首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《水文科学杂志》2013,58(4):613-625
Abstract

Estimates of rainfall elasticity of streamflow in 219 catchments across Australia are presented. The rainfall elasticity of streamflow is defined here as the proportional change in mean annual streamflow divided by the proportional change in mean annual rainfall. The elasticity is therefore a simple estimate of the sensitivity of long-term streamflow to changes in long-term rainfall, and is particularly useful as an initial estimate of climate change impact in land and water resources projects. The rainfall elasticity of streamflow is estimated here using a hydrological modelling approach and a nonparametric estimator. The results indicate that the rainfall elasticity of streamflow (? P ) in Australia is about 2.0–3.5 (observed in about 70% of the catchments), that is, a 1% change in mean annual rainfall results in a 2.0–3.5% change in mean annual streamflow. The rainfall elasticity of streamflow is strongly correlated to runoff coefficient and mean annual rainfall and streamflow, where streamflow is more sensitive to rainfall in drier catchments, and those with low runoff coefficients. There is a clear relation-ship between the ? P values estimated using the hydrological modelling approach and those estimated using the nonparametric estimator for the 219 catchments, although the values estimated by the hydrological modelling approach are, on average, slightly higher. The modelling approach is useful where a detailed study is required and where there are sufficient data to reliably develop and calibrate a hydrological model. The nonparametric estimator is useful where consistent estimates of the sensitivity of long-term streamflow to climate are required, because it is simple to use and estimates the elasticity directly from the historical data. The nonparametric method, being model independent, can also be easily applied in comparative studies to data sets from many catchments across large regions.  相似文献   

2.
D.A. Hughes  R. Gray 《水文科学杂志》2017,62(15):2427-2439
The focus of this study is on bias correcting semi-distributed rainfall inputs into a hydrological model applied in the Okavango River basin in southern Africa, where there are very few local observations and heavy reliance is placed on global rainfall datasets. While the hydrological model, before rainfall bias correction, is able to represent the broad characteristics of the sub-basin streamflow responses, as demonstrated by good agreement between observed and simulated flow duration curves, there are many years where the annual volumes are over- or underestimated. The long records of observed flow at downstream stations are successfully used to bias correct the rainfall inputs to the upstream sub-basins using an analysis of their individual contributions to downstream flow and their annual rainfall–runoff response ratios. The results show improved simulations for the relatively shorter observation periods at the upstream gauging stations.  相似文献   

3.
《水文科学杂志》2013,58(6):1006-1020
Abstract

This paper aims to compare the shift in frequency distribution and skill of seasonal climate forecasting of both streamflow and rainfall in eastern Australia based on the Southern Oscillation Index (SOI) Phase system. Recent advances in seasonal forecasting of climate variables have highlighted opportunities for improving decision making in natural resources management. Forecasting of rainfall probabilities for different regions in Australia is available, but the use of similar forecasts for water resource supply has not been developed. The use of streamflow forecasts may provide better information for decision-making in irrigation supply and flow management for improved ecological outcomes. To examine the relative efficacy of seasonal forecasting of streamflow and rainfall, the shift in probability distributions and the forecast skill were evaluated using the Wilcoxon rank-sum test and the linear error in probability space (LEPS) skill score, respectively, at three river gauging stations in the Border Rivers Catchment of the Murray-Darling Basin in eastern Australia. A comparison of rainfall and streamflow distributions confirms higher statistical significance in the shift of streamflow distribution than that in rainfall distribution. Moreover, streamflow distribution showed greater skill of forecasting with 0–3 month lead time, compared to rainfall distribution.  相似文献   

4.
The use of precipitation estimates from weather radar reflectivity has become widespread in hydrologic predictions. However, uncertainty remains in the use of the nonlinear reflectivity–rainfall (Z‐R) relation, in particular for mountainous regions where ground validation stations are often lacking, land surface data sets are inaccurate and the spatial variability in many features is high. In this study, we assess the propagation of rainfall errors introduced by different Z‐R relations on distributed hydrologic model performance for four mountain basins in the Colorado Front Range. To do so, we compare spatially integrated and distributed rainfall and runoff metrics at seasonal and event time scales during the warm season when convective storms dominate. Results reveal that the basin simulations are quite sensitive to the uncertainties introduced by the Z‐R relation in terms of streamflow, runoff mechanisms and the water balance components. The propagation of rainfall errors into basin responses follows power law relationships that link streamflow uncertainty to the precipitation errors and streamflow magnitude. Overall, different Z‐R relations preserve the spatial distribution of rainfall relative to a reference case, but not the precipitation magnitude, thus leading to large changes in streamflow amounts and runoff spatial patterns at seasonal and event scales. Furthermore, streamflow errors from the Z‐R relation follow a typical pattern that varies with catchment scale where higher uncertainties exist for intermediate‐sized basins. The relatively high error values introduced by two operational Z‐R relations (WSR‐57 and NEXRAD) in terms of the streamflow response indicate that site‐specific Z‐R relations are desirable in the complex terrain region, particularly in light of other uncertainties in the modelling process, such as model parameter values and initial conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
An ensemble of stochastic daily rainfall projections has been generated for 30 stations across south‐eastern Australia using the downscaling nonhomogeneous hidden Markov model, which was driven by atmospheric predictors from four climate models for three IPCC emissions scenarios (A1B, A2, and B1) and for two periods (2046–2065 and 2081–2100). The results indicate that the annual rainfall is projected to decrease for both periods for all scenarios and climate models, with the exception of a few scenarios of no statistically significant changes. However, there is a seasonal difference: two downscaled GCMs consistently project a decline of summer rainfall, and two an increase. In contrast, all four downscaled GCMs show a decrease of winter rainfall. Because winter rainfall accounts for two‐thirds of the annual rainfall and produces the majority of streamflow for this region, this decrease in winter rainfall would cause additional water availability concerns in the southern Murray–Darling basin, given that water shortage is already a critical problem in the region. In addition, the annual maximum daily rainfall is projected to intensify in the future, particularly by the end of the 21st century; the maximum length of consecutive dry days is projected to increase, and correspondingly, the maximum length of consecutive wet days is projected to decrease. These changes in daily sequencing, combined with fewer events of reduced amount, could lead to drier catchment soil profiles and further reduce runoff potential and, hence, also have streamflow and water availability implications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In deeply weathered laterite catchments of the Darling Range in south-western Australia, the direct contribution (i.e., discharge) of permanent groundwater to streamflow has long been considered as minor. Instead, downslope shallow throughflow was thought to dominate, generating more than 90% of streamflow. We used a chemical hydrograph separation approach to estimate annual groundwater discharge for three catchments over periods of up to 39 years, and found that direct groundwater contributions to streamflow were far more variable across catchments and through time than has previously been acknowledged. The estimated proportion of annual streamflow sourced directly from groundwater ranged from 0 to 93% and was related linearly to the size of the groundwater discharge area in the catchment valley floor. In contrast, contributions from shallow sources including shallow throughflow varied primarily and linearly with annual rainfall. However, the response to rainfall was “amplified” in a predictable way by the size of the groundwater discharge area, consistent with the variable source area concept. We derived a functional relationship between catchment annual rainfall-runoff ratio and groundwater discharge area and successfully applied this to a further four catchments, inferring that the results were broadly applicable across the Darling Range. The implications for an improved understanding of streamflow generating processes in the study region, and for laterite catchments generally, are discussed.  相似文献   

7.
Summary The trends appearing in the annual rainfall of the 14 selected coastal and island stations of the Mediterranean were invetigated by running 30-year averages. The periods used as well as the standard deviation, the average variability and the coefficient of variation of the annual rainfall are given for each of the 14 stations. It was found that in the majority of the stations upward and downward trends in the annual rainfall appeared but in a few only stations these trends coincide in the same intervals. A relative similarity appeared in the stations of Marseille-Trieste, Malta-Tunis, Gibraltar-Rome, Nicosia-Limassol and Beyrut-Alexandria. By examination of the three more important maxima and minima in the course of rainfall it was observed that many of them coincide simultaneously at about the same time in the different stations and also that these coincidences occurred near the maximum or minimum of sunspots.  相似文献   

8.
The US Department of Agriculture-Agricultural Research Service Southeast Watershed Research Laboratory (SEWRL) initiated a hydrologic research program on the Little River Experimental Watershed (LREW) in 1967. Long-term (52 years) streamflow data are available for nine sites, including rainfall-runoff relationships and hydrograph characteristics regularly used in research on interactive effects of climate, vegetation, soils, and land-use in low-gradient streams of the US EPA Level III Southeastern Plains ecoregion. A summary of prior research on the LREW illustrates the impact of the watershed on building a regional understanding of hydrology and water quality. Climatic and streamflow data were used to make comparisons of scale across the nine nested LREW watersheds (LRB, LRF, LRI, LRJ, LRK, LRO, LRN, LRM, and LRO3) and two regional watersheds (Alapaha and Little River at Adel). Annual rainfall for the largest LREW, LRB, was 1200 mm while average annual streamflow was 320 mm. Annual rainfall, streamflow, and the ratio between annual streamflow and rainfall (Sratio) were similar (α = 0.05) across LREWs LRB, LRF, LRI, LRJ, LRK, and LRO. While annual rainfall within the 275 ha LRO3 was found to be similar to LRO and LRM (α = 0.05), annual streamflow and Sratio were significantly different (α = 0.05). Comparisons of annual rainfall, streamflow, and Sratio between LRB and the regional watersheds indicated no differences (α = 0.05). Based upon this analysis, most regional watersheds shared similar hydrologic characteristics. LRO3 was an exception, where increases in row crops and decreases in forest coverage resulted in increased streamflow. LREW data have been instrumental in building considerable scientific understanding of flow and transport processes for these stream systems. Continued operation of the LREW hydrologic network will support hydrologic research as well as environmental quality and riparian research programs that address emerging and high priority natural resource and environmental issues.  相似文献   

9.
Abstract

The spatio-temporal variability of daily precipitation series was investigated in a semiarid region of central Macedonia in northern Greece, Ten years of daily rainfall records for seven stations in the region constituted the data base. The spatial characteristics were examined by drawing composite correlation diagrams for the cool (October-March) season and the warm (April-September) season, and the results confirmed the regional homogeneity of the data sets. Furthermore, the temporal analysis indicated that the non-rainy days constituted the major portion of days throughout the year at all the stations. Similarly, light rainfall represented the majority of rainy days. Moreover, the annual rainfall variation showed high values in March, April and November with low values occurring in the summer and autumn. A sharp increase of rainfall between the 185th and the 195th day of the year must be taken into account when the harvest is scheduled. Harmonic and Power Spectrum analyses applied to the annual variation of rain depths using 5-day intervals revealed significant periodicities of 26, 122, 365 and 55 days. Finally the analysis of the annual variation of rain occurrences. revealed periodicities of 365 and 122 days.  相似文献   

10.
In Australia, multidecadal periods of floods and droughts have major economic consequences. Due to the short duration of Australian instrumental precipitation records, it is difficult to determine the patterns of these multidecadal periods. Proxy records can be used to create long‐term rainfall reconstructions for regions that are lacking instrumental data. However, the spatial extent over which single‐site proxy records can be applied is poorly understood. Southeast Queensland (SEQ) is an area where tree rings can be used to reconstruct long‐term rainfall patterns, but their regional representation is unknown. In this study, the spatial variability in rainfall across SEQ is investigated from 1908 to 2007 using 140 instrumental rainfall stations. Pearson correlation analysis between stations is used to create groups at the r = 0.80, 0.85, and 0.90 correlation levels, and then annual deviations from the mean are determined. These patterns indicate that rainfall is not uniform across SEQ but can be broken into 2 main spatially consistent groups. Each of these groups is broken down into several subgroups with higher correlation levels. Long‐term streamflow records are found to be correlated to rainfall patterns local to the streamflow stations, indicating that analysis of extreme events should consider spatial precipitation variability. Finally, the only currently available proxy rainfall reconstruction for the region, a 140‐year Toona ciliata tree ring width record from Lamington National Park, is compared to rainfall groups at different correlation levels across all of SEQ. The correlation between the reconstruction and the rainfall station groupings is best for the groups within which the tree‐ring record is spatially located, and this correlation improves as rainfall group correlation increases. Correlation is nearly nonexistent for groupings located at a distance from the tree‐ring site. These results demonstrate the importance of assessing the spatial variability of precipitation so that the spatial applicability of proxy records can be assessed.  相似文献   

11.
This paper develops a minimum relative entropy theory with frequency as a random variable, called MREF henceforth, for streamflow forecasting. The MREF theory consists of three main components: (1) determination of spectral density (2) determination of parameters by cepstrum analysis, and (3) extension of autocorrelation function. MREF is robust at determining the main periodicity, and provides higher resolution spectral density. The theory is evaluated using monthly streamflow observed at 20 stations in the Mississippi River basin, where forecasted monthly streamflows show the coefficient of determination (r 2) of 0.876, which is slightly higher in the Upper Mississippi (r 2 = 0.932) than in the Lower Mississippi (r 2 = 0.806). Comparison of different priors shows that the prior with the background spectral density with a peak at 1/12 frequency provides satisfactory accuracy, and can be used to forecast monthly streamflow with limited information. Four different entropy theories are compared, and it is found that the minimum relative entropy theory has an advantage over maximum entropy (ME) for both spectral estimation and streamflow forecasting, if additional information as a prior is given. Besides, MREF is found to be more convenient to estimate parameters with cepstrum analysis than minimum relative entropy with spectral power as random variable (MRES), and less information is needed to assume the prior. In general, the reliability of monthly streamflow forecasting from the highest to the lowest is for MREF, MRES, configuration entropy (CE), Burg entropy (BE), and then autoregressive method (AR), respectively.  相似文献   

12.
We investigate the time dynamics of monthly rainfall series intermittently recorded on seven climatic stations in northern Lebanon from 1939 to 2010 using the detrending fluctuation analysis (DFA) and the Fisher-Shannon (FS) method. The DFA is employed to study the scaling properties of the series, while the FS method to analyze their order/organization structure. The obtained results indicate that most all the stations show a significant persistent behavior, suggesting that the dynamics of the rainfall series is governed by positive feedback mechanisms. Furthermore, we found that the Fisher Information Measure (the Shannon entropy power) seems to decrease (increase) with the height of the rain gauge; this indicates that the rainfall series appear less organized and less regular for higher-located stations. Such findings could be useful for a better comprehension of the climatic regimes governing northern Lebanon.  相似文献   

13.
ABSTRACT

Although the semi-arid region of Brazil appears to be homogeneous due to drought conditions, there is a great deal of variability in climatic elements in the region, so that the definition of homogeneous regions will provide the deployment of measures appropriate for each locality. However, the limited information on climatic parameters in the region makes it difficult to define these regions. This problem can, however, be alleviated by the use of entropy theory. Therefore, this study aimed to investigate the potential of the theory to identify hydrologically homogeneous regions for conditions of the semi-arid region of Brazil. Entropy-based Disorder Index (DI) data were computed, based on monthly precipitation and monthly water balance (precipitation – reference evapotranspiration) for 290 gauge stations. For defining homogeneous regions, cluster analysis was utilized, using the data on geographical information about rain gauges (latitude and longitude), annual precipitation, annual water balance, coefficient of skewness, coefficient of kurtosis and DI. The identification of homogeneous regions in the Brazilian semi-arid region was only possible when the grouping of stations was performed, based on DI for precipitation and latitude. Results showed the definition of seven homogeneous regions in the semi-arid region of Brazil.  相似文献   

14.
Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (Østlandet) Norway by applying the Mann–Kendall test and Theil–Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983–2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. Østlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in Østlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration.  相似文献   

15.
Fleming SW  Quilty EJ 《Ground water》2006,44(4):595-599
We used climatological composite analysis to investigate El Ni?o-Southern Oscillation (ENSO) signals in long-term shallow ground water level observations from four wells in the lower Fraser Valley of British Columbia. Significance of differences between warm-phase, cold-phase, and neutral climate states was assessed with a Monte Carlo bootstrap technique. We also considered time series of local precipitation and streamflow for comparison. Composite annual hyetographs suggest that ENSO precipitation impacts are largely limited to winter and spring, with higher and lower rainfall occurring, respectively, under cold-phase and warm-phase episodes. This is consistent with prior work in the region and is found to be directly reflected in both streamflow and ground water level data. The mean magnitude of ENSO terrestrial hydrologic anomalies can be up to approximately 50% of the average seasonal cycle amplitude. ENSO does not appear to systematically affect annual hydrometeorological cycle timing in this study area. However, relative to the surface hydrologic systems considered, aquifers are observed to retain a stronger memory of seasonal ENSO-related precipitation anomalies, with changes potentially extending through the following summer, presumably reflecting storage effects. Most responses appear to be somewhat nonlinear.  相似文献   

16.
Trends of the three hydro-meteorological variables precipitation, temperature and stream flow, represented by 13, 12, and 9 gauging stations, respectively, within the Abay/Upper Blue Nile basin have been studied to support water management in the region. The Trends were evaluated over different time periods depending on data availability at the stations. The statistical Mann–Kendall and Pettitt tests have been used to assess trends and change points respectively. The tests have been applied to mean annual, monthly, seasonal, 1- and 7-days annual minimum and maximum values for streamflow, while mean annual, monthly and seasonal timescales were applied to meteorological variables. The results are heterogeneous and depict statistically significant increasing/decreasing trends. Besides, it showed significant abrupt change of point upward/downward shift for streamflow and temperature time series. However, precipitation time series did not show any statistically significant trends in mean annual and seasonal scales across the examined stations.Increasing trends in temperature at different weather stations for the mean annual, rainy, dry and small rainy seasons are apparent. The mean temperature at Bahir Dar – typical station in the Lake Tana sub basin, has been increasing at the rate of about 0.5 °C/decade, 0.3 °C/decade in rainy season (June–September), 0.6 °C/decade in small rainy season (March–May), and 0.6 °C/decade in dry season (October–February). Other stations in the Abay/Upper Blue Nile show comparable results. Overall it is found that trends and change point times varied considerably across the stations and catchment to catchment. Identified significant trends can help to make better planning decisions for water management. However, the cause attributes to the observed changes in hydro-meteorological variables need further research. In particular the combined effects of land use/land cover change and climate variability on streamflow of Abay/Blue Nile basin and its tributaries needs to be understood better.  相似文献   

17.
ABSTRACT

The trends in hydrological and climatic time series data of Urmia Lake basin in Iran were examined using the four different versions of the Mann-Kendall (MK) approach: (i) the original MK test; (ii) the MK test considering the effect of lag-1 autocorrelation; (iii) the MK test considering the effect of all autocorrelation or sample size; and (iv) the MK test considering the Hurst coefficient. Identification of hydrological and climatic data trends was carried out at monthly and annual time scales for 25 temperature, 35 precipitation and 35 streamflow gauging stations selected from the Urmia Lake basin. Mann-Kendall and Pearson tests were also applied to explore the relationships between temperature, precipitation and streamflow trends. The results show statistically significant upward and downward trends in the annual and monthly hydrological and climatic variables. The upward trends in temperature, unlike streamflow, are much more pronounced than the downward trends, but for precipitation the behaviour of trend is different on monthly and annual time scales. Furthermore, the trend results were affected by the different approaches. Specifically, the number of stations showing trends in hydrological and climatic variables decreased significantly (up to 50%) when the fourth test was considered instead of the first and the absolute value of the Z statistic for most of the time series was reduced. The results of correlations between streamflow and climatic variables showed that the streamflow in Urmia Lake basin is more sensitive to changes in temperature than those of precipitation. The observed decreases in streamflow and increases in temperature in the Urmia Lake basin in recent decades may thus have serious implications for water resources management under the warming climate with the expected population growth and increased freshwater consumption in this region.
Editor Z. W. Kundzewicz; Associate editor Q. Zhang  相似文献   

18.
Abstract

Streamflow in the Himalayan rivers is generated from rainfall, snow and ice. The distribution of runoff produced from these sources is such that the streamflow may be observed in these rivers throughout the year, i.e. they are perennial in nature. Snow and glacier melt runoff contributes substantially to the annual flows of these rivers and its estimation is required for the planning, development and management of the water resources of this region. The average contribution of snow and glacier melt runoff in the annual flows of the Satluj River at Bhakra Dam has been determined. Keeping in view the availability of data for the study basin, a water balance approach was used and a water budget period of 10 years (October 1986-September 1996) was considered for the analysis. The rainfall input to the study basin over the water budget period was computed from isohyets using rainfall data of 10 stations located at different elevations in the basin. The total volume of flow for the same period was computed using observed flow data of the Satluj River at Bhakra Dam. A relationship between temperature and evaporation was developed and used to estimate the evapotranspiration losses. The snow-covered area, and its depletion with time, was determined using satellite data. It was found that the average contribution of snow and glacier runoff in the annual flow of the Satluj River at Bhakra Dam is about 59%, the remaining 41% being from rain.  相似文献   

19.
The catchments in the Loess Plateau, in China's middle reaches of the Yellow River Basin, experienced unprecedented land use changes in the last 50 years as a result of large‐scale soil conservation measure to control soil erosion. The climate of the region also exhibited some levels of change with decreased precipitation and increased temperature. This study combined the time‐trend analysis method with a sensitivity‐based approach and found that annual streamflow in the Loess Plateau decreased significantly since the 1950s and surface runoff trends appear to dominate the streamflow trends in most of the catchments. Annual baseflow exhibited mostly downward trends, but significant upward trends were also observed in 3 out of 38 gauging stations. Mean annual streamflow during 1979?2010 decreased by up to 65% across the catchments compared with the period of 1957?1978, indicating significant changes in the hydrological regime of the Loess Plateau. It is estimated that 70% of the streamflow reduction can be attributed to land use change, while the remaining 30% is associated with climate variability. Land use change because of the soil conservation measures and reduction in precipitation are the key drivers for the observed streamflow trends. These findings are consistent with results of previous studies for the region and appear to be reasonable given the accelerated level of the soil conservation measures implemented since the late 1970s. Changes in sea surface temperature in the Pacific Ocean, as indicated by variations in El Niño–Southern Oscillation and phase shifts of the Pacific Decadal Oscillation, appear to have also affected the annual streamflow trends. The framework described in this study shows promising results for quantifying the effects of land use change and climate variability on mean annual streamflow of catchments within the Loess Plateau. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Uruguay has encouraged the development of the forestry sector since 1989. As a member of the Montreal Process, the country has followed a set of criteria and indicators for the Sustainable Forest Management. The aim of this paper is to describe the studies carried out in a large basin of 2097 km2, located in an area of humid subtropical climate and 1300 mm of long‐term mean annual rainfall, where the conversion of natural grasslands to forests increased up to 540 km2 during the last 15 years. Using data from daily rainfall and streamflow, the study analyses the effects of afforestation on the runoff and water loss. The analysis comprises hydrographs resulting from comparable rainfall events and annual and seasonal streamflow and water loss behaviour, both before afforestation (1975–1993) and during the afforestation period (1994–2008). A statistically significant reduction of runoff volumes (33–43%) and peak flows (59–65%) were identified on storm hydrographs. The annual and seasonal streamflow also showed diminishing tendencies due to the forestry development, whereas the water loss increases. The annual streamflow decreased between 8·2 and 36·5% depending on the annual rainfall totals. The streamflow reduction was higher during spring and summer (25·2–38·4%) and smaller during autumn and winter (15–20·3%). The water loss is expected to increase by 98 mm for the long‐term mean annual rainfall. The resulting information is a valuable input for the Integrated Water Resources Management of the Negro river basin located downstream, where hydroelectric power, rice irrigation and forestry development are supported. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号