at high frequencies (e.g., 6–8?Hz) shows promise as a discriminant between low-magnitude earthquakes and explosions in the European Arctic, but its application will require further research, including extensive regional calibration and detailed station-source corrections. Such research should also focus on combining the P/S ratio with other short-period discriminants, such as complexity and spectral ratios.  相似文献   

5.
宋倩  于湘伟  邓山泉 《地震学报》2020,42(5):509-526
利用2017年8月1日至2017年12月31日四川地震台网和甘肃地震台网记录到的发生在青藏高原东缘的731个地震事件的9 284条Pg震相到时数据,首先反演了该地区的“最小一维速度模型”,并将该模型和选取的速度模型建立对比模型,以九寨沟地震序列为研究目标,定量讨论了两种速度模型分别在绝对定位和相对定位方法中对定位结果的影响。所得定位结果表明:反演获得的“最小一维速度模型”在重定位中可以有效地减小地震走时均方根残差;绝对定位比相对定位更加依赖于一维速度模型,一维速度模型会直接影响绝对定位结果中的震源分布形态,但在相对定位结果中仅起到调整地震事件相对位置的作用;在地震绝对定位中,震级越大的地震对于速度模型越敏感,而这一特点在相对定位中表现得并不明显。通过本项研究可知,在地震定位研究中,联合采用绝对定位和相对定位方法是最佳策略。   相似文献   

6.
The rock magnetic and paleomagnetic results from the Upper Paleozoic sedimentary sequences composing the isles of the Novaya Zemlya Archipelago are presented. The recorded temperature dependences of the magnetic susceptibility, the magnetic hysteresis parameters, and the results of the first-order reversal curve (FORC) measurements suggest the presence of single-domain or pseudo-single-domain magnetite and hematite grains in the rocks. The Upper Paleozoic deposits overall are promising for unraveling the tectonic evolution of the Barents–Kara region. Together with the rock magnetic data, the positive fold and reversal tests testify to the primary origin of the indentified magnetization components. However, the interpretation of the paleomagnetic data should take into account the probable inclination shallowing. New substantiation is offered for the paleomagnetic poles for Early Devonian and Late Permian. For the first time, paleomagnetic constraints are obtained for the Late Carboniferous boundary. It is shown that the Early Cimmerian deformation stage within the Paikhoi–Novaya Zemlya region is associated with the sinistral strike slip displacement along the Baidaratskii suture during which the internal structure of the Southern Novaya Zemlya segment could undergo shear in addition to the nappe-thrust transformations. The Northern Novaya Zemlya segment, which is shifted northwest with respect to the Southern segment, was deformed in the thrusting mode with an overall clockwise rotation of this segment relative to the East European Craton.  相似文献   

7.
Over a period in 1961–1990 496 underground nuclear tests and explosions of different purpose and in different rocks were conducted in the Soviet Union at Semipalatinsk and anovaya Zemlya Test Sites. A total of 340 underground nuclear tests were conducted at the Semipalatinsk Test Site. One hundred seventy-nine explosions (52.6%) among them were classified as these of complete containment, 145 explosions (42.6%) as explosions with weak release of radioactive noble gases (RNG), 12 explosions (3.5%) as explosions with nonstandard radiation situation, and four excavation explosions with ground ejection (1.1%). Thirty-nine nuclear tests had been conducted at the Novaya Zemlya Test Site; six of them – in shafts. In 14 tests (36%) there were no RNG release. Twenty-three tests have been accompanied by RNG release into the atmosphere without sedimental contamination. Nonstandard radiation situation occurred in two tests. In incomplete containment explosions both early-time RNG release (up to ~1 h) and late-time release from 1 to 28 h after the explosion were observed. Sometimes gas release took place for several days, and it occurred either through tunnel portal or epicentral zone, depending on atmospheric air temperature.  相似文献   

8.
New location features for possible implementation by the International Seismological Centre in its standard location procedures are tested using a set of 156 well-located and geographically well-distributed earthquakes and explosions. The tests are performed using the Engdahl et al. ([Engdahl, E.R., Van der Hilst, R.D., Buland, R.P., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seism. Soc. Am. 88, 3295-3314]; EHB) location algorithm with the 1-D reference Earth model ak135 [Kennett, B.L.N., Engdahl, E.R., Buland, R., 1995. Constraints on seismic velocities in the Earth from travel times, Geophys. J. Int. 122, 108-124]. Weighting by phase variance as a function of distance improves location accuracy by 7%. Use of later phase arrival times does not result in a significant improvement in location or depth for events with observing stations well distributed in azimuth. However, with application of an improved phase identification technique, depth phases provide significantly better estimates of focal depth.  相似文献   

9.
Accurate location of weak seismic events is crucial for monitoring clandestine nuclear tests, for studying local seismic structures, and for assessing possible seismic hazards. Outside of a few regions with dense seismic networks, weak seismic events (with magnitude less than 4) are usually sparsely recorded at epicentral distances less than 20°. Because of lateral variations in crustal and upper mantle structures, observed travel times of seismic phases deviate significantly from predictions based on 1-dimensional (1D) seismic models. Accurately locating weak seismic events remains a difficult task for modern seismology. Perhaps the most promising solution to this problem is the use of a 3-dimensional (3D) model of the Earth. Here we present the results of a validation test in which, using the 3D model SR2002 of the crust and upper mantle and regional phase data alone, we relocate 200 earthquakes and nuclear explosions in Eurasia. The 3D model is constructed using surface wave dispersion data. The event locations using the 3D model are compared with so-called Ground Truth data, either known by non-seismic means or validated by cluster analysis, with location accuracy mostly 5 km or better. Typically, the 3D model reduces the location errors to about half the values attained with the 1D model; i.e., 18 km location errors are reduced to about 9 km. This test indicates that the location of regional events can be significantly improved by using a global 3D model.  相似文献   

10.
On the material of sampling, accomplished in: (i) Chernaya Inlet of the Barents Sea (one of the flats of Novaya Zemlya Nuclear Test Site), (ii) in the Open Kara Sea and (iii) on the shoal off Novaya Zemlya from Stepovogo Fjord to Abrosimov Fjord (sites of radioactive waste disposal with activity 90% from total for the Kara Sea), characteristics of macro-, meio- and microbenthic bottom communities on the areas of potential radioactive danger are presented. Significant changes in macro- and meiobenthic communities are not revealed. In Chernaya Inlet, where three nuclear explosions were held in 1955–1961, disturbances in microbenthic protozoa communities are found. These disturbances expressed in the infusoria elimination from the fauna of the inlet deep-water sites and in morphological abnormality of this group individuals in population, inhabiting low depth of the inlet top. The assumed origin of revealed disturbances is high concentration (by 3–4 orders of magnitude above the background) of plutonium in bottom sediments of the inlet. Similar responses of the microbenthic flagellates are not detected.  相似文献   

11.
2012年9月7日彝良地震及余震序列双差定位研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文提出了时域多通道相关检测函数并用其计算波形互相关走时差数据,采用双差定位法对2012年9月7日云南彝良地震和余震序列共944个地震进行重定位,得到652个重定位事件,并与目录数据的结果进行了对比.本文采用了多个准则对走时差数据进行筛选,确保定位结果稳定可靠.得到MS5.7主震的震中为27.516°N,103.951°E,震源深度6.9km;MS5.6主震的震中为27.543°N,104.023°E,震源深度7.27km;重定位结果显示,地震序列紧缩为条带状并沿附近断裂走向分布,深度总体分布较重定位前变浅,集中分布在5~8km,地震群出现轻微倾斜.东西向、南北向、深度和发震时刻的平均相对误差分别为55.2 m,43.0 m,186.7 m和0.01s,走时残差16ms.研究表明:互相关数据的结果要优于目录数据;震源深度与速度模型存在较大的相关性;确定彝良—会泽断裂为本次彝良地震序列的发震构造.  相似文献   

12.
v--vThis second paper (Part 2) pertaining to optimized site-specific threshold monitoring addresses the application of the method to regions covered by a teleseismic or a combined regional-teleseismic network. In the first paper (Part 1) we developed the method for the general case, and demonstrated its application to an area well-covered by a regional network (the Novaya Zemlya nuclear test site). In the present paper, we apply the method to the Indian and Pakistani nuclear test sites, and show results during the periods of nuclear testing by these two countries in May 1998. Since the coverage by regional stations in these areas is poor, an optimized approach requires the use of selected, high-quality stations at teleseismic distances.¶To optimize the threshold monitoring of these test sites, we use as calibration events either one of the nuclear explosions or a nearby earthquake. From analysis of the calibration events we derive values for array beamforming steering delays, filter bands, short-term averages (STA) lengths, phase travel times (P waves), and amplitude-magnitude relationships for each station. By applying these parameters, we obtain a monitoring capability of both test sites ranging from mb 2.8-3.0 using teleseismic stations only. When including the nearby Nilore station to monitor the Indian tests, we show that the threshold can be reduced by about 0.4 magnitude units. In particular, we demonstrate that the Indian tests on 13 May, 1998, which were not detected by any known seismic station, must have corresponded to a magnitude (mb) of less than 2.4.¶We also discuss the effect of a nearby aftershock sequence on the monitoring capability for the Pakistani test sites. Such an aftershock sequence occurred in fact on the day of the last Pakistani test (30 May, 1998), following a large (mb 5.5) earthquake in Afghanistan located about 1100 km from the test site. We show that the threshold monitoring technique has sufficient resolution to suppress the signals from these interfering aftershocks without significantly affecting the true peak of the nuclear explosion on the threshold trace.  相似文献   

13.
14.
—?A set of procedures is described for estimating network-averaged teleseismic P-wave spectra for underground nuclear explosions and for analytically inverting these spectra to obtain estimates of m b /yield relations and individual yields for explosions at previously uncalibrated test sites. These procedures are then applied to the analyses of explosions at the former Soviet test sites at Shagan River, Degelen Mountain, Novaya Zemlya and Azgir, as well as at the French Sahara, U.S. Amchitka and Chinese Lop Nor test sites. It is demonstrated that the resulting seismic estimates of explosion yield and m b /yield relations are remarkably consistent with a variety of other available information for a number of these test sites. These results lead us to conclude that the network-averaged teleseismic P-wave spectra provide considerably more diagnostic information regarding the explosion seismic source than do the corresponding narrowband magnitude measures such as m b , M s and m b (L g ), and, therefore, that they are to be preferred for applications to seismic yield estimation for explosions at previously uncalibrated test sites.  相似文献   

15.
天山东北部地震的重新定位和一维地壳速度模型的改善   总被引:1,自引:1,他引:0  
We apply three methods to relocate 599 earthquake events that occurred from August 2004 to August 2005 in the northeastern Tianshan Mountains area ( 85°30’ ~ 88°30’E,43°00’ ~ 44°40’ N ) by using travel times recorded by regional seismic network and 10 portable seismic stations deployed around the Urumqi city. By comparing the reliability of different results,we determined a suitable location method,and an improved 1-D crustal velocity model of the study area. The uncertainty of earthquake location is significantly reduced with combined data of seismic network and portable stations. The relocated events are clearly associated with regional tectonics of the northeastern Tianshan Mountains area, and are also in agreement with the existence of active faults imaged by deep seismic reflection profile. The relocated seismicity discovers some potential traces of buried active faults,which need to be validated further.  相似文献   

16.
天山东北部地震的重新定位和一维地壳速度模型的改善   总被引:6,自引:4,他引:2  
根据布设在乌鲁木齐市活断层探测区内的流动宽频带地震台阵,结合区域地震台网的走时数据,利用3种不同的定位方法对新疆天山东北部地区(E85°30′~ 88°30′,N43°00′~44°40′) 2004年8月至2005年8月发生的599个地震进行了重新定位.通过比较不同方法的结果合理性,确定了适合于当地震源精定位的程序,并改善了一维地壳速度模型.结果表明:联合使用流动地震台阵和区域台网的资料,显著提高了研究区的地震定位能力,精定位后震中分布图像更加集中,展示出了天山东北部地区更为明显的与活动构造相关的条带状地震活动分布图像,除了一些与已知断层相关的地震事件外,还发现一些有待证实的活断层.  相似文献   

17.
针对山西测震台网缺少适合本地区地壳速度模型的现状,在前人工作成果的基础上,基于山西测震台网2009~2014年间产出的大量震相数据,采用"线性拟合"和"折合走时"法分别确定了模型参数中速度和深度的波动范围;利用Hyposat定位程序,使用46489组模型,分别批量定位76个地震事件,并选取残差最小的一组参数作为山西2015地壳速度模型;最后运用批量定位比较残差、PTD测定深度和人工爆破等3种方法对山西2015地壳速度模型进行了验证。结果表明:在山西地区进行地震定位时,山西2015地壳速度模型相较于现有的修正J-B模型残差更小,精度更高,具有更好的适用性。  相似文献   

18.
1980—2012年河北省及邻区测震台网地震记录,使用了河北省南部及邻区(34.0°—38.0°N,112.0°—118.0°E)63个固定地震台站和4 540个地震事件,得到27 709条P波到时数据,采用速度结构与地震位置联合反演的方法,获得研究区内地壳P波三维速度结构,重新确定中小地震震源位置。速度结构揭示:研究区域内地壳的P波速度结构存在明显的横向不均匀性,在10—25 km深度上横向不均匀性更加显著;大地震基本发生在速度异常体或高低速交界区域。地震重新定位结果显示:地震P波走时均方根残差(RMS)从1.68 s降到0.82 s;地震呈明显条带状分布,震源深度与地质构造年代具有一定负相关性。  相似文献   

19.
朝鲜地下核试验的地震学观测   总被引:3,自引:1,他引:2       下载免费PDF全文
自2006年至2017年,朝鲜民主主义人民共和国在中朝边界地区的试验场进行了6次地下核试验.本文综合报道根据东北亚地区的宽频带数字地震资料利用地震学方法对这六次地下核爆炸的研究.结果表明,朝鲜地下核试验在区域台网产生的地震记录具有典型浅源爆炸的特征.针对上述资料发展了处理核爆数据的方法并据此得出各次朝鲜核爆的地震学参数,包括事件识别、当量测定、以及震中相对定位等.对6次核爆和4次天然地震P/S类型谱振幅比的统计分析表明,2 Hz以上台网平均谱振幅比可以正确地将朝鲜核爆从天然地震中识别出来,从而有效监测在朝鲜半岛进行的当量大于0.5 kt的地下核试验.同时也发现,建立在体波-面波震级比之上的识别方法不适用于朝鲜核试验场.通过建立中朝边界地区基于Lg波的体波震级系统,计算了各次朝鲜核试验的体波震级mb(Lg),并由此估计了它们的地震学当量,其值介于0.5 kt至60 kt之间.由于缺少爆炸埋藏深度的数据,上述当量有可能被低估,因而有必要对深度影响做进一步研究.以第一次爆炸的位置为参考震中,利用Pn波相对走时数据和高精度相对定位方法获得了各次核爆在试验场中的精确定位.  相似文献   

20.
珠江口地区位于南海北部大陆的边缘,具有洋陆过渡型地壳特征,且NE向滨海断裂带从其中穿过,强震风险不可忽视。文中基于2015年珠江口海陆联合三维人工地震探测数据,人工进行初至P波震相拾取,并使用VELEST程序分别反演了陆域和海域的最小一维P波速度模型(走时残差均方根最小)和台站校正结果。台站校正结果的空间分布与区域地形、地质构造和沉积厚度相关较好,正值多分布在珠江三角洲沉积盆地和珠江口盆地内,而负值多分布在花岗岩等基岩出露地区以及滨海断裂带北侧和北部断阶带内的部分隆起地区。新模型对人工地震走时的拟合精度较高,陆域走时残差均方根为0.07s,海域为0.21s。与华南模型相比,新模型对区域地震定位的效果更好,重定位后,陆域的P波地震走时残差降低了22.6%、S波降低了21.2%;海域的P波地震走时残差降低了25.7%、S波降低了15.6%。新模型可为区域地震定位、地震参数和三维成像研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号