首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Abstract

This paper examines the detailed E 1/4-layer structure of separated flow past a circular cylinder in a low-Rossby-number rotating fluid as the Ekman number E tends to zero. This structure is based on an initial proposal by Page (1987) but with some modifications in response to further evidence, outlined both in this paper and elsewhere, on the behaviour of E 1/4-layer flows in this context. Numerical calculations for flow in an E 1/4 shear layer along the separated free streamline are described and the mass flux from this layer is then used to calculate the higher-order flow within the separation bubble. The flow structure is found to have two forms, depending on the value of the O(1) parameter λ, and these are compared with results from published “Navier-Stokes” type calculations for the flow at small but finite values of E.  相似文献   

2.
Abstract

It is shown that the linear equatorial dynamics of a shallow ocean is characterized by two boundary layers of width γ? L and γL (γ is the Ekman number of the flow, assumed small, and L is a horizontal dimension of the basin). In the γ? layer stress in the bottom Ekman layer is comparable to that in the surface Ekman layer. In the γ layer vertical friction is important throughout the depth of the ocean. Should the Rossby number ? be so large as to invalidate a linear theory (? > γ5/3), then inertial effects become important at a distance ?2/5 L from the equator. The role played in the circulation of the basin by the non-linear equatorial current first studied by Charney (1960) is shown to be similar to that of the γ layer of the linear theory. Though lateral friction is unimportant in a linear model of the flow, shear layers at the equator are found to be a necessary feature of non-linear flow.  相似文献   

3.
Abstract

A new non-linear model of mixing and convection based on a modelling of two buoyant interacting fluids is applied to penetrative convection in the upper ocean due to surface cooling. In view of simple algebra, the model is one-dimensional. Dissipation is included, but no mean shear is present. A non-similar analytical solution is found in the case of a well-mixed layer bounded below by a sharp thermocline treated as a boundary layer. This solution is valid if the Richardson number, R i , defined as the ratio of the total mixed-layer buoyancy to a characteristic rms vertical velocity, is much greater than unity. The model predicts a deepening rate proportional to R i ?3/4. The thermocline remains of constant thickness, and the ratio thermocline thickness to mixed-layer depth decreases as R i ?3/4 as the mixed layer deepens. If the surface flux is constant, the mixed-layer depth increases with time as t ½. The vertical structure throughout the mixed layer and thermocline is given by the analytical solution, and vertical profiles of mean temperature and vertical fluxes are plotted. Computed profiles and available laboratory data agree remarkably well. Moreover, the accuracy of the simple analytical results presented here is comparable to that of sophisticated turbulence numerical models.  相似文献   

4.
A seasonal ice edge zone is a unique frontal system with an air-ice-sea interface. This paper is a report on the numerical results from a quasi-three dimensional, time dependent, non-linear numerical model of circulation at a continental shelf-seasonal ice edge zone. The purpose of the experiments is to model the hydrography and circulation, including upwelling, baroclinic geostrophic flow, and inertial oscillations, at the ice edge with emphasis on examining the driving forces of wind and melting ice. It is suggested that the non-linear acceleration terms and vertical density diffusion terms are negligible and that the horizontal density diffusion terms are of secondary importance within the time and space scales of the experiments. The vertical eddy viscosity terms are important in a spin-up time scale and for Ekman transport and a bottom Ekman layer. The effects of the horizontal eddy viscosity terms are observable (a long-ice jet is diffused away from the ice edge) by the end (72 h) of the model runs.Model results are compared with available oceanographic and meteorological data for verification. The observed and modeled features of melt water induced water column stability, frontal structure, and ice edge upwelling are briefly discussed relative to observed ice edge primary production. Because the model is relatively general in nature, it is readily applicable to other seasonal or marginal ice edge zones in either hemisphere.  相似文献   

5.
Abstract

The flow properties of an homogeneous fluid which is bounded by two concentric spheres and two meridional planes which intersect along a diameter of the spheres are investigated. The spheres rotate about this diameter with slightly different angular velocities. As in the axisymmetric case studied by Proudman (1956) and Stewartson (1966) the viscous terms in the equations of motion are important only in boundary layers on the spheres and on the cylinder C which circumscribes the inner sphere and which has generators parallel to the axis of rotation, provided the Ekman number E is small. In the inviscid region the velocities are independent of the coordinate measuring distance along the axis of rotation and are much weaker, by a factor 0(E ½), than the velocities in the Ekman layer on the driving surface (outer sphere). (It is assumed that the reference frame is fixed in the slower rotating inner sphere.) If the separation of the spheres is small compared to their radii then the asymmetric circulation inside C is characterized by an intense jet along the western wall. Loss of fluid from this jet sustains the eastward and northward flow in the inviscid interior where motion is driven by the suction of the Ekman layer on the outer sphere. (Geophysical conventions have been adopted.) Outside C an intense current is present on the eastern, not western, wall while motion in the inviscid region is westward, and away from the axis of rotation. Though there is no transport across C in the inviscid region, the meridional transport of the Ekman layer on the outer sphere is continuous across C and increases, through suction, as the equator is approached until it drains into an eastward flowing equatorial current of width 0(E 1/7). The eastern boundary current outside C and shear layers on C carry this fluid to the intersection of C and the western wall where it feeds the western boundary current inside C.

The relation between this study and the experiments of Baker and Robinson (1970) is discussed.  相似文献   

6.
Marginal ice edge zones (MIZ) are unique frontal systems with air-ice-sea interfaces. Phytoplankton blooms, which occur along the edge of the melting ice pack in spring, are strongly related to the air-ice-sea interactive processes. In spring 1982, during a cruise to the Bering Sea ice pack, hydrographic sections, including standard biological oceanographic parameters, were collected across the MIZ showing such enhanced phytoplankton bloom populations in the ice edge. During this period the ice edge retreated at speeds of 6 to 38 cm s?1. Associated with the retreating ice edge were a faster moving upper layer oceanic front that kept pace with the retreating ice edge, and a nearly stationary deeper front. In the presence of light, the phytoplankton blooms are shown to be associated with, and primarily controlled by enhanced density stratification and frontal structure due to ice melt during the spring ice retreat. The ice melt water forms stratification that helps to maintain the phytoplankton within the photic zone. The ice edge blooms can be differentiated from open water blooms by the stratification mechanism; in MIZ blooms stratification is due to low salinity melt water as opposed to temperature derived stratification in most open water blooms. In addition, in the series of cross sections collected, a unique biophysical interaction was observed when the MIZ front moving north with the spring retreat, came in contact with a fixed shelf front forming a ‘dish’ shaped hydrographic structure within which a major phytoplankton bloom was observed. We suggest that upwelling from the tidally driven shelf front supplied nutrients to the surface waters extending the life of the bloom. Wind-driven ice edge upwelling was also observed but was difficult to distinguish from the shelf front circulation.In this same set of ice edge cross sections, a cold water mass was observed at the surface in the MIZ. This water mass was subsequently overridden by warmer water forming a cold tongue structure above the pycnocline and seaward of the shelf front. We suggest that this cold tongue was transient in nature, and illustrative of one mechanism by which the T-S characteristics of high latitude shelf waters are formed and altered.  相似文献   

7.
Banda Sea surface-layer divergence   总被引:3,自引:0,他引:3  
Sea-surface temperature (SST) within the Banda Sea varies from a low of 26.5 °C in August to a high of 29.5 °C in December and May. Ekman upwelling reaches a maximum in May and June of approximately 2.5 Sv (Sv=106 m3 s?1) with Ekman downwelling at a maximum in February of approximately 1.0 Sv. The Ekman pumping annual average is 0.75 Sv upwelling. During the upwelling period, from April through December the average Ekman upwelling velocity is 2.36 × 10?6 m s?1 (1.27 Sv). ENSO modulation is generally within 0.5 Sv of the mean Ekman curve, with weaker (stronger) July to October upwelling during El Niño (La Niña). Combined TOPEX/POSEIDON and ERS 1993–1999 altimeter data reveal a 33 cm maximum range of sea level. Steric effects are minor, with well over 80% of the sea level change due to mass divergence (some bias due to unresolved tidal aliasing may still be present). The annual and interannual sea level behavior follows the monsoonal and ENSO phenomena, respectively. Lower (higher) sea level occurs in the southeast (northwest) monsoon and during El Niño (La Niña) events. The surface-layer volume anomaly and the surface-layer divergence, assuming a two-layer ocean, are estimated. Maximum divergence is attained during the transitional monsoon months of October/November: 1.7 Sv gain (convergence), with matching loss (divergence) in the April/May. During the El Niño growth period of 1997 the surface layer is divergent, but in 1998 when the El Niño was on the wane, the average rate of change is convergent. Surface-layer divergence attains values as high as 4 Sv. Banda Sea surface-water divergence correlates reasonably well with the 3-month lagged export of surface (upper 100?m) water into the Indian Ocean as estimated by a shallow pressure gauge array. It is concluded that the Banda Sea surface-layer divergence influences the timing and transport profile of the Indonesian throughflow export into the Indian Ocean, as proposed by Wyrtki in 1958, and that satellite altimetry may serve as an effective means of monitoring this phenomena.  相似文献   

8.
Abstract

Chandrasekhar (1961) has summarized the stability results of Bénard convection in a rotating fluid for the cases where the boundary surfaces are both rigid and free, and for both exchange of stabilities and overstability. His analysis provides very accurate results for a limited range of Taylor number J. Bisshopp and Niiler (1965) presented an asymptotic analysis of the rigid boundary problem for exchange of stabilities which is valid for very large Taylor number. The present paper makes use of modern rotating fluid theory to develop an approximate scheme for evaluating the Rayleigh number and other parameters and variables. Known asymptotic results for the free boundary problem at large J are used and an expansion in powers of E1/6 (the Ekman number, E = 2J ) yields a sequence of equations and appropriate boundary conditions for the rigid boundary problem. After the algorithm for the calculation is developed, results are given for the problem to second order in the expansion parameter for the case of exchange of stabilities and to first order in the expansion parameters for the overstable case. Ekman boundary layers are important in the development as one might expect. However, an additional, diffusive boundary layer of thickness E? is necessary to provide the details of the temperature field. This boundary layer is the thermal response in the vertical direction to the horizontal spacing of the cells which is also order E?. The horizontal spacing of the cells is essentially a series of contiguous, Stewartson (1957) layers of thickness E?.  相似文献   

9.
A three-dimensional regional ocean model is used to examine the impact of positive Indian ocean dipole (pIOD) events on the coastal upwelling features at the southwest coast of India (SWCI). Two model experiments are carried out with different surface boundary conditions that prevailed in the normal and pIOD years from 1982 to 2010. Model experiments demonstrate the weakening of coastal upwelling at the SWCI in the pIOD years. The reduced southward meridional wind stress off the SWCI leads to comparatively lower offshore Ekman transport during August–October in the pIOD years to that in normal years. The suppressed coastal upwelling results in warmer sea surface temperature and deeper thermocline in the pIOD years during June–September. The offshore spatial extent of upwelled colder (<?22 °C) water was up to 75.5° E in August–September in normal years that was limited up to 76.2° E in pIOD years. The heat budget analysis reveals the decreased contribution of vertical entrainment process to the mixed layer cooling in pIOD years which is almost half of that of normal years in October. The net heat flux term shows warming tendency during May–November with a higher magnitude (+?0.4 °C day?1) in normal years than pIOD years (+?0.28 °C day?1). The biological productivity is found to reduce during the pIOD years as the concentration of phytoplankton and zooplankton decreases over the region of coastal upwelling at SWCI. Nitrate concentration in the pIOD years dropped by half during August–September and dropped by an order of magnitude in October as compared to its ambient concentration of 13 μmol L?1 in normal years.  相似文献   

10.
Estimating vertical velocity in the oceanic upper layers is a key issue for understanding ocean dynamics and the transport of biogeochemical elements. This paper aims to identify the physical sources of vertical velocity associated with sub-mesoscale dynamics (fronts, eddies) and mixed-layer depth (MLD) structures, using (a) an ocean adaptation of the generalized Q-vector form of the ω-equation deduced from a primitive equation system which takes into account the turbulent buoyancy and momentum fluxes and (b) an application of this diagnostic method for an ocean simulation of the Programme Océan Multidisciplinaire Méso Echelle (POMME) field experiment in the North-Eastern Atlantic. The approach indicates that w-sources can play a significant role in the ocean dynamics and strongly depend on the dynamical structure (anticyclonic eddy, front, MLD, etc.). Our results stress the important contribution of the ageostrophic forcing, even under quasi-geostrophic conditions. The turbulent w-forcing was split into two components associated with the spatial variability of (a) the buoyancy and momentum (Ekman pumping) surface fluxes and (b) the MLD. Process (b) represents the trapping of the buoyancy and momentum surface energy into the MLD structure and is identified as an atmosphere/oceanic mixed-layer coupling. The momentum-trapping process is 10 to 100 times stronger than the Ekman pumping and is at least 1,000 times stronger than the buoyancy w-sources. When this decomposition is applied to a filamentary mixed-layer structure simulated during the POMME experiment, we find that the associated vertical velocity is created by trapping the surface wind-stress energy into this structure and not by Ekman pumping.  相似文献   

11.
Diagnosing vertical motion in the Equatorial Atlantic   总被引:2,自引:0,他引:2  
Estimating the vertical velocity (w) in the oceanic upper-layers is a key issue for understanding the cold tongue development in the Eastern Equatorial Atlantic. In this methodological paper, we develop an expanded and general formulation of the vertical velocity equation based on the primitive equation (PE) system, in order to gain new insight into the physical processes responsible for the Equatorial and Angola upwellings. This approach is more accurate for describing the real ocean than simpler considerations based on just the wind-driven patterns of surface layer divergence. The w-sources/forcings are derived from the PE w-equation and diagnosed from a realistic ocean simulation of the Equatorial Atlantic. Sources of w are numerous and express the high complexity of terms related to the turbulent momentum flux, to the circulation and to the mass fields, some of them depending explicitly on w and others not. The equatorial upwelling is found to be mainly induced by the (i) the zonal turbulent momentum flux, (ii) the curl of turbulent momentum flux and (iii) the imbalance between the circulation and the pressure fields. The Angola upwelling in the eastern part of the basin is controlled by strong curl of turbulent momentum flux. A strong cross-regulation is evidenced between the w-forcings independent of w and dependent on w, which suggests an equatorial balanced-dynamics. The w-forcing depending on w represents the negative feedback of the ocean to the w-forcing independent of w: in the equatorial band, this adjustment is led by non-linear processes and by vortex stretching outside.  相似文献   

12.
Lake Vostok, isolated from direct exchange with the atmosphere by about 4 km of ice for millions of years, provides a unique environment. This inaccessibility raises the importance of numerical models to investigate the physical conditions within the lake. Using a three-dimensional numerical model and the best available geometry, we test different parameter settings to define a standard model configuration suitable for studying flow in this subglacial lake. From our model runs we find a baroclinic circulation within the lake that splits into three different parts: Along a topographic ridge in the northern part of Lake Vostok, bottom water masses are transported eastward, diverging away from the ridge. In the lake’s surface layer, the flow in these two vertical overturning cells has opposite directions. In the southern part of the lake, where freezing occurs across about 3,500 km2, two opposing gyres split the water column vertically. The general flow is stronger in the southern basin with horizontal velocities in the order of 1 mm/s. The strongest upwelling, found in the eastern part of this basin, is about 25 μm/s. We estimate the lower limit of the overturning timescale to be about 2.5 years vertically and 8.6 years horizontally. The basal mass loss of ice from the ice sheet floating on the lake is 5.6 mm/year (equivalent to a fresh water flux of 2.78 m3/s, or a basal ice loss of 0.09 km3/year). This imbalance indicates either a constant growth of the lake or its continuous (or periodical) discharge into a subglacial drainage system.  相似文献   

13.
Abstract

The stability of a zonal shear flow to symmetric baroclinic perturbations is examined when the Ekman number, E, is asymptotically small. It is assumed, following Antar and Fowlis (1982), that the zonal Row is generated by imposing a constant horizontal temperature gradient γ* at the horizontal boundaries, and by maintaining a constant temperature difference δT* between them. The boundaries are at rest relative to a rotating frame.

Features of the neutral stability curve are determined for several ranges of values of δT/E 1/3, where δT = δT*/Hγ* and H is the depth of the fluid layer, and all values of the Prandtl number, [sgrave]. In some cases it is possible to determine the whole curve analytically. The most important feature of the results is that the neutral stability curve is closed.

The results are compared to the numerical integrations of Antar and Fowlis (1982). The qualitative features of the solutions are in accord and the quantitative results are, in most cases, as good as can be expected for E only as small as ~ 10?4. The implications of the results for experimental observations of symmetric baroclinic instability are explored.  相似文献   

14.
Abstract

An idealised α2ω-dynamo is considered in which the α-effect is prescribed. The additional ω-effect results from a geostrophic motion whose magnitude is determined indirectly by the Lorentz forces and Ekman suction at the boundary. As the strength of the α-effect is increased, a critical value α? c is reached at which dynamo activity sets in; α? c is determined by the solution of the kinematic α2-dynamo problem. In the neighbourhood of the critical value of α? the magnetic field is weak of order E 1/4(μηρω)½ due to the control of Ekman suction; E(?1) is the Ekman number. At certain values of α?, viscosity independent solutions are found satisfying Taylor's constraint. They are identified by the bifurcation of a nonlinear eigenvalue problem. Dimensional arguments indicate that following this second bifurcation the magnetic field is strong of order (μηρω)½. The nature of the transition between the kinematic linear theory and the Taylor state is investigated for various distributions of the α-effect. The character of the transition is found to be strongly model dependent.  相似文献   

15.
We present new experimental results on the mechanisms through which steady two-dimensional density currents lead to the formation of a stratification in a closed basin. A motivation for this work is to test the underlying assumptions in a diffusive “filling box” model that describes the oceanic thermohaline circulation (Hughes, G.O. and Griffiths, R.W., A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions, Ocean Modeling, 2005, submitted.). In particular, they hypothesized that a non-uniform upwelling velocity is due to weak along-slope entrainment in density currents associated with a large horizontal entrainment ratio of E eq ?~?0.1. We experimentally measure the relationship between the along-slope entrainment ratio, E, of a density current to the horizontal entrainment ratio, E eq, of an equivalent vertical plume. The along-slope entrainment ratios show the same quantitative decrease with slope as observed by Ellison and Turner (, 6, 423–448.), whereas the horizontal entrainment ratio E eq appears to asymptote to a value of E eq?=?0.08 at low slopes. Using the measured values of E eq we show that two-dimensional density currents drive circulations that are in good agreement with the two-dimensional filling box model of Baines and Turner (Baines, W.D. and Turner, J.S., Turbulent buoyant convection from a source in a confined region, J. Fluid. Mech., 1969, 37, 51–80.). We find that the vertical velocities of density fronts collapse onto their theoretical prediction that U =-2?2/3 B 1/3 E eq 2/3 (H/R) ζ, where U is the velocity, H the depth, B the buoyancy flux, R the basin width, E eq the horizontal entrainment ratio and?ζ?= z/H the dimensionless depth. The density profiles are well fitted with?Δ?= 2?1/3 B 2/3 E eq ?2/3 H -1 [ln(ζ )?+?τ ], where?τ?is the dimensionless time. Finally, we provide a simple example of a diffusive filling box model, where we show how the density stratification of the deep Caribbean waters (below 1850?m depth) can be described by a balance between a steady two-dimensional entraining density current and vertical diffusion in a triangular basin.  相似文献   

16.
A hydrodynamic model is employed to derive the magnitude of on-shelf fluxes through a shelf-break canyon for a wide range of canyon sizes and ambient oceanic conditions. Predicted canyon-upwelling fluxes are of the order of 0.05–0.1 Sv (1 Sv=1 million m3/s), being several orders of magnitude greater than upslope fluxes in the bottom Ekman layer on the ambient continental slope. On the basis of ∼150 simulations conducted, a bulk formula of upwelling flux in a submarine canyon is derived. For typical conditions, the upwelling flux varies quadratically with forcing strength (speed of incident flow), linearly with canyon depth, and is inversely proportional to the buoyancy frequency of the density stratification inside the canyon. Other parameters such as density stratification above shelf-break depth and bottom friction are found to have minor influences on the resultant canyon-upwelling flux.  相似文献   

17.
Active and break phases of the Indian summer monsoon are associated with sea surface temperature (SST) fluctuations at 30–90 days timescale in the Arabian Sea and Bay of Bengal. Mechanisms responsible for basin-scale intraseasonal SST variations have previously been discussed, but the maxima of SST variability are actually located in three specific offshore regions: the South-Eastern Arabian Sea (SEAS), the Southern Tip of India (STI) and the North-Western Bay of Bengal (NWBoB). In the present study, we use an eddy-permitting 0.25° regional ocean model to investigate mechanisms of this offshore intraseasonal SST variability. Modelled climatological mixed layer and upper thermocline depth are in very good agreement with estimates from three repeated expendable bathythermograph transects perpendicular to the Indian Coast. The model intraseasonal forcing and SST variability agree well with observed estimates, although modelled intraseasonal offshore SST amplitude is undere-stimated by 20–30 %. Our analysis reveals that surface heat flux variations drive a large part of the intraseasonal SST variations along the Indian coastline while oceanic processes have contrasted contributions depending of the region considered. In the SEAS, this contribution is very small because intraseasonal wind variations are essentially cross-shore, and thus not associated with significant upwelling intraseasonal fluctuations. In the STI, vertical advection associated with Ekman pumping contributes to ~30 % of the SST fluctuations. In the NWBoB, vertical mixing diminishes the SST variations driven by the atmospheric heat flux perturbations by 40 %. Simple slab ocean model integrations show that the amplitude of these intraseasonal SST signals is not very sensitive to the heat flux dataset used, but more sensitive to mixed layer depth.  相似文献   

18.
Abstract

The flow of a rotating homogeneous, incompressible fluid past a long ridge is investigated. An analysis is presented for flows in which E ? 1, Ro ~ E½, H/D ~ E0, h/D ~ E½ and cosα ~ E0 where E is the Ekman number, Ro the Rossby number, H/D the fluid depth to ridge width ratio, h/D the ridge height to ridge width ratio and α the angle between the free stream flow and a line perpendicular to the ridge axis. The analysis includes effects of the nonlinear inertial terms. Particular examples of a ridge of triangular cross section and a sinusoidal topography are investigated in some detail. Experiments are presented for a triangular ridge which are in good agreement with the theory.  相似文献   

19.
Abstract

A two gyre circulation and inertial western boundary currents have been observed in a sloping bottom laboratory model of a barotropic ocean circulation. Water of viscosity v is contained in a rotating (angular velocity ω), square basin of side L (30 cm) with a flat top and a bottom slope (tan θ) such that the depth (H) varies from 12 to 15 cm. The flow is driven by a distributed source and sink at the upper surface, a plate drilled with 342 holes. The hole distribution and size is arranged so that the average imposed vertical velocity, w = w 0 sin (2πy′/30), models the Ekman divergence from a two gyre zonal wind stress. Fluid flow is observed with the thymol blue technique over the ranges of Rossby numbers (w 0/2ωL tan θ) from 1.44 × 10?3 to 1.41 × 10?2 and Ekman numbers (v/2ωH 2) from 2.13 × 10?5 to 2.10 × 10?3. At the largest Rossby numbers the flow pattern changes markedly, but the non-uniformity of the imposed vertical velocity also penetrates deep into the fluid in this regime.  相似文献   

20.
Abstract

In a laboratory model ocean, fluid in a rotating tank of varying depth is subjected to “wind-stress”, For a certain range of the parameters, Ekman number E and Rossby number R, a homogeneous fluid displays steady, westward intensified flow. For the same range of E and R, a two-layer fluid can have baroclinic instabilities. The parameter range for the various kinds of instabilities is mapped in a regime diagram. The northward transport in the western boundary current is measured as it varies with Rossby number for both homogeneous and two-layer fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号