首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
新安江水库(千岛湖)热力学状况及热力分层研究   总被引:6,自引:3,他引:3  
利用2012年1-12月在新安江水库(千岛湖)6个点位的每月一次的水温及其他环境因子的周年观测资料,分析了水库水温逐月变化、季节变化、垂直分布及温跃层的形成与变化,探讨了温跃层特征量(温跃层深度、厚度、强度)与表层水温、水体透明度的关系.新安江水库表层和中层水温与气温存在显著的线性相关,又以表层水温线性关系最好,而下层水温与气温没有显著相关性,说明下层水温受气温的影响很小,全年处于相对恒温状态.水库表层和中层水温逐月变化明显,呈现夏季最高、春秋季次之、冬季最低的变化趋势,其中中层水温最高值出现的季节较表层水温明显后延,下层水温没有明显的逐月变化和季节变化.水温垂直分布显示,4个季节均存在不同程度的温跃层和温度分层现象,其中水深最深的大坝前水温分层最明显.小金山、三潭岛和大坝前3个典型点位从春季的4月份到冬季的2月份温跃层深度由1.61±0.47 m逐渐增加至39.37±5.35 m,而温跃层厚度和强度则在夏季最高、冬季最低,温跃层随着季节的变化呈现增强稳定减弱消失的周期变化.温跃层深度与水体透明度存在显著正相关,与表层水温存在显著负相关,并基于透明度和表层水温建立温跃层深度的多元线性回归模型.  相似文献   

2.
The properties of the waters that move from the Pacific to the Indian Ocean via passages in the Indonesian archipelago are observed to vary with along-flow-path distance. We study an ocean model of the Indonesian Seas with reference to the observed water property distributions and diagnose the mechanisms and magnitude of the water mass transformations using a thermodynamical methodology. This model includes a key parameterization of mixing due to baroclinic tidal dissipation and simulates realistic water property distributions in all of the seas within the archipelago. A combination of air–sea forcing and mixing is found to significantly change the character of the Indonesian Throughflow (ITF). Around 6 Sv (approximately 1/3 the model net ITF transport) of the flow leaves the Indonesian Seas with reduced density. Mixing transforms both the intermediate depth waters (transforming 4.3 Sv to lighter density) and the surface waters (made denser despite the buoyancy input by air–sea exchange, net transformation?=?2 Sv). The intermediate transformation to lighter waters suggests that the Indonesian transformation contributes significantly to the upwelling of cold water in the global conveyor belt. The mixing induced by the wind is not driving the transformation. In contrast, the baroclinic tides have a major role in this transformation. In particular, they are the only source of energy acting on the thermocline and are responsible for creating the homostad thermocline water, a characteristic of the Indonesian outflow water. Furthermore, they cool the sea surface temperature by between 0.6 and 1.5°C, and thus allow the ocean to absorb more heat from the atmosphere. The additional heat imprints its characteristics into the thermocline. The Indonesian Seas cannot only be seen as a region of water mass transformation (in the sense of only transforming water masses in its interior) but also as a region of water mass formation (as it modifies the heat flux and induced more buoyancy flux). This analysis is complemented with a series of companion numerical experiments using different representations of the mixing and advection schemes. All the different schemes diagnose a lack of significant lateral mixing in the transformation.  相似文献   

3.
Summary Measurements of air temperature, wind speed and the temperature depth profile at Llyn Tegid, North Wales, from April to November 1969, are used to establish equations which are then used for the observed meteorological data to predict the temperature profile of the lake during this period and in particular the conditions under which the thermocline rises or sinks. A fair measure of agreement is found between observed and predicted profiles.  相似文献   

4.
一个分层水库温跃层的模拟与验证   总被引:1,自引:0,他引:1  
孙昕  王雪  许岩  解岳  黄廷林 《湖泊科学》2015,27(2):319-326
以西安金盆水库为例,建立了分层水库水温结构的数值模拟方法,并以实测数据进行模型验证.运用Fluent软件数值研究了不同短波辐射强度及短波辐射衰减系数条件下温跃层的形成过程与特性.水库水面总传热量在春、夏季为正值,在秋、冬季为负值,长波辐射是水面总传热量的主要影响因素,短波辐射则是温跃层形成的主要影响因素.随短波辐射衰减系数的降低,温跃层厚度增加,温跃层内温度梯度减小,短波辐射衰减系数值与实测的藻类浓度存在良好的正相关性.水库具有极限短波辐射强度,温跃层内温差随水面短波辐射强度的增加呈现先增加后减小的变化趋势;但水面短波辐射强度过高时,难以达到热平衡而形成稳定的温跃层.  相似文献   

5.
Tamarix elongata Ledeb is a desert shrub found in the desert region of Northwest China and is commonly cultivated as a sand‐holding plant in this region. To understand its water requirement and the effects of climate conditions on its growth, trunk xylem sap flows of irrigated 8‐year‐old Tamarix elongata Ledeb plants were monitored continuously with heat‐pulse sap flow meters for the entire season. Soil moisture contents at 0–300 cm layer depth were also measured with a tube type time domain reflectometry (Tube‐TDR). Meteorological factors, i.e. solar radiation, air temperature, relative humidity and wind speed were simultaneously monitored by an automatic weather station at the site. Daily and seasonal variations of the trunk sap fluxes and their correlations with the meteorological factors, reference evapotranspiration and soil moisture contents in the root‐zone were analysed. The results indicated that frost influenced the trunk sap flux greatly under irrigated conditions, although the flux generally fluctuated with the variation of environmental factors and showed a mean trunk sap flux of 4·18 l d?1. There was a significantly exponential relationship between sap flux and the reference value of crop evapotranspiration, with a correlation coefficient of R2 = 0·7172. The sap flux also had a significant correlation with the soil water contents at a depth of 150–300 cm from soil surface (R2 = 0·5014). The order of the main meteorological factors affecting the sap flux of Tamarix elongata Ledeb trees was solar radiation > air temperature > vapour pressure deficit > relative humidity > wind speed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Gahyun Goh  Yign Noh 《Ocean Dynamics》2013,63(9-10):1083-1092
Large eddy simulation (LES) reveals that the Coriolis force plays an important role in seasonal thermocline formation. In the high-latitude ocean, a seasonal thermocline is formed at a certain depth, across which the downward transports of heat and momentum are prohibited. On the other hand, in the equatorial ocean, heat and momentum continue to propagate downward to the deeper ocean without forming a well-defined thermocline. Mechanism to clarify the latitudinal difference is suggested. The depth of a seasonal thermocline h is scaled in terms of both the Ekman length scale λ and the Monin–Obukhov length scale L, as h ??? 0.5()1/2, which is in contrast to the earlier suggestion as h?∝?L.  相似文献   

7.
The spatial and temporal evolution of the thermocline depth and width of the Cariaco basin (Venezuela) is analysed by means of a three-dimensional hydrodynamic model. The thermocline depth and width are determined through the fitting of model temperature profiles to a sigmoid function. The use of whole profiles for the fitting allows for a robust estimation of the thermocline characteristics, mainly width and depth. The fitting method is compared to the maximum gradient approach, and it is shown that, under some circumstances, the method presented in this work leads to a better characterisation of the thermocline. After assessing, through comparison with independent in situ data, the model capabilities to reproduce the Cariaco basin thermocline, the seasonal variability of this variable is analysed, and the relationship between the annual cycle of the thermocline depth, the wind field and the distribution of chlorophyll-a concentration in the basin is studied. The interior of the basin reacts to easterly winds intensification with a rising of the thermocline, resulting in a coastal upwelling response, with the consequent increase in chlorophyll-a concentration. Outside the Cariaco basin, where an open ocean, oligothrophic regime predominates, wind intensification increases mixing of the surface layers and induces therefore a deepening of the thermocline. The seasonal cycle of the thermocline variability in the Cariaco basin is therefore related to changes in the wind field. At shorter time scales (i.e. days), it is shown that other processes, such as the influence of the meandering Caribbean current, can also influence the thermocline variability. The model thermocline depth is shown to be in good agreement with the two main ventilation events that took place in the basin during the period of the simulation.  相似文献   

8.
Formation of subantarctic mode water in the southeastern Indian Ocean   总被引:1,自引:1,他引:1  
Subantarctic Mode Water (SAMW) is the name given to the relatively deep surface mixed layers found directly north of the Subantarctic Front in the Southern Ocean, and their extension into the thermocline as weakly stratified or low potential vorticity water masses. The objective of this study is to begin an investigation into the mechanisms controlling SAMW formation, through a heat budget calculation. ARGO profiling floats provide estimates of temperature and salinity typically in the upper 2,000 m and the horizontal velocity at various parking depths. These data are used to estimate terms in the mode water heat budget; in addition, mode water circulation is determined with ARGO data and earlier ALACE float data, and climatological hydrography. We find a rapid transition to thicker layers in the central South Indian Ocean, at about 70°S, associated with a reversal of the horizontal eddy heat diffusion in the surface layer and the meridional expansion of the ACC as it rounds the Kerguelen Plateau. These effects are ultimately related to the bathymetry of the region, leading to the seat of formation in the region southwest of Australia. Upstream of this region, the dominant terms in the heat budget are the air–sea flux, eddy diffusion, and Ekman heat transport, all having approximately equal importance. Within the formation area, the Ekman contribution dominates and leads to a downstream evolution of mode water properties.  相似文献   

9.
The aim of this study was to obtain the diurnal and seasonal changes of trunk sap flow in desert‐living Caragana korshinskii so as to understand its water requirement and ecological significance. The experiment was carried out with 15‐year old Caragana korshinskii grown in north‐west China under natural conditions. Heat pulse sensors based on the heat compensation theory were applied to measure the trunk sap flow, and soil moisture content at 0–300 cm layer, using tube‐type time domain reflectometry (Tube‐TDR). The solar radiation, the maximum and minimum air temperatures, relative humidity, wind speed, wind direction and precipitation were measured at a standard automatic weather station. The diurnal and seasonal variations of sap flow rate, the sap velocity at different positions in the trunk and the sap flow rate under different weather conditions were analysed. And the correlation between the sap flow rate and the meteorological factors was also analysed. Results showed that the trunk sap flow varied regularly in the diurnal term and the sap flow velocity decreased with the probe‐inserted depth into the sapwood. Magnitude of sap flow changed considerably between sunny and rainy days. The order of the main meteorological factors affecting the sap flow rate of Caragana korshinskii shrubs were: vapour pressure deficit > solar radiation > air temperature > wind speed. The close correlation between daily sap flow rate and meteorological factors in the whole growing season can be used to estimate the transpiration of Caragana korshinskii. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Beijing often suffers under heavy smog.During such events which occur mostly in autumn and winter,people are desperate for fresh air.The formation of heavy smog is due to foremost human induced air pollution,but geographic and meteorological conditions,especially below a surface inversion,play an important role.We propose to destroy the inversion by pumping air from above the inversion layer to the surface layer to alleviate the severity of the smog.While long-term air quality improvement depends on the reduction of air pollution emission,air pumping may provide relief in the interim for the Beijing citizens.We estimate that an air pumping at a rate 2×10~7m~3s~(–1)can lead to significantly improved air quality in Beijing,due to(1)direct clean air input;(2)increased instability and vertical mixing and(3)a positive radiation-mixing feedback.The pumping requires an energy input of 10 GW,comparable with the energy consumption in Beijing for air conditioning in summer.We propose to use wind energy from Inner Mongolia for the pumping,which has currently an installed wind energy capacity of 70GW.  相似文献   

11.
湖泊水面与大气之间垂直方向的动量、水汽和热量通量与风速、湿度和温度梯度之间存在比例关系,因此在湖泊水-气相互作用研究中,这比例系数(交换系数)是关键因子.在以往的研究中,交换系数通常直接采用水面梯度观测法或海洋大气近地层的参数化方案进行计算.本文采用涡度相关系统和小气候系统仪器在太湖平台上直接观测的通量和气象要素,对上述交换系数(最小均方差原则)进行优化,结果为:动量交换系数CD10N=1.52×10-3、水汽交换系数CE10N=0.82×10-3、热量交换系数CH10N=1.02×10-3,与其他内陆湖泊涡度相关观测数据的推导结果一致.本文的研究结果表明:与海洋参数化方案相比,在相同的风速条件下,湖面的空气动力学粗糙度比海洋高,这可能是由于受到水深的影响;如果采用海洋参数化方案,会导致湖泊年蒸发量的估算值偏大40%.太湖的动量、水汽和热量交换系数可以视为常数,可以不考虑稳定度和风速的影响.这是因为本文中83%的数据为近中性条件.敏感性分析表明:如果考虑稳定度的影响,LE模拟值的平均误差降低了0.5 W/m2,H的平均误差降低了0.4 W/m2,u*的计算值没有变化;如果考虑风速的影响,u*模拟值的平均误差降低了0.004 m/s,LE的平均误差升高了1.3 W/m2,H的模拟结果几乎不受影响.这一结果能为湖气相互作用研究提供参考.  相似文献   

12.
水库或湖泊的热分层结构是其动力与环境过程的重要研究方面,虽然很多学者针对水体分层结构和演变机理开展了大量研究,但水体通过水-气界面与大气进行热交换的过程,各气象因子的贡献机理等研究成果还很缺乏。本文基于三峡水库香溪河库湾2019年3月-2020年2月期间的水温、水位及气象等监测数据,针对水-气界面热交换过程如何影响水温垂向结构及表层水体湍流混合作用开展研究。结果表明,(1)香溪河水体年内呈高温期分层、低温期混合的基本特征,高温期混合层深度小于8 m,低温期混合层深度超过30 m。(2)太阳短波辐射是香溪河水体的主要热源,潜热通量和长波辐射是香溪河水体的主要冷源,感热通量贡献极小。(3)香溪河平均风速较弱,约为1.6 m/s,主要通过增强潜热和感热通量的方式影响水体垂向稳定性结构特征,其机械扰动作用较弱。(4)表层水体湍能通量在高温期较低(10-7m3/s3量级),此时水体处于分层状态,风应力大概率主导表层水体湍流发育;低温期表层水体湍能通量较高(10-6 m3/s3<...  相似文献   

13.
The influence of meteorological variation, i.e., typhoon and precipitation events, on the coastal upwelling off the eastern Hainan Island was studied based on observations taken during two upwelling seasons. The observations were made in August 2007 and July 2008, respectively. We found that, in principle, similar structure of sea surface temperature and bottom temperature prevailed in both observational periods, providing evidence that upwelling events occur frequently during the summer monsoon along the eastern Hainan shelf. Based on a simple momentum balance theory, we studied the balances between momentum fluxes, wind stress, and bottom stress. The results showed that the Burger number is S ≈ 1, indicating that the cross-shelf momentum flux divergence was balanced by the wind stress and the onshore return flow occurred in the interior of the water column. Hence, a conceptual model of the upwelling structure was built for further understanding of upwelling events. In addition, it was also observed that variations in the strength of upwelling are controlled by storm events, i.e., strong northerly winds change the structure of the thermocline on the shelf significantly. The strong mixing caused by wind reduces the strength of the thermocline, in particular in coastal seas. Based on our conceptual model, a frontal zone between mixed coastal water and offshore water develops which destabilizing the water column and hence decreases the upwelling strength. Freshwaters from the two main rivers in the Wenchang Bay are confined to the coastal area less than 20–30 m deep, as confirmed by our water mass analysis. Freshwater discharge stabilized the water column, inhibiting the upwelling as shown by the potential energy calculation. Consequently, estuarine water only inhibits the upwelling in the near coastal area. Therefore, it can be concluded that estuarine water does not have a significant impact on upwelling strength on the shelf.  相似文献   

14.
The partition of available energy into evapotranspiration affected by environmental and physiological factors is critical in understanding the water cycle and optimizing the water management in the field. Our study attempted to accurately quantify the environmental and physiological control on variability in evaporative fraction (EF) based on the Penman–Monteith model. The eddy covariance method was used to measure water flux over a canopy and then calculate the EF above a maize field in northwest China in 2007. Results indicate that the EF was lower in other growth stages than in the heading stage, so the EF value in the heading stage was taken as the standard value. The decreases in EF caused by canopy conductance and environmental factors were 0.176 and ?0.026, accounting for 117% and ?17% of the total difference in EF, respectively. Such results were mainly due to the following: (1) the variation of maize canopy conductance was greater than that of the environmental factors, such as air temperature, air humidity, wind speed and radiation; (2) the EF of the maize was more sensitive to variation in canopy conductance than the environmental factor. Our study revealed that crop physiological factor played an important role in determining the energy partition processes and reducing the sensible heat flux in the maize field. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Summary Thermal conductivities at various depths are estimated from the conduction of heat in a freshwater lake during a period of rapid heating leading to the formation of a thermocline. The values obtained can be related to the difference between density at the depth involved and that at the surface.Now with the Shell Petroleum Company.  相似文献   

16.
Thermal Impact of Residential Ground-Water Heat Pumps   总被引:3,自引:0,他引:3  
A computer simulation study was conducted to quantify the potential thermal impact of residential water-source heat pump usage on ground-water aquifers. In a first phase of the study, weather data for nine locations throughout the country were used to estimate the energy requirements for heating and air conditioning a typical residence. These energy requirements were then translated into the volumetric water demands for a selected heat pump at each location. A representative model aquifer was then defined and its characteristics used, along with the heat pump water requirements and design ΔT's (difference between inlet and outlet water temperature) to identify the important parameters that contribute to heat transfer and to model the movement of the thermal front resulting from injection of heat pump discharge water at the nine locations. The major factor that determines the heat pump thermal impact was found to be the net amount of heat injected into, or removed from an aquifer. Other significant factors included well design, heat pump design ΔT, and physical properties of the aquifer such as thickness, porosity and dispersivity. The study showed that, in climates where winter heating demand is very nearly equal to summer cooling demands, the injection of heat pump discharge water did not cause any significant modification of the ambient model aquifer temperature. However, in hot or cold climates where air conditioning or heating demand dominates, measurable thermal changes occurred in the model aquifer. In most cases, the maximum temperature  相似文献   

17.
High-frequency temperature data were recorded at one height and they were used in Surface Renewal (SR) analysis to estimate sensible heat flux during the full growing season of two rice fields located north–northeast of Colusa, CA (in the Sacramento Valley). One of the fields was seeded into a flooded paddy and the other was drill seeded before flooding. To minimize fetch requirements, the measurement height was selected to be close to the maximum expected canopy height. The roughness sub-layer depth was estimated to discriminate if the temperature data came from the inertial or roughness sub-layer. The equation to estimate the roughness sub-layer depth was derived by combining simple mixing-length theory, mixing-layer analogy, equations to account for stable atmospheric surface layer conditions, and semi-empirical canopy–architecture relationships. The potential for SR analysis as a method that operates in the full surface boundary layer was tested using data collected over growing vegetation at a site influenced by regional advection of sensible heat flux. The inputs used to estimate the sensible heat fluxes included air temperature sampled at 10 Hz, the mean and variance of the horizontal wind speed, the canopy height, and the plant area index for a given intermediate height of the canopy. Regardless of the stability conditions and measurement height above the canopy, sensible heat flux estimates using SR analysis gave results that were similar to those measured with the eddy covariance method. Under unstable cases, it was shown that the performance was sensitive to estimation of the roughness sub-layer depth. However, an expression was provided to select the crucial scale required for its estimation.  相似文献   

18.
Urnersee and Gersauersee are two adjacent basins of Vierwaldstättersee (Lake Lucerne, Switzerland), seperated by a sill of 85 m depth, with similar topography (max. depth 195 and 213 m, respectively) but remarkably different exposure to “external forces”, such as wind and river input. Urnersee is exposed to diurnal winds and to occasional strong storms from the south (Föhn) whereas the wind over Gersauersee is moderate or weak. Two rivers, both having very large discharges during storms, replace the total water volume of Urnersee about once a year; in contrast, no large river flows directly into Gersauersee. Between March and October 1986, meteorological parameters, water temperatures and currents were measured quasi-continuously with the aim to quantify hypolimnic water exchange and mixing in Urnersee and to asses the relative importance of wind mixing versus river-induced water exchange for the renewal of the deep water layers. Three periods could be identified: (1) in April, weak stratification and strong episodic storms exchange about 50% of the deep hypolimnion (DH, defined as layer below 110 m depth) leading to a mean heat flux of 36 Wm2. Because of the large wind mixing the water of the exposed Urnersee below about 20 m depth becomes lighter than in the sheltered Gersauersee. (2) In May and June, the horizontal density gradient causes about 65% renewal of the Urnersee DH by the heavier Gersauersee intermediate water but does not affect the heart content. (3) Simultaneously with these processes are the episodic river floods adding another 20% to the DH water exchange and causing a heat flux of about 6 Wm2. During the rest of the summer, water exchange remains below 10% and is mainly due to episodic flood while wind mixing has little influence. Yet, during floods water input into the DH per unit time can still be very large and heat, fluxes reach 600 Wm2 or more. The influence of lateral density currents between the two adjacent basins on hypolimnic mixing is of great ecological significance and explains the oxygen saturation found in the deep water of Urnersee compared to Gersauersee.  相似文献   

19.
东太湖水温变化与水-沉积物界面热通量初探   总被引:1,自引:0,他引:1  
曾野  朱金格  王艳平  胡维平 《湖泊科学》2018,30(6):1599-1609
水温对沉水植被的生长和分布具有重要作用,水-沉积物界面热通量对浅水湖泊水温变化的影响值得关注.东太湖是我国东部典型的草型浅水湖区,采用自2013年11月至2015年10月对东太湖湖心进行的不同深度水体及沉积物温度高频观测数据,结合东太湖表层沉积物的热力学性质计算了水-沉积物界面热通量,分析了东太湖水温和水-沉积物界面热通量的变化特征并探讨了其影响因素.结果表明:东太湖各深度水体日升温过程随水深增加后延,升温过程夏季延长,冬季缩短;表层水温日变幅最大,底层水温日变幅次之,沉积物温度日变幅最小,各深度温度日变幅夏季最小、冬季最大;春季和夏季升温过程中各深度日均温变化沿水深存在约1天的延迟,秋季和冬季无此现象;2015年与2014年东太湖温度变化趋势相同,同比月均温差与气温差呈线性相关.沉积物8:00-19:00向水体放热增加或从水体吸热减少,19:00至次日8:00放热减少或吸热增加;3-9月从水体吸热,为热汇,10月至次年2月向水体放热,为热源,沉积物全年为湖泊热源;逐日水-沉积物界面热通量每月6至15日存在相对年变幅较小幅度的正弦式波动.水温和水-沉积物界面热通量的变化主要受太阳辐射和气温的影响,二者对气象参数的响应具有迟滞现象;水-沉积物界面热通量与水温呈负相关,其变化相对水温迟滞,水-沉积物界面热交换的主要作用为缓冲湖泊水体的热量变化;夏季,沉水植物能降低湖泊各层水温和垂向水温差.  相似文献   

20.
Seasonal changes in the water and energy exchanges over a pine forest in eastern Siberia were investigated and compared with published data from a nearby larch forest. Continuous observations (April to August 2000) were made of the eddy‐correlation sensible heat flux and latent heat flux above the canopy. The energy balance was almost closed, although the sum of the turbulent fluxes sometimes exceeded the available energy flux (Rn ? G) when the latent heat flux was large; this was related to the wind direction. We examined the seasonal variation in energy balance components at this site. The seasonal variation and magnitude of the sensible heat flux (H) was similar to that of the latent heat flux (λE), with maximum values occurring in mid‐June. Consequently, the Bowen ratio was around 1·0 on many days during the study period. On some clear days just after rainfall, λE was very large and the sum of H and λE exceeded Rn ? G. The evapotranspiration rate above the dry canopy from May to August was 2·2 mm day?1. The contributions of understory evapotranspiration (Eu) and overstory transpiration (Eo) to the evapotranspiration of the entire ecosystem (Et) were both from 25 to 50% throughout the period analysed. These results suggest that Eu plays a very important role in the water cycle at this site. From snowmelt through the tree growth season (23 April to 19 August 2000), the total incoming water, comprised of the sum of precipitation and the water equivalent of the snow at the beginning of the melt season, was 228 mm. Total evapotranspiration from the forest, including interception loss and evaporation from the soil when the canopy was wet, was 208–254 mm. The difference between the incoming and outgoing amounts in the water balance was from +20 to ?26 mm. The water and energy exchanges of the pine and larch forest differed in that λE and H increased slowly in the pine forest, whereas λE increased rapidly in the larch forest and H decreased sharply after the melting season. Consequently, the shape of the Bowen ratio curves at the two sites differed over the period analysed, as a result of the differences in the species in each forest and in soil thawing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号