首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments of the melt-peridotite reaction at pressures of 1 and 2 GPa and temperatures of 1250–1400°C have been carried out to understand the nature of the peridotite xenoliths in the Mesozoic high-Mg diorites and basalts of the North China Craton,and further to elucidate the processes in which the Mesozoic lithospheric mantle in this region was transformed.We used Fuxin alkali basalt,Feixian alkali basalt,and Xu-Huai hornblende-garnet pyroxenite as starting materials for the reacting melts,and lherzolite xenoliths and synthesized harzburgite as starting materials for the lithospheric mantle.The experimental results indicate that:(1)the reactions between basaltic melts and lherzolite and harzburgite at 1–2 GPa and 1300–1400°C tended to dissolve pyroxene and precipitate low-Mg#olivine(Mg#=83.6–89.3),forming sequences of dunite-lherzolite(D-L)and duniteharzburgite(D-H),respectively;(2)reactions between hornblende-garnet pyroxenite and lherzolite at 1 GPa and 1250°C formed a D-H sequence,whereas reactions at 2 GPa and 1350°C formed orthopyroxenite layers and lherzolite;and(3)the reaction between a partial melt of hornblende-garnet pyroxenite and harzburgite resulted in a layer of orthopyroxenite at the boundary of the pyroxenite and harzburgite.The reacted melts have higher MgO abundances than the starting melts,demonstrating that the melt-peridotite reactions are responsible for the high-Mg#signatures of andesites or adakitic rocks.Our experimental results support the proposition that the abundant peridotite and pyroxenite xenoliths in western Shandong and the southern Taihang Mountains might have experienced multiple modifications in reaction to a variety of melts.We suggest that melt-peridotite reactions played important roles in transforming the nature of the Mesozoic lithospheric mantle in the region of the North China Craton.  相似文献   

2.
Biotite granite from the Sierra Nevada batholith was reacted, with known water contents in sealed platinum capsules, in a piston-cylinder apparatus between 10 and 35 kb. With the liquid just over-saturated with respect to water, temperatures for solidus and liquidus (quartz/coesite-out curve), respectively, are: 2 kb, 680°C, 715°C; 10 kb, 620°C, 725°C; 25 kb, 655°C, 800°C; 35 kb, 700°C, 850°C. The temperature interval is 35°C at 2 kb, 105°C at 10 kb, and 150°C at 35 kb, indicating that granite departs from a eutectic composition at depths greater than about 40–50 km. We conclude that crystal-liquid equilibria are not likely to yield primary rhyolite or granite magmas by partial fusion of oceanic crust in subduction zones. The solubility of water in granite liquids, in wt%, is 22.5 ± 2.5 at 25 kb and 810°C and 27 ± 2.5 at 35 kb and 850°C. These results indicate that a miscibility gap persists between water-saturated silicate magmas and aqueous vapor phase at least to pressures corresponding to 100 km depth in the mantle. The formation of kyanite near the liquidus of water over-saturated granite indicates that the aqueous vapor phase is enriched in alkalis and possibly silica, relative to the condensed phases.  相似文献   

3.
Yu  Xuehui  Mo  Xuanxue  Liao  Zhongli  Zhao  Xin  Su  Qi 《中国科学:地球科学(英文版)》2001,44(1):155-161

The mineral thermobarometry proposed in literature is used to calculate the equilibrium temperature and pressure of garnet lherzolite and websterite xenoliths within the Cenozoic kamafugite from west Qinling, Gansu Province, China. The results show that the equilibrium temperature and pressure of garnet lherzolites and websterite and 1127–1266°C, 2.9–3.6 Gpa and 1169–1248°C, 2.8–3.2 Gpa respectively. The equilibrium peressures reach or exceed the equilibrium peressure of spinel lherzolites (2.0–3.0 GPa), and fall into the stability range of garnet peridotite. The equilibrium temperature of the xenoliths reach or exceed the ocean geotherm, identical with the melting temperature of kamafugite magma determined by experiments under the conditions of post-orogenic lithosphere extension. So the thermal state of Cenozoic mantle of the west Qinling may be fit to generate the kamafugite magmatism. The research on petrology-mineralogy and geobarothermometry of the xenoliths shows that both garnet lherzolite and websterite are mantle components of the west Qinling, and may be considered as source rocks of the Cenozoic kamafugite magma.

  相似文献   

4.

Recently, garnet pyroxenite enclaves within peridotites occurring near Raobazhai, Huoshan County, have been discovered. The garnet pyroxenite is small pods, decimeters in size, enclosed within intensively serpentinized peridotites. Major mineral components comprise: garnet (Prp25–35), sodium augite (Jd10–25) with a small amount of ilmenite. There are two stages of retrometamorphism: the retrogressive granulite facies mineral assemblage is superimposed by that of amphibolite facies. The host rocks of the garnet pyroxenite are spinel peridotites, including spinel harzburgite and lherzolite. Due to intensive serpentinitization, only 5%–40% of the relic olivine (Fo92–93) are preserved. The orthopyroxenes are Mg-rich (En87–93) with bending of cleavages and granulation at their margins showing intracrystalline plasticity. On the basis of garnet-clinopyroxene Fe−Mg exchange equilibrium geothermometry proposed by Ellis & Green (1979) and Krogh (1988)K D=4.06–5.28;T=793–919°C,P=1.5 GPa are estimated for the garnet pyroxenite. It is inferred that the peridotites are mantle rocks about 60 km in depth. During the exhumation of the orogenic belt, it was tectonically emplaced into the lower crust in the solid state and then uplifted to the shallow depth. Obviously, this kind of garnet pyroxenite must be petrogenetically related to its host rock. The REE distribution pattern and the Ni−Co−Sc diagram reveal that they are chemically equivalent to the basaltic melt and ultramafic residua respectively derived from partial melting of mantle rocks.

  相似文献   

5.
The dislocation density and the subgrain size of olivine in peridotite xenoliths in southwest Japan were investigated in order to draw out the lateral variation of the differential stress in the upper mantle of the island arc. Alkali basaltic and andesitic dykes including peridotite xenoliths of Dogo, Kikuma, and Shingu are situated about 200 km behind the Nankai Trough, and those of Oki-Dogo and Takashima located at the portions 400–500 km apart from the trough. The mean dislocation densities of olivine are 2 × 106 cm?2 for Oki-Dogo, 8 × 106 cm?2 for Takashima, 1 × 107 cm?2 for Hamada, 5 × 107 cm?2 for Aratoyama, 4 × 107 cm?2 for Kikuma, 3 × 107 cm?2 for Dogo, and 5 × 106 cm?2 for Shingu peridotites.It is concluded that the differential stress is high in the uppermost mantle beneath the island arc and low in the back-arc and the mantle wedge behind the plate boundary. The lateral variation of stress may be due to the diapiric upwelling of upper mantle materials under the island arc. The size of the diapir is suggested to be 200 km in width and 60–150 km in depth.  相似文献   

6.
A new model is proposed for the structure of the Kaapvaal craton lithosphere. Based on chemical thermodynamics methods, profiles of the chemical composition, temperature, density, and S wave velocities are constructed for depths of 100–300 km. A solid-state zone of lower velocities is discovered on the S velocity profile in the depth interval 150–260 km. The temperature profiles are obtained from absolute values of P and S velocities, taking into account phase transformations, anharmonicity, and anelastic effects. The examination of the sensitivity of seismic models to the chemical composition showed that relatively small variations in the composition of South African xenoliths result in lateral temperature variations of ~200°C. Inversion of some seismic profiles (including IASP91) with a fixed bulk composition of garnet peridotites (the primitive mantle material) leads to a temperature inversion at depths of 200–250 km, which is physically meaningless. It is supposed that the temperature inversion can be removed by gradual fertilization of the mantle with depth. In this case, the craton lithosphere should be stratified in chemical composition. The depleted lithosphere composed by garnet peridotites exists to depths of 175–200 km. The lithospheric material at depths of 200–250 km is enriched in basaltoid components (FeO, Al2O3, and CaO) as compared with the material of garnet peridotites but is depleted in the same components as compared with the fertile substance of the underlying primitive mantle. The material composing the craton root at a depth of ~275 km does not differ in its physical and chemical characteristics from the composition of the normal mantle, and this allows one to estimate the thickness of the lithosphere at 275 km. The results of this work are compared with data of seismology, thermal investigations, and thermobarometry.  相似文献   

7.
Experimental study of spinel-garnet phase transition was carried out using natural mineral and rock specimens from xenolith of mantle rocks in Cenozoic basalt as starting materials. From the result it was found that the condition of spinel Iherzolite-garnet Ihenolite phase transition (T = 1 100°C andP = 1.8–2.0 GPa) is consistent with theP-T equilibrium condition of the five-phase assemblage spinel/garnet Iherzolite in eastern China, suggesting that there may exist a spinel-garnet Iherzolite phase transition zone with the thickness of a few km to several ten km at the depth of 55–70 km in the continental upper mantle of eastern China. The depth of phase transition from spinel pyroxenite to garnet pyroxenite is found to be less than 55 km. Experiment results also show that water promotes metasomatism on one hand but suppresses phase transition on the other. Zoning of mineral composition was also discussed. Project supported by the National Natural Science Foundation of China.  相似文献   

8.
Recently, garnet pyroxenite enclaves within peridotites occurring near Raobazhai, Huoshan County, have been discovered. The garnet pyroxenite is small pods, decimeters in size, enclosed within intensively serpentinized peridotites. Major mineral components comprise: garnet (Prp25–35), sodium augite (Jd10–25) with a small amount of ilmenite. There are two stages of retrometamorphism: the retrogressive granulite facies mineral assemblage is superimposed by that of amphibolite facies. The host rocks of the garnet pyroxenite are spinel peridotites, including spinel harzburgite and lherzolite. Due to intensive serpentinitization, only 5%–40% of the relic olivine (Fo92–93) are preserved. The orthopyroxenes are Mg-rich (En87–93) with bending of cleavages and granulation at their margins showing intracrystalline plasticity. On the basis of garnet-clinopyroxene Fe?Mg exchange equilibrium geothermometry proposed by Ellis & Green (1979) and Krogh (1988)K D=4.06–5.28;T=793–919°C,P=1.5 GPa are estimated for the garnet pyroxenite. It is inferred that the peridotites are mantle rocks about 60 km in depth. During the exhumation of the orogenic belt, it was tectonically emplaced into the lower crust in the solid state and then uplifted to the shallow depth. Obviously, this kind of garnet pyroxenite must be petrogenetically related to its host rock. The REE distribution pattern and the Ni?Co?Sc diagram reveal that they are chemically equivalent to the basaltic melt and ultramafic residua respectively derived from partial melting of mantle rocks.  相似文献   

9.
A self-consistent approach is proposed for the investigation of the thermal conditions, chemical composition, and internal structure of the upper mantle of the Earth. Using this approach, the thermal state of the lithospheric mantle beneath the Siberian Craton (SC) is reconstructed from P velocities, taking into account the phase transitions, anharmonicity, and the effects of anelasticity. The velocities of seismic waves are more sensitive to temperature than to the composition of the mantle rocks, which allows the velocity models to be effectively used for reconstruction of the thermal regime of the mantle. The temperature at depths 100–300 km is reconstructed by inversion of the Kraton and Kimberlit superlong seismic profiles for compositions of the garnet harzburgite, lherzolite, and intermediate composition of garnet peridotite. The averaged temperature in the normal continental mantle is reconstructed by inversion of the IASP91 reference model for depleted and fertile substance. One-dimensional models and two-dimensional thermal fields undergo a substantial fall in temperature (~300–600°C) beneath the Siberian Craton as compared to the temperatures of the continental mantle and paleotemperatures inferred from the thermobarometry of xenoliths. Temperature profiles of the Siberian Craton deduced from seismic data lie between the conductive geotherms of 32.5–40.0 mW/m2 and below the P(H)-T values obtained for low- and high-temperature xenoliths from the Mir, Udachnaya, and Obnazhennaya kimberlite pipes. The thickness of the thermal lithosphere estimated from the intersection with the potential adiabat is 300–320 km, which is consistent with the data on heat flows and seismotomographic observations. This provides grounds for the assumption that the low-temperature anomalies (thermal roots of continents) penetrate down to a depth of 300 km. The analysis of the sensitivity of seismic velocity and density to the variations in temperature, pressure, and chemical and phase composition of petrological models shows that recognition of fine differences in chemical composition of the lithospheric rocks by seismic methods is impossible.  相似文献   

10.
The Piranshahr metaperidotites in the northwestern end of the Zagros orogen were emplaced following the closure of the Neotethys ocean. The ophiolitic rocks were emplaced onto the passive margin of the northern edge of the Arabian plate as a result of northeastward subduction and subsequent accretion of the continental fragments. The metaperidotites have compositions ranging from low-clinopyroxene lherzolite to harzburgite and dunite. They are mantle residues with distinct geochemical signatures of both mid-ocean ridge and supra subduction zone (SSZ) affinities. The abyssal peridotites are characterized by high Al2O3 and Cr2O3 contents and low Mg-number in pyroxenes. The Cr-number in the coexisting spinel is also low. The SSZ mantle peridotites are characterized by low Al2O3 contents in pyroxenes as well as low Al2O3 and high Cr-number in spinel. Mineral chemical data indicate that the MOR- and SSZ-type peridotites are the residues from ∼15–20% and ∼30–35% of mantle melting, respectively. Considering petrography, mineralogy and textural evidence, the petrological history of the Piranshahr metaperidotites can be interpreted in three stages: mantle stable stage, serpentinization and metamorphism. The temperature conditions in the mantle are estimated using the Ca-in-orthopyroxene thermometer as 1210 ± 26 °C. The rocks have experienced serpentinization. Based on the textural observations, olivine and pyroxene transformed into lizardite and/or chrysotile with pseudomorphic textures at temperatures below 300 °C during the initial stage of serpentinization. Subsequent orogenic metamorphism affected the rocks at temperatures lower than 600 °C under lower-amphibolite facies metamorphism.  相似文献   

11.
A seismological study of the upper mantle under the Kamchatka volcanoes using body waves from nearby earthquakes has shown local heterogencities consisting of materials with reduced elastic properties at depths from 30 to 90 km. The estimated value of the upper limit of viscosity,η, is about 6 × 1020 pois for the material of the mantle aseismic zone under the Kamchatka volcanoes at depths of ~ 70–150 km. It is suggested that the magmatic chambers are rooted in the mantle heterogeneities filled with substance of reduced elasticity and viscosity.  相似文献   

12.
The interpretation of magnetotelluric data from southwest Iceland provides three constraints on regional temperatures for the crust and upper mantle. First, it appears that temperature gradients from boreholes one or two kilometers deep (60–120°C/km) can be linearly extrapolated to the base of the crust. Second, the temperature at the crust-mantle interface (10–15 km) is in the range 1000 ± 200°C. Third, the temperature gradient in the upper mantle (15–100 km) is remarkably small and must be close to 1°C/km.Although the absolute value of temperature is uncertain, a distinct difference emerges between the range of temperatures estimated from the magnetotelluric interpretation and the range of temperatures theoretically calculated from the conventional heat-flow equation. These differences, we feel, are a direct manifestation of the tectonic setting of Iceland.  相似文献   

13.
New petrological and geochemical data of upper mantle and lower crustal xenoliths from a Quaternary tephra deposit in Mýtina, Czech Republic, are discussed in the frame of previous geophysical results (receiver functions, reflection seismology) of the western Eger/Ohře Rift area. The Vogtland/NW Bohemia region is well known for intraplate earthquake swarms, which are usually associated with volcanic activity. As previously reported, 3He/4He data of CO2 emissions in mofettes and mineral-water springs point at ongoing magmatic processes in this area. Using teleseismic P receiver functions, an approximately 40-km-wide Moho updoming (from 31 to 27 km) and indications for a seismic discontinuity at 50 to 60 km depth were observed beneath the active CO2-degassing field. The studied xenolith suite probes a lithospheric profile within the structural and gas geochemical anomaly field of the western Eger Rift.With regard to texture, composition, pT estimates and origin, five xenolith groups can be discriminated. Upper crustal xenoliths (quartzites, phyllites, mica schists) resemble crystalline country rocks at surface. One noritic xenolith (6 kbar, 800 °C) could represent a sample of the lower crust. Clinopyroxenites and hornblendites probably represent cumulates of the nephelinitic magma or fragments of magmatic veins. Porous wehrlites and one hornblende peridotite xenolith reflect a metasomatied upper mantle. Megacrysts of Ti-rich amphibole, olivine, clinopyroxene, and phlogopite could be fragments of pegmatitic veins or high-pressure phenocrysts. Most of the ultramafic nodules (xenoliths and megacrysts) formed at pressures between 6 and 11 kbar (22 to 38 km depth), at temperatures well above regional geotherms of the Bohemian Massif calculated from surface heat flow studies. Orthopyroxene-bearing spinel-lherzolite xenoliths were not observed. Our petrographical, geochemical, and thermobarometric results indicate a lithospheric mantle strongly altered by magmatic processes. This metasomatism can cause slower than typical uppermost-mantle seismic velocities in a greater area and might help to explain observed seismic anomalies.  相似文献   

14.
The melting curves of CaCO3 and MgCO3 have been extended to pressures of 36 kb by experiments in piston-cylinder apparatus. At 30 kb, the melting temperatures of calcite and magnesite are 1610°C and 1585°C, respectively. New data for the magnesite dissociation reaction permit the location of an invariant point for the assemblage magnesite + periclase + liquid + vapor near 26 kb-1550°C. New data are also presented for the calcite-aragonite transition at 800°C, 950°C and 1100°C. At pressures above 36–50 kb, calcite and magnesite melt at temperatures lower than the solidus of dry mantle peridotite. Natural and experimental evidence suggests that carbon dioxide in the Earth's mantle could be present in a variety of forms: (a) a free vapor phase, (b) vapor dissolved in silicate magma, (c) crystalline carbonate, (d) carbonatite liquid, (e) carbon-bearing silicate analogs, or (f) carbonato-silicates (such as scapolite, spurrite, tilleyite, and related compounds).  相似文献   

15.
Various xenoliths have been found in lavas of the 1763 (“La Montagnola”), 2001, and 2002–03 eruptions at Mt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from 2.6 to 3.0 g/cm3. P wave velocities (V P ), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent V P with recent literature data on 3D V P seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3–13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the “solidification front”, a marginal zone that encompasses a deep region (>5 km b.s.l.) of Mt. Etna’s plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 “La Montagnola”, 2001 and 2002–03 eruptions.  相似文献   

16.
Two localities on the Leizhou Peninsula, southern China (Yingfengling and Tianyang basaltic volcanoes) yield a wide variety of mantle-derived xenoliths including Cr-diopside series mantle wall rocks and two distinct types of Al-augite series pyroxenites. Metapyroxenites have re-equilibrated granoblastic microstructures whereas pyroxenites with igneous microstructures have not thermally equilibrated to the mantle conditions. An abundant suite of megacrysts and megacrystic aggregates (including garnet, plagioclase, clinopyroxene, ilmenite and apatite) is interpreted as the pegmatitic equivalents of the igneous pyroxenite suite. Layered spinel lherzolite/spinel websterite xenoliths were formed by metamorphic differentiation caused by mantle deformation, inferred to be related to lithospheric thinning. Some metapyroxenites have garnet websterite assemblages that allow calculation of their mantle equilibration temperatures and pressures and the construction of the first xenolith geotherm for the southernmost China lithosphere. Heat flow data measured at the surface in this region yield model conductive geotherms (using average crustal conductivity values) that are consistent with the xenolith geotherm for the mantle. The calculated mean surface heat flux is 110 mW/m2. This high heat flux and the high geotherm are consistent with young lithospheric thinning in southern China, and with recent tomography results showing shallow low-velocity zones in this region. The xenolith geotherm allows the construction of a lithospheric rock type section for the Leizhou region; it shows that the crust–mantle boundary lies at about 30 km, consistent with seismic data, and that the lithosphere–asthenosphere boundary lies at about 100 km.  相似文献   

17.
中国西部及邻区岩石圈S波速度结构面波层析成像   总被引:7,自引:5,他引:2       下载免费PDF全文
黄忠贤  李红谊  胥颐 《地球物理学报》2014,57(12):3994-4004
本文利用瑞利波群速度频散资料和层析成像方法,研究了中国西部及邻近区域(20°N—55°N,65°E—110°E)的岩石圈S波速度结构.结果表明这一地区存在三个以低速地壳/上地幔为特征的构造活动区域:西蒙古高原—贝加尔地区,青藏高原,印支地区.西蒙古高原岩石圈厚度约为80 km,上地幔低速层向下延伸至300 km深度,说明存在源自地幔深部的热流活动.缅甸弧后的上地幔低速层下至200 km深度,显然与印度板块向东俯冲引起俯冲板片上方的热/化学活动有关.青藏高原地壳厚达70 km,边缘地区厚度也在50 km以上并且具有很大的水平变化梯度,与高原平顶陡边的地形特征一致.中下地壳的平均S波速度明显低于正常大陆地壳,在中地壳20~40 km深度范围广泛存在速度逆转的低速层,这一低速层的展布范围与高原的范围相符.这些特征说明青藏高原中下地壳的变形是在印度板块的北向挤压下发生塑性增厚和侧向流动.地幔的速度结构呈现与地壳显著不同的特点.在高原主体和川滇西部地区上地幔顶部存在较大范围的低速,低速区范围随深度迅速减小;100 km以下滇西低速消失,150 km以下基本完全消失.青藏高原上地幔速度结构沿东西方向表现出显著的分段变化.在大约84°E以西的喀喇昆仑—帕米尔—兴都库什地区,印度板块的北向和亚洲板块的南向俯冲造成上地幔显著高速;84°E—94°E之间上地幔顶部速度较低,在大约150~220 km深度范围存在高速板片,有可能是俯冲的印度岩石圈,其前缘到达昆仑—巴颜喀拉之下;在喜马拉雅东构造结以北区域,存在显著的上地幔高速区,可能阻碍上地幔物质的东向运动.川滇西部岩石圈底界深度与扬子克拉通相似,约为180 km,但上地幔顶部速度较低.这些现象表明青藏高原岩石圈地幔的变形/运动方式可能与地壳有本质的区别.  相似文献   

18.
A petrological model for the uppermost upper mantle and crust under the Koolau shield to a depth of about 60 km has been derived on the basis of petrology of the upper mantle and crustal xenoliths in nephelinites of the Honolulu Volcanic Series. Three main xenolith suites exist in the Koolau shield: dunites, spinel lherzolites, and garnet-bearing pyroxenites. On the basis of mineralogy, it is inferred that the dunites represent cumulates in shallow crustal tholeiitic magma chambers, the spinel lherzolites form a thick (~ 40 km) layer in the upper mantle, and the garnet pyroxenite suite occurs as veins and stringers in the spinel lherzolites at about 60 km depth.The eruption sequence in a Hawaiian volcano, i.e., tholeiite → transitional basalt → alkali basalt, is generated by partial melting of a volatile-bearing garnet-lherzolite part of a lithospheric plate as it rides over a hot spot. If the tholeiite, transitional, and alkali basalts of Hawaiian volcanoes are generated at the same depth, then the observed sequence of lavas requires replenishment of the source area with volatiles and gradual decrease of the degree of partial melting with time. Post-erosional olivine nephelinites are produced from isotopically distinct, deeper source area, which may be the asthenosphere.  相似文献   

19.
中国东部橄榄岩和榴辉岩深源包体的地理分布构成了全球环太平洋深源包体分布带的重要组成部分。深源包体的产出与地球内部构造密切相关。尖晶石橄榄岩和镁铝榴石橄榄岩两种包体与上地幔的构造分带相一致,榴辉岩包体代表上地幔中局部的分凝体。碱性玄武岩浆的活动和深源岩石带的形成应为板块构造运动的结果。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号