首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
The problem of weakly nonlinear stability with respect to large-scale perturbations in 3-D convective magnetohydrodynamic (MHD) states in which the α-effect is absent or insignificant (e.g., because the system has symmetry relative to a center or a vertical axis) is examined. It is assumed that the MHD state whose stability is studied is free from large spatiotemporal scales and is insensitive to perturbations with the same small spatial scale as in the state under study. The equations for mean perturbation fields derived by asymptotic methods generalize the standard equations of magnetohydrodynamics (the Navier-Stokes and magnetic induction equations). A combined eddy diffusion operator, generally anisotropic and not necessarily negative definite, and additional quadratic terms similar to advective terms arise in the inferred generalized equations.  相似文献   

2.
Abstract

An attempt has been made to include the axially asymmetric velocities into the calculation of Braginsky's Z-model of the nearly symmetric hydromagnetic dynamo. In this axisymmetric non-linear model dominated by Lorentz and Coriolis forces and maintained by a specified convection, the α-effect is prescribed. An example is shown of the axially asymmetric Archimedean buoyancy, which can imply an arbitrary alpha effect in the model with viscous core-mantle coupling. The formalisms of Tough and Roberts (1968) is also discussed and a modified α-effect in the Z-model is suggested.  相似文献   

3.
Mean-field theory describes magnetohydrodynamic processes leading to large-scale magnetic fields in various cosmic objects. In this study magnetoconvection and dynamo processes in a rotating spherical shell are considered. Mean fields are defined by azimuthal averaging. In the framework of mean-field theory, the coefficients which determine the traditional representation of the mean electromotive force, including derivatives of the mean magnetic field up to the first order, are crucial for analyzing and simulating dynamo action. Two methods are developed to extract mean-field coefficients from direct numerical simulations of the mentioned processes. While the first method does not use intrinsic approximations, the second one is based on the second-order correlation approximation. There is satisfying agreement of the results of both methods for sufficiently slow fluid motions. Both methods are applied to simulations of rotating magnetoconvection and a quasi-stationary geodynamo. The mean-field induction effects described by these coefficients, e.g., the α-effect, are highly anisotropic in both examples. An α2-mechanism is suggested along with a strong γ-effect operating outside the inner core tangent cylinder. The turbulent diffusivity exceeds the molecular one by at least one order of magnitude in the geodynamo example. With the aim to compare mean-field simulations with corresponding direct numerical simulations, a two-dimensional mean-field model involving all previously determined mean-field coefficients was constructed. Various tests with different sets of mean-field coefficients reveal their action and significance. In the magnetoconvection and geodynamo examples considered here, the match between direct numerical simulations and mean-field simulations is only satisfying if a large number of mean-field coefficients are involved. In the magnetoconvection example, the azimuthally averaged magnetic field resulting from the numerical simulation is in good agreement with its counterpart in the mean-field model. However, this match is not completely satisfactory in the geodynamo case anymore. Here the traditional representation of the mean electromotive force ignoring higher than first-order spatial derivatives of the mean magnetic field is no longer a good approximation.  相似文献   

4.
The dynamics of the Earth's core are dominated by a balance between Lorentz and Coriolis forces. Previous studies of possible (magnetostrophic) hydromagnetic instabilities in this regime have been confined to geophysically unrealistic flows and fields. In recent papers we have treated rather general fields and flows in a spherical geometry and in a computationally simple plane-layer model. These studies have highlighted the importance of differential rotation in determining the spatial structure of the instability. Here we have proceeded to use these results to construct a self-consistent dynamo model of the geomagnetic field. An iterative procedure is employed in which an α-effect is calculated from the form of the instability and is then used in a mean field dynamo model. The mean zonal field calculated there is then input back into the hydromagnetic stability problem and a new α-effect calculated. The whole procedure is repeated until the input and output zonal fields are the same to some tolerance.  相似文献   

5.
The problem of weakly nonlinear stability of 3-D centrally symmetric magnetohydrodynamic systems to perturbations involving large scales is considered. It is assumed that large space-time scales are absent in the magnetohydrodynamic state under study, which is stable with respect to perturbations whose scales are as small as those of the state itself. Equations derived by asymptotic methods for average fields of perturbations generalize the Navier-Stokes and magnetic induction equations. They include a combined eddy diffusion operator, generally anisotropic and not necessarily negative definite, and additional quadratic terms. An effective method is proposed for the calculation of coefficients of eddy diffusion and advection in equations governing average fields.  相似文献   

6.
Abstract

Latitude behavior of the boundary α-effect based on reflection of hydromagnetic waves from the Core-Mantle Boundary (CMB) studied earlier by Anufriev (1991), is discussed. Its form given in Figure 2 is in good agreement with that used in model-Z of Braginsky. We want to emphasize the following main features of our α-effect which resemble those of Braginsky: concentration near the boundary, sign-changing of α in the layer and geometrical behavior. The last includes the vanishing of α near the poles and the equator which is characteristic for Braginsky's α-effect. It is also shown that for Magnetic Reynolds Number of order 100 the amplitude of the α-effect and the thickness of the α-layer is of the order of those used in model-Z.  相似文献   

7.
Abstract

A theory of the non-diffusive anisotropic kinetic alpha-effect (“Γ-effect”) for densitystratified rotating turbulent fluids is developed. No limitations on the rotation rate are imposed and the fully nonlinear dependence of the Γ-effect on the angular velocity is studied. When the Coriolis number, ω? = 2τ ω, is small the dimensionless “dynamo number”, Cτ, characterising the power of the Γ-effect, grows with ω?. The dependence, however, reaches a maximum for ω? ~ 2. For still higher rotation rates CΛ decreases as 1/ω?. In opposition, the corresponding number, Cx, of the hydromagnetic α2 -dynamo problems remains finite for very large ω?. Hence, for fast rotation the hydrodynamic Γ-effect is small while the hydromagnetic α-effect remains large. In consequence, the large-scale magnetic and velocity structures are expected to be generated with roughly equal power in slowly rotating objects. In the rapid rotators, however, generation of the large-scale flows is problematic.  相似文献   

8.
Summary Following the pattern established in meteorology, a system of energy balance equations for the solar atmosphere is presented. Since both hydromagnetic and thermodynamic processes are considered, the system includes kinetic, potential, thermal and magnetic forms of energy. Ionization energy is indirectly included in the treatment. The spatial distribution of the energy forms and the processes transforming them are separated into zonal means and departures from such means in order to depict turbulent eddy effects. Where available data concerning solar processes are used in order to appraise certain of the terms which arise.  相似文献   

9.
The meridional circulation plays an essential role in determining the basic mechanism of the dynamo action in the case of a low eddy diffusivity. Flux-transport dynamos with strong return flow and a deep stagnation point are discussed in the case of a positive α-effect located in the overshoot layer and a rotation law consistent with helioseismology. By means of a linear dynamo model, it will be shown that the migration of the toroidal belts at lower latitudes and the periods of the activity cycles are consistent with the observations. Moreover, at variance with previous investigations, the typical critical dynamo numbers of dipolar solutions are significantly smaller than those of quadrupolar solutions even in the regime of strong flow.  相似文献   

10.
The linear magnetoconvection in the rotating uniformly as well as non-uniformly stratified horizontal layer with azimuthal magnetic field is investigated for the various mechanical and electrical boundary conditions and especially, for various values of Roberts number. The developed diffusive perturbations (modes) are strongly influenced not only by the mentioned properties of boundaries but also by complicated coupling of viscous, thermal and magnetic diffusive processes. The mean electromotive force produced by developed hydromagnetic instabilities is also investigated to determine the hydromagnetic processes which are appropriate for -effect. The presented paper is an unification of hitherto published results of the authors and gives a short survey of many developments of corresponding model by Soward (1979).  相似文献   

11.
In geodynamo simulations which simulate the generation of an axial dipolar magnetic field, the generation mechanism appears to be adequately described as an α2-dynamo with an anisotropic α-effect. The anisotropy in the α-effect favors an equatorial dipole field, however, which calls into question the interpretation in terms of an α2-dynamo. It is shown in this article with kinematic dynamo calculations and exemplary velocity fields with an anisotropic α-effect that both types of dipolar magnetic field can be generated. Two examples of working dynamos in a sphere with flows with zero α-effect are also provided.  相似文献   

12.
Abstract

The mean-field effects of cyclonic convection become increasingly complex when the cyclonic rotation exceeds ½-π. Net helicity is not required, with negative turbulent diffusion, for instance, appearing in mirror symmetric turbulence. This paper points out a new dynamo effect arising in convective cells with strong asymmetry in the rotation of updrafts as against downdrafts. The creation of new magnetic flux arises from the ejection of reserve flux through the open boundary of the dynamo region. It is unlike the familiar α-effect in that individual components of the field may be amplified independently. Several formal examples are provided to illustrate the effect. Occurrence in nature depends upon the existence of fluid rotations of the order of π in the convective updrafts. The flux ejection dynamo may possibly contribute to the generation of field in the convective core of Earth and in the convective zone of the sun and other stars.  相似文献   

13.
Parker’s two-dimensional (2D) dynamo model with an algebraic form of nonlinearity for the α-effect is considered. The model uses geostrophic distributions for the α-effect and differential rotation, which are derived from the three-dimensional (3D) convection models. The resulting configurations of the magnetic field in the liquid core are close to the solutions in Braginsky’s Z-model. The implications of the degree of geostrophy observed in the 3D dynamo models for the behavior of the mean magnetic field are explored. It is shown that the reduction in geostrophy leads to magnetic field reversals accompanied by the relative growth of the nondipole component of the field on the surface of the liquid core. The simulations with a random α-effect which causes turbulent pulsations are carried out. The approach is capable of producing realistic sequences of magnetic reversals.  相似文献   

14.
Abstract

The full Boussinesq equations for hydromagnetic convection are derived and shown to include the effects of magnetic buoyancy. Instabilities caused by magnetic buoyancy are analyzed and their roles in double convection are brought out.  相似文献   

15.
16.
Abstract

First the exact numerical solutions of DIA system of equations describing the transportation of magnetic field in an infinite medium are presented. It is assumed that the turbulence is stationary, homogeneous, isotropic and incompressible. The spectra of turbulence of δ-type and Kolmogorov's type were used. The steady state values of magnetic field diffusivity DT and the α-effect coefficient α T were calculated for various values of space-scale and lifetimes of these spectra and the spectra of helicity. Also investigated is the dependence of DT and α T on the degree of helicity. The corrections to the α T -coefficient due to the contribution of four-order velocity correlators are given. The results are compared with those due to the self-consistent technique.  相似文献   

17.
We investigate instability of convective flows of simple structure (rolls, standing and travelling waves) in a rotating layer with stress-free horizontal boundaries near the onset of convection. We show that the flows are always unstable to perturbations, which are linear combinations of large-scale modes and short-scale modes, whose wave numbers are close to those of the perturbed flows. Depending on asymptotic relations of small parameters α (the difference between the wave number of perturbed flows and the critical wave number for the onset of convection) and ε (ε2 being the overcriticality and the perturbed flow amplitude being O(ε)), either small-angle or Eckhaus instability is prevailing. In the case of small-angle instability for rolls the largest growth rate scales as ε8/5, in agreement with results of Cox and Matthews (Cox, S.M. and Matthews, P.C., Instability of rotating convection. J. Fluid. Mech., 2000, 403, 153–172) obtained for rolls with k = k c . For waves, the largest growth rate is of the order ε4/3. In the case of Eckhaus instability the growth rate is of the order of α2.  相似文献   

18.
Abstract

The paper explores some of the many facets of the problem of the generation of magnetic fields in convective zones of declining vigor and/or thickness. The ultimate goal of such work is the explanation of the magnetic fields observed in A-stars. The present inquiry is restricted to kinematical dynamos, to show some of the many possibilities, depending on the assumed conditions of decline of the convection. The examples serve to illustrate in what quantitative detail it will be necessary to describe the convection in order to extract any firm conclusions concerning specific stars.

The first illustrative example treats the basic problem of diffusion from a layer of declining thickness. The second adds a buoyant rise to the field in the layer. The third treats plane dynamo waves in a region with declining eddy diffusivity, dynamo coefficient, and large-scale shear. The dynamo number may increase or decrease with declining convection, with an increase expected if the large-scale shear does not decline as rapidly as the eddy diffusivity. It is shown that one of the components of the field may increase without bound even in the case that the dynamo number declines to zero.  相似文献   

19.
Linear magnetoconvection in a model of a non-uniformly stratified horizontal rotating fluid layer with a toroidal magnetic field is investigated for no-slip and finitely electrically conductive boundaries and with very thin stably stratified upper sublayer. The basic parabolic temperature profile is determined by the temperature difference between the boundaries and by the homogeneous heat source distribution in the layer. This results in a density pattern, in which a stably stratified upper sublayer is present. The developed diffusive perturbations (modes) are strongly affected by the complicated coupling of viscous, thermal and magnetic diffusive processes. The calculations were performed for various values of Roberts number (q ≪ 1 and q = O(1)). The mean electromotive force produced by the developed hydromagnetic instabilities is investigated to find the modes, which can be appropriate for creating the α-effect. It was found that the azimuthal part of the EMF is dominant for westward modes when the Elsasser number Λ ≲ O(1).  相似文献   

20.
Abstract

A new model of convection and mixing is presented. The fluid is envisioned as being composed of two buoyant interacting fluids, called thermals and anti-thermals. In the context of the Boussinesq approximation, pairs of governing equations are derived for thermals and anti-thermals. Each pair meets an Invariance Principle as a consequence of the reciprocity in the roles played by thermals and anti-thermals. Each pair is transformed into an average equation for which interaction terms cancel and another very simple equation linking the two fluid properties. An important parameter of the model is the fraction, f, of area occupied by thermals to the total area. A dynamic saturation equilibrium between thermals and antithermals is assumed. This implies a constant values of f throughout the system. The set of equations is written in terms of mean values and root-mean-square fluctuations, in keeping with equations of turbulence theories. The final set consists of four coupled non-linear differential equations. The model neglects dissipation and can be applied to any convective situations where molecular viscosity and diffusivity may be neglected. Applications of the model to mixed-layer deepening and penetrative convection are presented in subsequent papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号