首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To assess the potential ecological and health risks of trace elements(Hg,Cd,As,Mn,Sb,Pb,Cu,Ni,Cr,and Zn),a total of 138 soil samples from rice paddies were collected during the rice harvest season in the Wanshan mining area,Guizhou Province,Southwest China.Factors of the pollution load index(PLI),geo-accumulation index(I-Geo),enrichment factor(EF),and risk index(RI)were determined.High concentrations of Hg,Sb,As,Zn,Cd,Cu,and Mn were observed in the soils.The PLI,I-Geo,and EF results all showed high levels of contamination by Hg and Sb and moderate levels of contamination by As,Pb,Zn,Cu,Cd,and Mn.There was no significant contamination from Ni and Cr.The RI was very high,with Hg as the dominant pollutant,as expected,indicating that the historical large-scale Hg mining,as well as artisanal mining,has had a significant impact on the Wanshan area.Moreover,coal combustion,manganese factories,and the use of agrochemicals by the local population could also have an impact on the soil through the introduction of heavy metal loads.To address the current state of contamination,pollutant remediation and the regulation control of the anthropogenic activities in Wanshan are urgently needed.  相似文献   

2.
Removal of Al, As, Cd, total Cr (Tot. Cr), Cu, Total Fe (Tot. Fe), Mn, Ni, Pb, Sb, Sn, and Zn from urban effluent by wastewater treatment plants (WWTPs) operated under five‐stage Bardenpho® process were investigated and water soluble metals in the dewatered sludge were quantified. Samples were collected from two WWTPs on a weekly basis over an approximately 2.5‐year time span. Tot. Fe and Al were the most abundant, As, Pb, Ni, Cu, and Cd were the least abundant metals in the influents of both WWTPs. Removal efficiencies above 75% were achieved for Tot. Cr, Tot. Fe, Al, and Cu, whereas, no significant removal was observed for As, Cd, Pb, Sb, and Sn. Removal of Tot. Cr, Cu, Tot. Fe, Zn, Al, Mn, and Ni were influenced by influent suspended solids concentrations, and of Tot. Cr, Zn, and Cd were influenced by their initial content in the influent. Zn removal efficiency of biological nutrient removal (BNR) system in this study was higher and Cd removal efficiency was lower than that of conventional activated sludge reported in the literature. No remarkable difference for metals such as Cu, Mn, Ni, and Pb was observed between the removal efficiencies of conventional system and BNR system.  相似文献   

3.
Surface sediment samples collected from the inner shelf region of the Bay of Bengal, were analysed for the major elements and total and acetic acid available trace elements (Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Si, Zn) to evaluate geochemical processes influencing their distribution. Major elemental analysis showed that the sediments had high concentrations of Si and relatively low concentrations of Al and Fe. Both major elemental and trace metal concentrations indicated that the sediments represent weathered products of granite and charnockite. Normalization of metals to Al indicated relatively high enrichment factors for Pb, Cd, Zn and Cr. The higher proportions of nondetrital Pb (66%), Cd (41%) and Co (28%) reveal metal contamination due to anthropogenic inputs. Factor analysis (FA) identified six possible types of sedimentological and geochemical associations. The dominant factor accounting for 26.9% of the total variance identifies an anthropogenic input and accumulation of nondetrital Cd, Co, Cr, Ni and Pb. Association of these metals with CaCO3 reveals that shell fragments in the surface sediments are likely act as a carrier phase for nondetrital metals. The results are discussed in the context of the sources and pathways of elements in the Bay of Bengal.  相似文献   

4.
ABSTRACT

The seasonal distribution of metals (V, Cr, Co, Cu, Ni, Zn, Pb, Mn, Fe, Al and Ti) in suspended and bottom sediments of four minor estuaries (Terekhol, Chapora, Sal and Talpona rivers) of Goa, India was investigated to understand the metal distribution process in the estuarine region. The highest particulate-metal concentrations were found in low-salinity regions of all the estuaries, in the wet season (e.g. in the Terekhol River, the averages in ppm were Co: 53, Ni: 197, Cu: 208, Zn: 212 and Pb: 65) compared to the dry season averages (Co: 27, Ni: 76, Cu: 105, Zn: 164 and Pb: 13 ppm). The estuarine-mixing diagrams showed non-conservative behaviour in both seasons. The Sal River had the highest particulate-metal concentration (Co: 106, Ni: 300 and Zn: 323 ppm), suggesting an anthropogenic input. The enrichment factor for suspended matter was higher than bottom sediments with extremely high enrichment for Mn (>10). The Geo-accumulation index displayed unpolluted to polluted class for all metals. The study highlights the important role played by small estuaries in seasonal metal release and accumulation along the coastal region.  相似文献   

5.
分析了阳宗海柱状及表层沉积物中Al、Fe、Mn、Zn、Cr、Co、Ni、Cu、As、Cd、Pb等金属元素的含量,结合沉积年代学,研究了沉积物重金属污染的时空变化和潜在生态风险特征.结果表明,表层沉积物中重金属含量具有一定的空间差异性,As、Cd、Cu、Pb和Zn在中东部湖区含量较高,而Cr、Co、Ni含量高值位于南、北湖区的近岸区域;柱状沉积物中,1990s之前As、Cd、Cu、Pb和Zn含量较为稳定,1990s中后期以来,其含量逐渐增加,并在2009-2010年前后达到最大值,此后逐渐下降;而柱状沉积物中Cr、Co、Ni含量变化趋势与Al、Fe相似,总体上由下向上逐渐降低,这主要与沉积物质地(粒度)逐渐变粗有关.重金属富集系数表明,阳宗海沉积物中主要污染元素为As、Cd、Cu、Pb和Zn,1990s中后期污染程度快速增加,2009-2010年前后达到峰值,此后污染程度逐渐降低;表层沉积物中Cu为未污染至"弱"污染水平;Zn、Pb为"弱-中等"污染水平,As为"中等-强"污染水平,Cd为"弱-强"污染水平,中东部湖区污染程度高于其他湖区,这可能与该湖区缺少入湖径流、自然碎屑物质沉积速率较低以及砷污染事件等人为源的重金属贡献影响更为显著有关.生态风险评价结果表明,在2002-2010年前后沉积物重金属达到"中等-强"潜在生态危害,主要贡献因子是Cd和As,近年来其生态风险等级逐渐降低;表层沉积物中重金属在中东部湖区具有"中等"程度潜在生态危害,而其他湖区表层沉积物重金属具有较低程度的潜在生态风险.  相似文献   

6.
《国际泥沙研究》2020,35(5):527-539
The objective of this current study is to compare related sediment legislation standards and norms to the diversity and influence of anthropogenic and natural (geogenic) sources of pollution in the investigated fluvial relief test site region of the Obedska bog. All metals (nickel (Ni), zinc (Zn), cadmium (Cd), copper (Cu) and lead (Pb) except chromium (Cr)) and arsenic (As) have higher values than the Upper Continental Crust (UCC) for loess sediment. Several sharp leaps in the enrichment factor (r) suggested “indicators of anthropogenic metal pollution” for Cd, Cu (r > 5.0) and Zn, Ni (r > 1.0) for this region. In addition, the Chemical Proxy of Alteration (CPA, 60–95) from the unique Jadar block terrane and neighbouring representative catchment areas, confirmed moderate to higher intensity of alteration. Principal Component Analysis/Factor Analysis (PCA/FA) and cluster analysis suggest that Ni, Zn, Cu and Cd are derived from several anthropogenic sources, whereas As is convincingly of geogenic origin, and Pb and Cr exhibit dual origins. The sum of 16 U. S. Environmental Protection Agency Polycyclic Aromatic Hydrocarbons (EPA PAHs) indicated heterogenic sources, but minor effects to biota. The results of the current investigation indicated intensive and highly diffuse sources of pollution in this United Nations Educational, Scientific and Cultural Organization [UNESCO's] region. The outcomes indicate that Cu should be added to the European Union [EU] watch list of emerging contaminants.  相似文献   

7.
The aim of this study was to assess the level of heavy metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) contamination and enrichment in the surface sediments of the Seyhan River, which is the receiving water body of both treated and untreated municipal and industrial effluents as well as agricultural drainage waters generated within Adana, Turkey. Sediment and water samples were taken from six previously determined stations covering the downstream of the Seyhan dam during both wet and dry seasons and the samples were then analyzed for the heavy metals of concern. When both dry and wet seasons were considered, metal concentrations varied significantly within a broad range with Al, 7210–33 967 mg kg?1 dw; Cr, 46–122 mg kg?1 dw; Cu, 6–57 mg kg?1 dw; Fe, 10 294–26 556 mg kg?1 dw; Mn, 144–638 mg kg?1 dw; Ni, 82–215 mg kg?1 dw; Pb, 11–75 mg kg?1 dw; Zn, 34–146 mg kg?1 dw in the sediments while Cd was at non‐detectable levels for all stations. For both seasons combined, the enrichment factor (EF) and the geo‐accumulation index (Igeo) for the sediments in terms of the specified metals ranged from 0.56 to 10.36 and ?2.92 to 1.56, respectively, throughout the lower Seyhan River. The sediment quality guidelines (SQG) of US‐EPA suggested the sediments of the Seyhan River demonstrated “unpolluted to moderate pollution” of Cu, Pb, and Zn, “moderate to very strong pollution” of Cr and Ni. The water quality data, on the other hand, indicated very low levels of these metals suggesting that the metal content in the surface sediments were most probably originating from fine sediments transported along the river route instead of water/wastewater discharges with high metal content.  相似文献   

8.
In the recent years,the Red Sea coast of Yemen has been severely affected by intensive anthropogenic activities.The current study constitutes a thorough inquiry to evaluate the extent of heavy metals pollution in Yemen's Red Sea coast sediment and identifies the possible sources of pollution.The concentrations of five metals(copper(Cu),zinc(Zn),cadmium(Cd),lead(Pb),and nickel(Ni))collected from nine sites along the Red Sea coast of Yemen were assessed using an atomic absorption spectrophotometer(ASS).Sediment quality indices,such as the sediment quality guidelines(SQGs),potential ecological risk(RI),contamination factor(CF),pollution load index(PLI),geoaccumulation index(Igeo),and modified degree of contamination(mCd)were computed.In addition,multivariate statistical techniques(principal component analysis(PCA),hierarchical cluster analysis,and Pearson's correlation analysis)were applied to identify the potential sources of metals.The mean concentrations of Cu,Zn,Cd,Pb,and Ni were 51.3,61.9,4.02,9.9,and 33.4 mg/kg dry wt,respectively.The spatial distribution revealed that the metals concentrations were high at the middle zone and low southward of Hodeida city.According to the SQGs,the adverse biological effects of metals were occasionally associated with Cu and Cd,frequently associated with Ni,and not expected to occur with Zn and Pb.The RI indicated that the sediment of the studied sites pose low(RI<50)to considerable(100≤RI<200)ecological risk.The mean effect range-median quotient(M-ERM-Q)indicated that the combination of the studied metals had the toxicity probability of 21%at all studied sites.Igeo and CF indicated that the metals concentrations were in the descending order of:Zn>Ni>Pb>Cd>Cu,whereas the PLI and mCd indicated that Ras Isa(Site 5)and Urj village(Site 6)were the most polluted sites.PCA,cluster analysis,and correlation analysis found that Cd,Pb,and Ni mostly originated from anthropogenic sources while Cu and Zn were mainly derived from natural sources.Thus,it is evident that the intensive anthropogenic activities had negative influence on metals accumulation in the sediment of the Red Sea coast of Yemen leading to detrimental effects to the whole ecosystem.These comprehensive findings provide valuable information and data for future monitoring studies regarding heavy metals pollution and sediment quality at the Red Sea coast of Yemen.  相似文献   

9.
The heavy metal inventory and the ecological risk of the tidal flat sediments in Haizhou Bay were investigated. Results show that the average concentrations of heavy metals in the surface sediments exceeded the environment background values of Jiangsu Province coastal soil, suggesting that the surface sediments were mainly polluted by heavy metals (Cd, Cr, Cu, Mn, Pb and Zn). In addition, the profiles of heavy metals fluxes can reflect the socio-economic development of Lianyungang City, and heavy metals inputs were attributed to anthropogenic activities. Cr, Cu, Pb and Zn were mainly present in the non-bioavailable residual form in surface sediments, whereas Cd and Mn were predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd and Pb. According to the Sediment quality guidelines (SQGs), however, the adverse biological effects caused by the heavy metals occasionally occurred in tidal flat.  相似文献   

10.
Dil Deresi stream is a highly contaminated stream passing through the most heavily industrialized area of Izmit Bay. In this research, surface sediments in the <63-microm fraction collected from 34 sites at western part of Izmit Bay, Northeastern Marmara Sea, Turkey were analyzed by ICP-AES for Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn and Zn. Metal concentrations were compared with the marine sediment quality standards (SQS) and literature data to assess the pollution status of the sediments. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The analysis revealed three groups of elements: (1) Sn is the most enriched element; (2) As, Cd, Pb and Zn are minor enriched elements; and (3) Co, Cr, Cu, Fe, Mg, Mn and Ni are at background concentrations. The distribution maps of the concentrations and enrichment factors for all heavy metals were also produced as a contour plot based on Geographic Information System (GIS) technology.  相似文献   

11.
In this paper, the vertical variations of heavy metal elements (including Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the sediments of Songhua Lake are analyzed using sediment cores. A 70‐year evolutionary history of these heavy metal elements in Songhua Lake is described and the sources of the heavy metals in the sediments are investigated by evaluating the pollution characteristics of the metals in terms of their enrichment coefficients and geoaccumulation indexes. The results indicate that Cr, Cu, Mn, Ni, Pb, and Zn in the sediments originated mainly from basin erosion and were transported to the lake by rivers. Cd and Hg in the sediments also originated from basin erosion that occurred prior to the mid‐1990s, and these sediments have since been overlaid by artificial pollution. The distribution of heavy metals in the sediments of Songhua Lake is influenced by many factors, including sediment composition, the relative importance of fluvial input, and artificial pollution.  相似文献   

12.
The objective of this study was to evaluate the concentration and distribution of heavy metals in the sediments of Paulo Gorski Lake, as well as the metals’ bioavailability and potential ecological risk, and to define the anthropogenic and natural heavy metal contributions to the lake. The chemical elements calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), lead (Pb), and zinc (Zn) were quantified by flame atomic absorption spectrophotometry with two extraction methods to quantify the bioavailable and non-bioavailable fractions. The data were evaluated using multivariate statistics and sediment quality indices. All sediment collection points (S1, S2, S3, S4 and S5) are different in terms of the concentration of heavy metals, except for S4 and S5, which were statistically equal. The bioavailable fraction of the elements in the sediment follows the sequence Pb>Cu>Mn>Zn>Ni>Cr>phosphorus (P) for all points. The elements Co, Cr, Pb, and Zn showed moderate to considerable contamination at all points. Only points S3 and S5 had moderate ecological risk. Urbanization has been affecting Paulo Gorski Lake via the input of chemical elements, especially Co and Pb. The points most affected by heavy metal contamination are S3 and S5 when the sedimentological sensitivity factor is considered. The lake has high hydrodynamics, causing some of the contaminants that enter the system to leave it, leading to potential negative impacts downstream.  相似文献   

13.
The values for the partition coefficient (Kd) were calculated for Ca, Mg, Cd, Cr, Cu, Fe, Mn, Pb, Ni, and Zn at 19 sites in the Capivara hydroelectric reservoir in Brazil. It was found that the relative values of Kd follow the order: Cr > Mn > Fe > Cu > Zn > Ni > Pb > Ca > Cd, differing from the values reported for Kd in aquatic systems in the northern hemisphere. A hierarchical cluster analysis and linear correlations showed that Cr is strongly associated with Fe and Cu, and that Cd is the only metal found in complexation with organic matter, explaining its higher solubility.  相似文献   

14.
The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, and Pb metals in soil samples (N = 21) were determined by flame atomic absorption spectrometry. The modified Community Bureau of Reference (BCR) sequential extraction procedure (three‐step) was used in order to evaluate mobility, availability, and persistence of heavy metals in soil samples taken from an agricultural area in Erciyes University Campus. The operationally defined fractions isolated using the BCR procedure were: acid extractable, reducible, and oxidizable. The mobility sequence based on the sum of the BCR sequential extraction stages was: Mn (70.2%) > Pb (62.9%) > Ni (26.7%) > Cr (15.4%) > Zn (14.4%) > Cu (12.9%) > Fe (1.24%). Multivariate statistical analysis was used to define the possible origin of heavy metals in soils. Correlation analysis, principal component analysis (PCA), and cluster analysis (CA) were applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of heavy metals. PCA results revealed that the sampling area was mainly influenced from three sources, namely natural, airborne emissions from domestic heating and traffic.  相似文献   

15.
Metal pollution study on sediments of North Bay of Bengal sediments presented in this paper is based on existing Lithostratigraphy of upstream,mineralogy and geochemical analysis of 42 sediment samples.The statistical analysis identifies the metal pollution as well as its apparent source in the off shore regions.Samples were analyzed for grain size,organic content and heavy metals(Fe,Mn,Cr,Cu,Ni,Pb,Cd,Zn and Co) using the sequential extraction method to evaluate geochemical processes and pollution load.In an effort to surmise anthropogenic input,several approaches including classification by quantitative indexes such as enrichment factor,contamination factor,degree of pollution,pollution load index and geo accumulation index,were attempted.Metal speciation results indicate high%of Cd in exchangeable fraction of Mahanadi transect sediments where as a considerable amount of oxidizable fraction of Cr was detected at Dhamra.Quantitative indexes place North Bay of Bengal under moderately polluted zone due to high level of Cd.Normalization of metals to Fe indicated relatively high enrichment factors for Cd and Cr.Factor analysis identified seven possible types of geochemical associations where sediment pH plays a major role for the heavy metal mobility.The higher Cd concentration in exchangeable fraction as well as the higher EF for Cd and Cr present in sediment may pose a risk of secondary water pollution under slightest disturbance in the geo-chemistry of sediments.Comparison study with available data of near costal zones and upstream stratigraphy revealed that open cast mining,overburden dumping,mineral based industrial effluents were the major source of pollution for catchment area contamination.Bay of Bengal is likely to face a serious threat of metal pollution with the present deposition rates unless rigorous pollution control norms are applied.  相似文献   

16.
Monthly measurements were made over a one-year period to determine the heavy metals Fe, Mn, Cd, Cr, Cu, Pb and Zn in the vertical profiles of Lake Constance (Obersee and Untersee) and Greifensee, by means of atomic absorption spectrometry. Fe and Mn exhibited the usual cyclical fluctuations depending on redox conditions in the hypolimnion. For Cd, Cr, Cu, Pb and Zn no concentration patterns were noted that would show their dependency on seasonal and vertical stratifications.   相似文献   

17.
A geographic information system (GIS)-based chemometric approach was applied to investigate the spatial distribution patterns of heavy metals in marine sediments and to identify spatial human impacts on global and local scales. Twelve metals (Zn, V, Ni, Mn, Pb, Cu, Cd, Ba, Hg, Fe, Cr and Al) were surveyed twice annually at 59 sites in Hong Kong from 1998 to 2004. Cluster analysis classified the entire coastal area into three areas on a global scale, representing different pollution levels. Backward discriminant analysis, with 84.5% correct assignments, identified Zn, Pb, Cu, Cd, V, and Fe as significant variables affecting spatial variation on a local scale. Enrichment factors indicated that Cu, Cr, and Zn were derived from human impacts while Al, Ba, Mn, V and Fe originated from rock weathering. Principal component analysis further subdivided human impacts and their affected areas in each area, explaining 87%, 84% and 87% of the total variances, respectively. The primary anthropogenic sources in the three areas were (i) anti-fouling paint and domestic sewage; (ii) surface runoff, wastewater, vehicle emissions and marine transportation; and (iii) ship repainting, dental clinics, electronic/chemical industries and leaded fuel, respectively. Moreover, GIS-based spatial analysis facilitated chemometric methods.  相似文献   

18.
Concentration of 7 heavy metals, Zn, Fe, Cu, Cr, Cd, Pb and Ni in mudflat sediments, mangrove root sediments and root tissues of Acanthus ilicifolius, Aegicerus corniculatum and Kandelia candel from the Mai Po Nature Reserve, Northwest Hong Kong, were measured. Metal concentrations in the upper 0–10 cm of the sediment cores from the mudflat were 4–25% higher than those found in the bottom 21–30 cm. Relative Topsoil Enrichment Index approximated 1.0 for all the metals. Mudflat sediment concentrations of Fe, Ni, Cr, Cd and Cu were greater than those found in the mangrove sediments. Except for Fe, concentrations of the other 6 heavy metals were more elevated in the mangrove root sediments than in the corresponding root samples. Higher concentration factors for Zn, Fe and Cu may indicate bioaccumulation. Mean metal concentrations in both mudflat and mangrove sediments decreased in the order Fe > Zn > Pb > Ni > Cu > Cr > Cd. Mangrove root tissues also showed the same pattern except that Pb > Cu > Ni  相似文献   

19.
The oyster Crassostrea rhizophorae is a bivalve abundant in Venezuelan estuaries and consumed by local populations. No known values have been reported on trace metals in oysters from the central Venezuelan coast. We report the concentrations of Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn in the soft parts of C. rhizophorae, which were collected bimonthly between March 2008 and March 2009, at two sampling areas from the Central Venezuelan Coast: Buche estuary and Mochima estuary. Our results show that for each metal there is a similar temporal variation pattern. The concentrations of the heavy metals reported in this work are useful as reliable baselines and can be used for comparison in future environment studies. Concentrations in C. rhizophorae from the Buche estuary can be interpreted to be high on a global scale for Cd, Cu, Ni and Mn, indicating atypically raised bioavailabilities.  相似文献   

20.
For a wide variety of substances aquatic systems are the medium of origin, or sinks in a longer or shorter lasting stay or even in geological periods. For surface sediments of Berlin waters and their surroundings this paper describes the enrichment and distribution of heavy metals (SM), which have a high priority under international aspects and a marked capability to geoaccumulation. From the 25 metals investigated Hg, Pb, Cu, Cd and Zn are of anthropogenic origin, all others are of geochemical provenience and correspond to background values. Some metals (Hg, Cd, Ni, Co, Cu, Cr and Pb) have specific concentration profiles with increasing depth of water and sediment. The study of correlation of SM in sediments demonstrates generally a strong relation to macroelements and between some metals themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号