首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
ABSTRACT

The temporal dynamics of groundwater–surface water interaction under the impacts of various water abstraction scenarios are presented for hydraulic fracturing in a shale gas and oil play area (23 984.9 km2), Alberta, Canada, using the MIKE-SHE and MIKE-11 models. Water-use data for hydraulic fracturing were obtained for 433 wells drilled in the study area in 2013 and 2014. Modelling results indicate that water abstraction for hydraulic fracturing has very small (<0.35%) negative impacts on mean monthly and annual river and groundwater levels and stream and groundwater flows in the study area, and small (1–4.17%) negative impacts on environmental flows near the water abstraction location during low-flow periods. The impacts on environmental flow depend on the amount of water abstraction and the daily flow over time at a specific river cross-section. The results also indicate a very small (<0.35%) positive impact on mean monthly and annual groundwater contributions to streamflow because of the large study area. The results provide useful information for planning long-term seasonal and annual water abstractions from the river and groundwater for hydraulic fracturing in a large study area.  相似文献   

2.
Non-perennial streams comprise over half of the global stream network and impact downstream water quality. Although aridity is a primary driver of stream drying globally, surface flow permanence varies spatially and temporally within many headwater streams, suggesting that these complex drying patterns may be driven by topographic and subsurface factors. Indeed, these factors affect shallow groundwater flows in perennial systems, but there has been only limited characterisation of shallow groundwater residence times and groundwater contributions to intermittent streams. Here, we asked how groundwater residence times, shallow groundwater contributions to streamflow, and topography interact to control stream drying in headwater streams. We evaluated this overarching question in eight semi-arid headwater catchments based on surface flow observations during the low-flow period, coupled with tracer-based groundwater residence times. For one headwater catchment, we analysed stream drying during the seasonal flow recession and rewetting period using a sensor network that was interspersed between groundwater monitoring locations, and linked drying patterns to groundwater inputs and topography. We found a poor relationship between groundwater residence times and flowing network extent (R2 < 0.24). Although groundwater residence times indicated that old groundwater was present in all headwater streams, surface drying also occurred in each of them, suggesting old, deep flowpaths are insufficient to sustain surface flows. Indeed, the timing of stream drying at any given point typically coincided with a decrease in the contribution from near-surface sources and an increased relative contribution of groundwater to streamflow at that location, whereas the spatial pattern of drying within the stream network typically correlated with locations where groundwater inputs were most seasonally variable. Topographic metrics only explained ~30% of the variability in seasonal flow permanence, and surprisingly, we found no correlation with seasonal drying and down-valley subsurface storage area. Because we found complex spatial patterns, future studies should pair dense spatial observations of subsurface properties, such as hydraulic conductivity and transmissivity, to observations of seasonal flow permanence.  相似文献   

3.
《水文科学杂志》2013,58(6):1051-1064
Abstract

Dongjiang water has been the key source of water supplies for Hong Kong and its neighbouring cities in the Pearl River Delta in South China since the mid-1960s. Rapid economic development and population growth in this region have caused serious concerns over the adequacy of the quantity and quality of water withdrawn from the Dongjiang River in the future. Information on the magnitude and frequency of low flows in the basin is needed for planning of water resources at present and in the near future. The L-moment method is used to analyse the regional frequency of low flows, since recent studies have shown that it is superior to other methods that have been used previously, and is now being adopted by many organizations worldwide. In this study, basin-wide analysis of low flows is conducted for Dongjiang basin using five distributions: generalized logistic, generalized extreme value, lognormal, Pearson type III and generalized Pareto. Each of these has three parameters estimated by the L-moment method. The discordancy index and homogeneity testing show that 14 out of the 16 study sites belong to a homogenous region; these are used for further analysis. Based on the L-moment ratios diagram, the Hosking and Wallis goodness-of-fit statistical criterion and the L-kurtosis criterion, the three-parameter lognormal distribution is identified as the most appropriate distribution for the homogeneous study region. The regional low-flow estimates for each return period are obtained using the index flood procedure. Examination of the observed and simulated low flows by regional frequency analysis shows a good agreement in general, and the results may satisfy practical application. Furthermore, the regional low-flow relationship between mean annual 7-day low flows and basin area is developed using linear regression, providing a simple and effective method for estimation of low flows of desired return periods for ungauged catchments.  相似文献   

4.
Novel modelling was utilised in the present study to reveal significant relationships between the abundance of the Australian freshwater stream-specialist fish Galaxias olidus and metrics defining flow regimes across a region dominated by temporary streams. It was revealed that increases in total abundance were linked to metrics (both 1- and 3-year periods) that indicate greater water availability and the persistence of water in pools across the year, namely the average duration of zero-flow days over the low-flow season (negatively) and total duration of bankfull flows across the year (positively). The analysis identified 3-year metrics as being more important to the abundance of 0+ fish rather than annual ones. Taken together, these findings describing the flow requirements of a stream specialist will help to guide implementation of environmental flows, but will also highlight the need for continued exploration of flow–ecology relationships.  相似文献   

5.
Average velocity in streams is a key variable for the analysis and modelling of hydrological and hydraulic processes underpinning water resources science and practice. The present study evaluates the impact of the sampling duration on the quality of average velocity measurements acquired with contemporary instruments such as Acoustic Doppler Velocimeters (ADV) an Acoustic Doppler Current Profilers (ADCP). The evaluation combines considerations on turbulent flows and principles and configurations of acoustic instruments with practical experience in conducting customized analysis for uncertainty analysis purposes. The study sheds new insights on the spatial and temporal variability of the uncertainty in the measurement of average velocities due to variable sampling durations acting in isolation from other sources of uncertainties. Sampling durations of 90 and 150 s are found sufficient for ADV and ADCP, respectively, to obtain reliable average velocities in a flow affected only by natural turbulence and instrument noise. Larger sampling durations are needed for measurements in most of the natural streams exposed to additional sources of data variability.  相似文献   

6.
Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes‐St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.  相似文献   

7.
Inflow of nine reservoirs in the Liao River basin, China, is used to analyse the concurrence of high/low flows, and also the ecological instream flow. The results indicate that the general extreme value distribution model performs well in describing the probabilistic behaviour of high/low flows in the basin. Specifically, the Gumbel and Frank copula functions perform better than other functions. Reservoir inflow encounter series are subject to high synchronous concurrence, at greater than 27% for low flow vs low flow. Thus, the water supply system of the basin is not steady. The ecological instream flow can be analysed by a monthly frequency computation method, with 90% guarantee rate. The low-flow periods are January, February and May, and water transfers are not feasible in these periods. Thus, external sources of water are urgently needed to guarantee sufficient water supply to provide critical water resources and to protect important aquatic environments.  相似文献   

8.
The extent and variability of water storage and residence times throughout the open water season in beaded arctic streams are poorly understood. Data collected in Imnavait Creek, a beaded stream located north of the Brooks Range in Alaska, were used to better understand the effects of in‐pool and riparian storage on heat and mass movement through beaded streams. Temperature data of high spatial resolution within the pools and surrounding sediments were used with volumetric discharge and electrical conductivity to identify storage areas within the pools, banks, and other marshy areas within the riparian zone, including subsurface flow paths that connect the pools. These subsurface flows were found to alter water conductivity and the character of dissolved organic matter (DOM) in short reaches (10 s of m) while influencing the chemistry of downstream pools. During low flow periods, persistent stratification occurred within the pools due to absorption of solar radiation by DOM coupled with permafrost below and low wind stress at the pool surface. Additionally, one of the shallow pools (<0.5 m depth) remained stratified during higher flow periods and lower radiation inputs due to dense subsurface flows entering the bottom of the pools. This consistent separation of surface and bottom water masses in each pool will increase the travel times through this and similar arctic watersheds, and therefore will affect the evolution of water chemistry and material export. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Tom Myers 《Ground water》2012,50(6):872-882
Hydraulic fracturing of deep shale beds to develop natural gas has caused concern regarding the potential for various forms of water pollution. Two potential pathways—advective transport through bulk media and preferential flow through fractures—could allow the transport of contaminants from the fractured shale to aquifers. There is substantial geologic evidence that natural vertical flow drives contaminants, mostly brine, to near the surface from deep evaporite sources. Interpretative modeling shows that advective transport could require up to tens of thousands of years to move contaminants to the surface, but also that fracking the shale could reduce that transport time to tens or hundreds of years. Conductive faults or fracture zones, as found throughout the Marcellus shale region, could reduce the travel time further. Injection of up to 15,000,000 L of fluid into the shale generates high pressure at the well, which decreases with distance from the well and with time after injection as the fluid advects through the shale. The advection displaces native fluids, mostly brine, and fractures the bulk media widening existing fractures. Simulated pressure returns to pre‐injection levels in about 300 d. The overall system requires from 3 to 6 years to reach a new equilibrium reflecting the significant changes caused by fracking the shale, which could allow advective transport to aquifers in less than 10 years. The rapid expansion of hydraulic fracturing requires that monitoring systems be employed to track the movement of contaminants and that gas wells have a reasonable offset from faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号