首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The linear stability of a non-divergent barotropic parallel shear flow in a zonal and a non-zonal channel on the β plane was examined numerically. When the channel is non-zonal, the governing equation is slightly modified from the Orr-Sommerfeld equation. Numerical solutions were obtained by solving the discretized linear perturbation equation as an eigenvalue problem of a matrix. When the channel is zonal and lateral viscosity is neglected the problem is reduced to the ordinary barotropic instability problem described by Kuo's (1949) equation. The discrepancy between the stability properties of westward and eastward flows, which have been indicated by earlier studies, was reconfirmed. It has also been suggested that the unstable modes are closely related to the continuous modes discretized by a finite differential approximation. When the channel is non-zonal, the properties of unstable modes were quite different from those of the zonal problem in that: (1) The phase speed of the unstable modes can exceed the maximum value of the basic flow speed; (2) The unstable modes are not accompanied by their conjugate mode; and (3) The basic flow without an inflection point can be unstable. The dispersion relation and the spatial structure of the unstable modes suggested that, irrespective of the orientation of the channel, they have close relation to the neutral modes (Rossby channel modes) which are the solutions in the absence of a basic shear flow. The features mentioned above are not dependent on whether or not the flow velocity at the boundary is zero.  相似文献   

2.
Abstract

The weakly nonlinear evolution of a free baroclinic wave in the presence of slightly supercritical, vertically sheared zonal flow and a forced stationary wave field that consists of a single zonal scale and an arbitrary number of meridional harmonics is examined within the context of the conventional two-layer model. The presence of the (planetary-scale) stationary wave introduces zonal variations in the supercriticality and is shown to alter the growth rate and asymptotic equilibrium of the (synoptic-scale) baroclinic wave via two distinct mechanisms: The first is due to the direct interaction of the stationary wave with the shorter synoptic wave (wave-wave mechanism), and the second is due to the interaction of the synoptic wave with that portion of the mean field that is corrected by the zonally rectified stationary wave fluxes (wave-mean mechanism). These mechanisms can oppose or augment each other depending on the amplitude and spatial structure of the stationary wave field. If the stationary wave field is confined primarily to the upper (lower) layer and consists of only the gravest cross-stream mode, conditions are favorable (unfavorable) for nonzero equilibrium of the free wave.

In addition to the time dependent heat flux generated by baroclinic growth of the free wave, its interaction with a stationary wave field consisting of two or more meridional harmonics generates time dependent heat fluxes that vary with period of the free wave. However, if the stationary wave field contains several meridional harmonics of sufficiently large amplitude, the free baroclinic wave is destroyed.  相似文献   

3.
Barotropic-Baroclinic instability of horizontally and vertically shearing mean monsoon flow during July is investigated numerically by using a 10-layer quasi-geostrophic model. The most unstable mode has a wavelength of about 3000 km and westward phase speed of about 15 m sec–1. The most dominant energy conversion is from zonal kinetic energy to eddy kinetic energy. The structure of the most unstable mode is such that the maximum amplitude is concentrated at about 150 mb and the amplitude at the lowest layers is negligibly small. Barotropic instability of the zonal flow at 150 mb seems to be the primary excitation mechanism for the most unstable mode which is also similar to the observed westward propagating waves in the upper troposphere during the monsoon season. The results further suggest that Barotropic-Baroclinic instability of the mean monsoon flow cannot explain the occurrence of monsoon depressions which have their maximum amplitude at the lower levels and are rarely detected at 200 mb.  相似文献   

4.
The adiabatic, quasi-geostraphic, 25-layer, numerical, linear model with Ekman boundary layer friction is utilised to perform the baroclinic stability analysis of the mean monsoon zonal wind profile. It is shown thec i is a function of the resultant wavenumber alone. This relation is able to explain the effects of the lateral walls on the unstable waves.The energetics and zonal plane distribution of the short and long preferred viscous waves are computed. The upward motion of the short wave together with the warm (cold) core lies to the west of the surface trough position above (below) 850 mb. Further, it is shown that the main source of kinetic energy for the wave lies in the middle layer (850–700 mb) which is transported to the lower and upper layers. Computed is found to be in good agreement with observed values.  相似文献   

5.
We discuss the form-drag instability for a quasi-geostrophic channel flow. We first study the characteristics of this instability in a barotropic flow, considering in detail the influence of the meridional scale and discussing which structure of the perturbation zonal flow must be chosen in order to describe properly this instability.We then consider a continuous quasi-geostrophic channel model in which the topography enters only through the bottom boundary condition, and we discuss how in this case the effects of the form-drag are felt by the mean zonal flow through the ageostrophic mean meridional circulation. Because the meridional structure of the perturbation zonal flow cannot simply be extended from the barotropic to the continuous case, we show how to modify it properly.We then study the baroclinic model in the particular case of constant (in the vertical) basic-state zonal flow and show how this case closely resembles the barotropic, demonstrating the barotropic nature of the form-drag instability.Symbols t is the partial derivative with respect tot. - x is the partial derivative with respect tox. - y is the partial derivative with respect toy. - represents the geostrophic stream function. - u is the eastward component of the geostrophic wind. - v is the northward component of the geostrophic wind. - u a is the eastward component of the ageostrophic wind. - v a is the northward component of the ageostrophic wind. - w is the vertical component of the wind. - f is the Coriolis parameter=2 sin f o+y. - f o is the Coriolis parameter evaluated at mid-latitude. - N is the Brunt-Vaisala frequency. - [A] is the zonal (x) average ofA at constantp andy. - <A> is the horizontal (x andy) average ofA at constantp  相似文献   

6.
Abstract

Numerical simulations of thermal convection in a rapidly rotating spherical fluid shell heated from below and within have been carried out with a nonlinear, three-dimensional, time-dependent pseudospectral code. The investigated phenomena include the sequence of transitions to chaos and the differential mean zonal rotation. At the fixed Taylor number T a =106 and Prandtl number Pr=1 and with increasing Rayleigh number R, convection undergoes a series of bifurcations from onset of steadily propagating motions SP at R=R c = 13050, to a periodic state P, and thence to a quasi-periodic state QP and a non-periodic or chaotic state NP. Examples of SP, P, QP, and NP solutions are obtained at R = 1.3R c , R = 1.7 R c , R = 2R c , and R = 5 R c , respectively. In the SP state, convection rolls propagate at a constant longitudinal phase velocity that is slower than that obtained from the linear calculation at the onset of instability. The P state, characterized by a single frequency and its harmonics, has a two-layer cellular structure in radius. Convection rolls near the upper and lower surfaces of the spherical shell both propagate in a prograde sense with respect to the rotation of the reference frame. The outer convection rolls propagate faster than those near the inner shell. The physical mechanism responsible for the time-periodic oscillations is the differential shear of the convection cells due to the mean zonal flow. Meridional transport of zonal momentum by the convection cells in turn supports the mean zonal differential rotation. In the QP state, the longitudinal wave number m of the convection pattern oscillates among m = 3,4,5, and 6; the convection pattern near the outer shell has larger m than that near the inner shell. Radial motions are very weak in the polar regions. The convection pattern also shifts in m for the NP state at R = 5R c , whose power spectrum is characterized by broadened peaks and broadband background noise. The convection pattern near the outer shell propagates prograde, while the pattern near the inner shell propagates retrograde with respect to the basic rotation. Convection cells exist in polar regions. There is a large variation in the vigor of individual convection cells. An example of a more vigorously convecting chaotic state is obtained at R = 50R c . At this Rayleigh number some of the convection rolls have axes perpendicular to the axis of the basic rotation, indicating a partial relaxation of the rotational constraint. There are strong convective motions in the polar regions. The longitudinally averaged mean zonal flow has an equatorial superrotation and a high latitude subrotation for all cases except R = 50R c , at this highest Rayleigh number, the mean zonal flow pattern is completely reversed, opposite to the solar differential rotation pattern.  相似文献   

7.
Abstract

The normal mode instability of harmonic waves in an ideal incompressible fluid on a rotating sphere is analytically studied. By the harmonic wave is meant a Legendrepolynomial flow αPn(μ) (n ≥ 1) and steady Rossby-Haurwitz wave of set F 1 ⊕ Hn where Hn is the subspace of homogeneous spherical polynomials of the degree n(n ≥ 2), and F 1 is the one-dimensional subspace generated by the Legendre-polynomial P1(μ). A necessary condition for the normal mode instability of the harmonic wave is obtained. By this condition, Fjörtoft's (1953) average spectral number of the amplitude of each unstable mode must be equal to . It is noted that flow αPn (μ) is Liapunov (and hence, exponentially and algebraically) stable to all the disturbances whose zonal wavenumber m satisfies condition |m| ≥ n. The bounds of the growth rate of unstable normal modes are estimated as well. It is also shown that the amplitude of each unstable, decaying or non-stationary mode is orthogonal to the harmonic wave.

The new instability condition can be useful in the search of unstable perturbations to a harmonic wave and on trials of numerical stability study algorithms. For a Legendre-polynomial flow, it complements Kuo's (1949) condition in the sense that while the latter is related to the basic flow structure; the former characterizes the structure of a growing perturbation.  相似文献   

8.
ABSTRACT

The instability of ideal non-divergent zonal flows on the sphere is determined numerically by the instability criterion of Arnold (Ann. Inst. Fourier 1966, 16, 319) for the sectional curvature. Zonal flows are unstable for all perturbations besides for a small set which are in approximate resonance. The planetary rotation is stable and the presence of rotation reduces the instability of perturbations.  相似文献   

9.
Abstract

A class of long planetary waves in a zonal channel analogous to the solitary and cnoidal waves of surface and internal gravity wave theory is discussed. On a mid-latitude β-plane, such waves exist as the result of divergence, non-uniform zonal velocity fields or bottom topography. In all cases studied the wave profile along the channel was found to satisfy the Korteweg-de Vries equation.  相似文献   

10.
Abstract

Some symmetries of the stability characteristies of a baroclinic zonal current are found, the basic state being that of the non-geostrophic Eady problem. In particular, they lead to a principle of exchange of stabilities.  相似文献   

11.
12.
Abstract

A high vertical resolution model is used to examine the instability of a baroclinic zonal flow and a finite amplitude topographically forced wave. Two families of unstable modes are found, consisting of zonally propagating most unstable modes, and stationary unstable modes. The former have time scale and spatial structure similar to baroclinic synoptic disturbances, but are localized in space due to interaction with the zonally asymmetric forcing. These modes transport heat efficiently in both the zonal and meridional directions. The second family of stationary unstable modes has characteristics of modes of low frequency variability of the atmosphere. They have time scales of 10 days and longer, and are of planetary scale with an equivalent barotropic vertical structure. The horizontal structure resembles blocking flows. They are maintained by available potential energy of the basic wave, and have large zonal heat fluxes. The results for both families of modes are interpreted in terms of an interaction between forcing and baroclinic instability to create favoured regions for eddy development. Applications to baroclinic planetary waves are also considered.  相似文献   

13.
Abstract

A study is made of the nonlinear stability of a weakly supercritical zonal shear flow in the β-plane approximation. The dynamics of initially small disturbances are examined. The main nonlinear effects are associated with the rearrangement of the critical layer. It is shown that as the wave grows in amplitude, linear regimes of the critical layer (viscous and nonstationary) change over to a nonlinear regime while the exponential law of disturbance growth becomes a power-law.  相似文献   

14.
Abstract

In order to derive general zonal flux expressions this paper deals with the influence of slow (Ωτ<1) rotation on highly anisotropic stochastic motions. The radial and latitudinal fluxes of angular momentum are derived and depend on two spectral functions. The results are applied to the often used example of spatially periodic correlations, i.e., to one-mode spectra. The zonal fluxes in this case can be expressed as combinations of the intensities of the three velocity components and the wave number vector. Specializing these quantities to the cases discussed in the literature. we are able to reproduce previously published results. Moreover, after a replacement of the ensemble averages by those over the longitudinal coordinate, fluxes result which hare been derived for non-axisymmetric modes with l=m. Thus, a fairly complete account is given of results published in this field up to the present.  相似文献   

15.
Abstract

It is demonstrated in laboratory experiments with rotating shallow water that large scale Rossby vortices, greater than the Rossby-Obukhov radius in size, have dispersive and non-linear properties that are fundamentally different for the two possible polarities. We call this “cyclonic-anticyclonic asymmetry”. This asymmetry manifests itself in the following way: first, anticylones, unlike cyclones, do not undergo the dispersive spreading inherent in a linear wave packet. and therefore, having a considerably longer natural lifetime, are obvious candidates for Rossby solitons; second, dipolar vortices are, because of the comparatively rapid decay of a cyclone, transformed into anticyclonic solitons; third, anticyclones are much more readily generated by zonal flows of the type existing in planetary atmospheres. The evident dominance of anticyclones amongst the long-lived vortices in the atmospheres of giant planets strongly suggests that the cyclonic-anticyclonic symmetry plays a decisive role in the atmospheric cyclogenesis of large planets.

According to our concept, the Rossby soliton is a “real” vortex; unlike a wave, it retains some fluid particles within it throughout its lifetime. Two similar solitons can merge by mutual collisions. This picture of a “vortical” soliton differs in an essential way from the earlier idea due to Maxworthy and Redekopp (1976) of purely “wave-like” Rossby solitons that can freely pass through one another.

Laboratory experiments were performed by us to simulate the new Rossby solition, with special reference to naturally-occurring vortices of the same general type as Jupiter's great red spot. The experimental data presented contradict the idea of “pure wave solitons” but confirm our concept of “vortical solutions”.  相似文献   

16.
The role of barotropic processes in the development of a monsoon depression, formed on 5 July 1979 during MONEX observational period, is studied by considering it as a quasi-geostrophic divergent barotropic instability problem of zonal flow of 3 July 1979 at 700 mb level. Numerical solutions are obtained by initial value approach. The preferred wave has a wavelength of 2750 km, an e-folding time of 4.3 days, a period of 6.5 days and an eastward phase speed of 4.9 ms–1. Structure of preferred wave is found to be in good agreement with the observed horizontal structure of the depression at 700 mb. Poleward momentum transports are found to predominate over equatorward transports.Parts of this paper were presented at the National Symposium on Early Results of MONEX-1979. 9–12 March 1981, in New Delhi, India.  相似文献   

17.
Abstract

The interaction of a mean flow with a random fluctuation field is considered. This interaction is described by the averaged Navier-Stokes equation in which terms nonlinear in the fluctuation field are expressed in terms of the mean flow and the statistical properties of the fluctuation field, which is assumed to be homogeneous, isotropic, and helical. Averaged equations are derived using a functional technique. These equations are solved for a mean background flow that depends linearly on the position vector. The solutions show that large-scale vortices may arise in this system.  相似文献   

18.
Summary In this article, we present a scale analysis of planetary waves, extended long waves, and long waves. (We mean the extended long waves to be the disturbances whose east-west length is of order 106 m and north-south extension 107 m). We find for the extended long waves the two terms, the interaction between kinetic and available potential energy of the disturbances, and the interaction between the zonal mean available potential energy, and the eddy available potential energy, are of two orders of magnitude larger than the kinetic energy interaction between the disturbances and the associated zonal mean flow. This theoretical result concerning the relative importance of the various interaction terms may be of use in explaining the observational findings thus far available.It is also shown theoretically that the kinetic energy interaction between the planetary waves, the horizontal size of which is 107 m, and the long waves, whose horizontal size is 106 m, is of the same order as the interaction of kinetic energy between the zonal mean motion and the disturbances. This agrees fairly well with the observational estimates thus far obtained.  相似文献   

19.
Abstract

This paper analyzes the linear stability of a rapidly-rotating, stratified sheet pinch in a gravitational field, g, perpendicular to the sheet. The sheet pinch is a layer (O ? z ? d) of inviscid, Boussinesq fluid of electrical conductivity σ, magnetic permeability μ, and almost uniform density ρ o; z is height. The prevailing magnetic field. B o(z), is horizontal at each z level, but varies in direction with z. The angular velocity, Ω, is vertical and large (Ω ? VA/d, where VA = B0√(μρ0) is the Alfvén velocity). The Elsasser number, Λ = σB2 0/2Ωρ0, measures σ. A (modified) Rayleigh number, R = gβd20V2 A, measures the buoyancy force, where β is the imposed density gradient, antiparallel to g. A Prandtl number, PK = μσK, measures the diffusivity, k, of density differences.  相似文献   

20.
Abstract

Broad band secondary instability of elliptical vortex motion has been proposed as a principal source of shear-flow turbulence. Here experiments on such instability in an elliptical flow with no shear boundary layer are described. This is made possible by the mechanical distortion in the laboratory frame of a rotating fluid-filled elastic cylinder. One percent ellipticity of a 10 cm diameter cylinder rotating once each second can give rise to an exponentially-growing mode stationary in the laboratory frame. In first order this mode is a sub-harmonic parametric Faraday instability. The finite-amplitude equations represent angular momentum transfer on an inertial time scale due to Reynolds stresses. The growth of this mode is not limited by boundary friction but by detuning and centrifugal stabilization. On average, a generalized Richardson number achieves a marginal value through much of the evolved flow. However, the characteristic flow is intermittent with the cycle: rapid growth, stabilizing momentum transfer from the mean flow, interior re-spin up, and then again. Data is presented in which, at large Reynolds numbers, seven percent ellipticity causes a fifty percent reduction in the kinetic energy of the rotating fluid. In the geophysical setting, this tidal instability in the earth's interior could be inhibited by sub-adiabatic temperature gradients. A near adiabatic region greater than 10 km in height would permit the growth of tidally destabilized modes and the release of energy to three-dimensional disturbances. Such disturbances might play a central role in the geodynamo and add significantly to overall tidal dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号