首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
在对忻州市现有房屋建筑进行调查研究的基础上,对房屋建筑按结构进行了分类,并对各类房屋进行了抗震分析,进而建立了相应的易损性矩阵,最终结果得到以小区为单元遭遇不同强度地震作用的地震损失和人员伤亡,以及50年地震期望损失。  相似文献   

2.
基于单一指标的传统地震易损性分析忽略了非结构构件损伤对建筑抗震性能的影响。首先基于多维性能极限状态理论建立了三维性能极限状态方程,并对几种特殊情况下的三维阈值曲面进行了讨论。进而以最大层间位移角作为整体结构与位移敏感型非结构构件的性能指标,以峰值楼面加速度作为加速度敏感型非结构构件的性能指标,对建筑的结构损伤和非结构损伤进行描述。考虑各性能指标之间的相关性和各性能指标所对应的极限状态阈值的不确定性,建立了建筑在地震作用下的三维性能极限状态的超越概率函数。最后,采用Open Sees有限元软件对一7层钢筋混凝土框架填充墙建筑进行增量动力分析,得到其各性能水平下的地震易损性曲线。分析结果表明,当忽略非结构构件损伤时,各性能极限状态的超越概率均降低,从而高估了建筑剩余功能水平,进而导致低估建筑的损失。在考虑各性能指标的极限状态阈值的不确定性时,对任一性能极限状态,不同变异系数取值下的易损性曲线会出现交点,在交点之前超越概率随着变异系数的增大而增大,交点之后则随着变异系数的增大而减小。在考虑性能指标间的相关性时,对任一性能极限状态,超越概率随着相关系数的减小而增大。另外,性能指标阈值的不确定性与性能指标间的相关性对地震易损性的影响随着性能水平的提高而逐渐降低,且对低性能水平下建筑地震易损性有明显影响。  相似文献   

3.
地震作用下结构的易损性分析是地震灾害损失预测方法的重要组成部分。本文针对多层砌体房屋结构、排架结构和多层钢筋混凝土结构等3种城市典型建筑,首先给出了该类单体建筑的地震结构易损性分析方法,然后对群体建筑的地震易损性分析方法,以及群体建筑的易损性分类方法进行了探讨,为城市典型建筑的地震灾害损失预测和评估提供参考,并为宁波市抗震防灾规划的地震损失预测提供基础。  相似文献   

4.
城市典型建筑的地震损失预测方法Ⅰ: 结构易损性分析   总被引:1,自引:1,他引:1  
地震作用下结构的易损性分析是地震灾害损失预测方法的重要组成部分。本文针对多层砌体房屋结构、排架结构和多层钢筋混凝土结构等3种城市典型建筑,首先给出了该类单体建筑的地震结构易损性分析方法,然后对群体建筑的地震易损性分析方法,以及群体建筑的易损性分类方法进行了探讨,为城市典型建筑的地震灾害损失预测和评估提供参考,并为宁波市抗震防灾规划的地震损失预测提供基础。  相似文献   

5.
本文在对西藏东南部各县的建筑类型、数量、易损性调查的基础上,对不同类型的建筑建立了模式类向量,使用三维图像模式识别技术估计了各类型建筑在西藏东南部各县市的数量分布,建立了不同建筑物的结构易损性和人口易损性模型,并且估算了西藏东南部各县在遭遇一次设定地震时的损失分布和基于危险性的未来50年可能的损失分布情况.本文研究表明,若曲松—桑日发生7.5级地震,可能造成拉萨、山南两市较重的人员伤亡,其中曲松县和乃东区伤亡最重.西藏东南部未来50年建筑地震风险最高的地区是拉萨市区、林芝市区和错那县,其中拉萨市区的建筑财产损失风险最高.  相似文献   

6.
描述地震作用与工程破坏之间关系的易损性曲线及其概率分布对于地震灾害损失的可靠评估至关重要。以对数正态分布为主体的现行易损性概率分布模型无法很好地描述完好无损和完全破坏这2种边界条件。文中基于新西兰近40万栋房屋的历史震害信息,确认了这2种边界条件的存在,并对各种给定地震动水平下结构的损失分布进行了研究,提出了考虑上述2种边界条件的易损性混合概率分布模型,即首先单独考虑完好无损和完全破坏2种边界情况,然后再利用分布函数拟合其他的地震损失分布。通过对混合概率分布模型的损失分布与实际损失分布进行比较,验证了文中所提模型的有效性,可以用于未来分析地震损失的不确定性分布。  相似文献   

7.
地震灾害损失初步评估方法研究   总被引:6,自引:2,他引:4  
通过搜集地震灾害及经济损失评估资料,研究地震灾害特征,总结经济损失规律,提取地震灾害损失评估经验模型。以此为基础,提出一种初步评估地震灾害经济损失的方法。研究震级与人员伤亡的关系,形成人员伤亡评估经验模型;采用适合本地区的人员伤亡评估经验模型,估算人员伤亡。研究历史地震烈度分布特征,根据震情速报的地点、震级初步确定地震灾区范围;按烈度分布的一般规律初步划分评估区;结合地震应急数据库统计不同评估区内房屋建筑面积,或者查阅当地年鉴统计不同评估区内人口数,按人均房屋建筑面积估算灾区房屋建筑面积;研究历史地震房屋建筑震害,给出房屋建筑地震破坏比经验模型(震害矩阵);按国家标准《地震现场工作第4部分:灾害直接损失评估》(2005)选取适合的损失比;收集不同结构类型房屋建筑的重置单价。遵循地震灾害损失评估原理,可以快速评估计算房屋建筑的地震灾害经济损失。研究历史地震中其他工程结构经济损失与地震灾害总损失的关系,给出其他工程结构经济损失占地震灾害总损失比例的经验模型,据此初步估计其他工程结构的经济损失。  相似文献   

8.
为进一步评估隔震曲线梁桥在地震激励下的抗震性能,从地震易损性角度出发并兼顾考虑地震激励方向对其易损性的影响。利用APDL建立采用板式橡胶支座的隔震曲线梁桥有限元模型,从PEER中选取同一地震事件中的近断层地震动,按规范规定比例输入水平双向地震动进行非线性动力时程分析,结合地震响应与损伤指标计算得到各构件地震易损性曲线;考虑地震激励方向的变化,通过MATLAB编程绘制得到桥梁结构构件(桥墩与支座)以及整体系统的地震易损性曲面,分析探讨地震激励方向对隔震曲线梁桥易损性的影响。结果表明:不同极限状态下各桥墩切向损伤条件概率明显大于其径向,各支座的切向与径向易损性相差不大,但仍是各支座的切向易损性略大于径向易损性;桥梁各构件(桥墩与支座)切向易损性对地震激励方向均表现出很强依赖性,而径向易损性对其的依赖性相对较弱,且伴随损伤等级的提高,构件易损性对地震激励方向更加敏感;桥梁整体系统易损性对地震激励方向的变化不太敏感,且因各构件响应之间的相关性较高,其系统易损性更接近于易损性最大的构件——易损性下限;当进行隔震曲线梁桥抗震性能评估时,应考虑不同地震激励方向对其地震易损性的影响,从而使得易损性分析...  相似文献   

9.
2017年5月11日,新疆喀什地区塔什库尔干县发生5.5级地震。地震造成8人死亡、31人受伤以及财产损失,属于典型的“小震大灾”。按照一般的地震灾害损失快速评估方法,得到的评估结果与实际结果差别较大。为探讨评估结果偏离的原因,本文对不同地震损失评估方案进行比较分析,探讨了地震致灾性(地震影响场分布)、承灾体(人口)分布等因素对地震损失评估结果的影响。结果表明在此次地震快速评估中,基于宏观震中确定的地震影响场较微观震中更接近实际分布;地震烈度衰减的平均估计模型给出的地震烈度区面积明显小于实际面积;极震区存在抗震能力相对低的土木、砖木结构房屋,是造成该地震震级相对小而生命损失相对大的“小震大灾”的重要原因。对比分析结果表明,提高人口、房屋建筑等风险暴露数据的空间精准性,改善地震震中定位与地震影响场估计的准确性,将有助于提高地震应急损失评估的准确性。  相似文献   

10.
建筑结构响应是有效反映结构动力特性的最直接参数,开展结构动力响应实时监测可为结构抗震韧性评估提供准确的地震动输入。本文基于非结构构件损失构建结构抗震韧性评估方法,研究确定位移敏感型和加速度敏感型非结构构件的易损性模型。选择某六层钢筋混凝土框架结构进行实时监测系统建设,基于监测数据开展结构抗震韧性评估。通过构建建筑信息模型(BIM),并在有限元分析软件OpenSees中建立结构弹塑性分析模型,利用实时监测数据实现结构模型更新,直至监测数据与模型分析结果一致。由于实时监测数据峰值较低,结构不会发生塑性变形,因此选择10条双向非脉冲地震动模拟实时监测地震记录。根据层间位移角和楼面加速度分布,开展结构功能损失评估,得到该建筑结构的抗震韧性得分。分析表明,该结构抗震性能较好,在遭受地震破坏后,会发生非结构构件脱落,需要采取有效措施进一步提升建筑抗震韧性水平。  相似文献   

11.
With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.  相似文献   

12.
2021年2月13日,日本本州东岸近海发生7.3级地震,没有造成人员死亡,仅150余人受伤,导致建筑物和基础设施发生不同程度的破坏和功能中断。此次强震并未造成大量的人员伤亡和工程结构本体破坏,但出现非结构构件破坏较为普遍以及基础设施功能中断的情况。介绍了各机构的震后灾害损失快速评估工作,总结了工程结构破坏和功能影响、人员伤亡和经济损失情况。对此次地震的灾害特征进行了总结和思考,认为随着各地区抗震能力的提高,非结构构件破坏、地震灾害链、基础设施功能中断与恢复、抗震韧性将成为今后研究的重点。  相似文献   

13.
With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major knowledge gaps that will need to be filled by future research. Furthermore, considering recent trends in earthquake engineering, the paper explores how performance-based seismic design might be conceived for nonstructural components, drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.  相似文献   

14.
Aftershocks have been shown to exacerbate earthquake‐induced financial losses by causing further damage to structural and nonstructural components in buildings that have already been affected by a mainshock event and increasing the duration of disrupted functionality. Whereas seismic loss assessment under isolated events has been addressed thoroughly in previous studies, comparatively less has been accomplished in the area of loss assessment under sequences of mainshock‐aftershock ground motions. The main objective of the current study is to formulate a comprehensive framework for quantifying financial losses under sequential seismic events. The proposed framework is capable of accounting for the uncertainties in the state of structure due to accumulation of earthquake‐induced damage, the time‐dependent nature of seismic hazard in the post‐mainshock environment, and the uncertainties in the occurrence of mainshock and aftershock events. Application of the proposed framework to a 4‐story reinforced concrete moment frame shows that consideration of aftershocks could increase lifecycle earthquake‐induced losses by up to 30% compared with mainshock‐only assessments.  相似文献   

15.
Non‐ductile reinforced concrete buildings represent a prevalent construction type found in many parts of the world. Due to the seismic vulnerability of such buildings, in areas of high seismic activity non‐ductile reinforced concrete buildings pose a significant threat to the safety of the occupants and damage to such structures can result in large financial losses. This paper introduces advanced analytical models that can be used to simulate the nonlinear dynamic response of these structural systems, including collapse. The state‐of‐the‐art loss simulation procedure developed for new buildings is extended to estimate the expected losses of existing non‐ductile concrete buildings considering their vulnerability to collapse. Three criteria for collapse, namely first component failure, side‐sway collapse, and gravity‐load collapse, are considered in determining the probability of collapse and the assessment of financial losses. A detailed example is presented using a seven‐story non‐ductile reinforced concrete frame building located in the Los Angeles, California. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
砌体建筑群在地震中往往破坏严重损失巨大,合理评估地震作用对不同种类砌体结构造成破坏的风险变得至关重要。传统基于后验概率的地震危险性分析方法忽略了砌体建筑个体差异性的影响,未深入考虑多种震害因子的耦合作用。本文以华南地区砌体建筑群为例,开发了一种集成概率方法来对城市砌体结构的破坏风险进行建模,考虑建筑年代、层数、使用用途和墙厚四类震害因子的耦合影响,采用(Kolmogorov-Smirnov)K-S检验,在设定地震动参数下选取Gaussian分布、Log-Normal分布、Gumbel分布和Beta分布四种概率分布对该地区砌体建筑物的破坏状态概率分布参数进行拟合。通过均方根误差(Root Mean Square Error)RMSE进行拟合优度评价,最终建立基于Gaussian分布和Log-Normal分布的砌体建筑物破坏联合概率模型。最后,以华南地区三个城市典型砌体建筑物为例进行实例对比验证,将基于本文建立的建筑破坏概率模型推算出的砌体建筑群震害矩阵与基于单体结构分析得到的震害矩阵进行对比,与理论值最大偏差为0.033 3。研究表明:本文构建的集成概率方法能够获得更加合理的城市砌体建筑...  相似文献   

17.
This paper discusses an analytical study that quantifies the expected earthquake‐induced losses in typical office steel frame buildings designed with perimeter special moment frames in highly seismic regions. It is shown that for seismic events associated with low probabilities of occurrence, losses due to demolition and collapse may be significantly overestimated when the expected loss computations are based on analytical models that ignore the composite beam effects and the interior gravity framing system of a steel frame building. For frequently occurring seismic events building losses are dominated by non‐structural content repairs. In this case, the choice of the analytical model representation of the steel frame building becomes less important. Losses due to demolition and collapse in steel frame buildings with special moment frames designed with strong‐column/weak‐beam ratio larger than 2.0 are reduced by a factor of two compared with those in the same frames designed with a strong‐column/weak‐beam ratio larger than 1.0 as recommended in ANSI/AISC‐341‐10. The expected annual losses (EALs) of steel frame buildings with SMFs vary from 0.38% to 0.74% over the building life expectancy. The EALs are dominated by repairs of acceleration‐sensitive non‐structural content followed by repairs of drift‐sensitive non‐structural components. It is found that the effect of strong‐column/weak‐beam ratio on EALs is negligible. This is not the case when the present value of life‐cycle costs is selected as a loss‐metric. It is advisable to employ a combination of loss‐metrics to assess the earthquake‐induced losses in steel frame buildings with special moment frames depending on the seismic performance level of interest. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
按新旧规范设计的多层住宅砖房地震易损性的对比   总被引:1,自引:0,他引:1  
本文采用概率方法借助于拉丁超立方采样技术和非线性地震反应时程分析对按现行规范设计的多层住宅砖房的地震易损性进行分析,并与按上一代规范设计的多层住宅砖房的地震易损性分析结果[1]进行了比较,为进一步研究这类结构的地震安全性、未来地震的损失预测以及防震减灾对策奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号