首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
重力剖面金川—芦山—犍穿越芦山震区,近垂直于龙门山断裂带南段,长约300km,测点距平均2.5km,采用高精度绝对重力控制下的相对重力联测与同址GPS三维坐标测量,获得了沿剖面的自由空气异常和布格重力异常,并对布格重力异常进行了剩余密度相关成像和密度分层结构正反演研究.结果表明,芦山地震所在的龙门山断裂带南段存在垂直断裂走向的宽广的巨型重力梯级带,重力变化达252×10-5 m·s-2以上(龙泉山以西),反映出四川盆地与松潘—甘孜地块地壳厚度陡变(约14.5km)性质;四川盆地与松潘—甘孜地块过渡区(龙门山断裂带与新津—成都—德阳断裂之间)存在(30~50)×10-5 m·s-2的剩余异常"凹陷",可能与上地壳低密度体、山前剥蚀与松散堆积和推覆体前缘较为破碎有关;剩余密度相关成像显示地壳密度呈现分段性特征,在芦山地震位置出现高低密度变化;地壳呈现三层结构,四川盆地上、中、下地壳底界面平缓,反映其稳定阻挡作用,而松潘—甘孜块体上、中、下地壳底界面明显往盆地逐步抬升,反映出青藏高原往东的强烈挤压作用;松潘—甘孜块体往东推覆变形主要集中在上地壳范围内,推覆深度随离龙门山断裂带愈近而越浅.本文通过对密度分布及结构特征的研究,分析了芦山地震及龙门山地区地壳构造背景和当前活动性的深部动力环境特征.  相似文献   

2.
对龙门山及其邻近地区20个宽频带地震台站的记录提取远震P波接收函数,并应用H-k叠加方法,求得每个台站下方的地壳厚度和波速比.以此为约束,进一步作接收函数反演,获得各个台站下方的S波速度结构.后龙门山与松潘-甘孜地块的地壳速度结构相似,而前龙门山的地壳速度结构则与四川盆地相似.由此说明,中央主断裂带是青藏高原东部与扬子地块之间主要的边界断裂.松潘甘孜地块至后龙门山中南部地区存在下地壳低速层,有利于中上地壳物质的滑脱作用.远震接收函数和布格重力异常的分析结果支持龙门山断裂带深部构造为滑脱-逆冲型的论断.在松潘-甘孜地块内可能具有双层的滑脱构造.上层滑脱发生在10~15km的深度上,该滑脱带表现为高温韧性滑脱剪切带.下层滑脱则发生在30km左右的深度上,其下方为青藏高原东部广泛存在的下地壳流.布格重力异常的分析表明,在中上地壳,四川盆地的密度较高,松潘-甘孜地块密度相对较低.龙门山断裂带位于密度较高的一侧,是松潘-甘孜地块向东南方的四川盆地逆冲的结果.在地壳下部,四川盆地为高P波速度和高密度区,表明地壳物质是坚硬的.松潘-甘孜块体是低S波速度和低密度区,表明物质比较软弱.高密度块体阻挡了青藏高原东部下地壳物质向四川盆地下方的流动.受印度板块往北运动的影响,青藏高原下地壳物质向东流动.中上地壳物质向东运动受到刚性强度较大的扬子地块的阻挡,在龙门山断裂带上产生应力集中,导致中央断裂带上应力突然释放,产生汶川Ms8.0级地震.  相似文献   

3.
对龙门山及其邻近地区20个宽频带地震台站的记录提取远震P波接收函数,并应用H-k叠加方法,求得每个台站下方的地壳厚度和波速比.以此为约束,进一步作接收函数反演,获得各个台站下方的s波速度结构.后龙门山与松潘-甘孜地块的地壳速度结构相似,而前龙门山的地壳速度结构则与四川盆地相似.由此说明,中央主断裂带是青藏高原东部与扬子地块之间主要的边界断裂.松潘甘孜地块至后龙门山中南部地区存在下地壳低速层,有利于中上地壳物质的滑脱作用.远震接收函数和布格重力异常的分析结果支持龙门山断裂带深部构造为滑脱-逆冲型的论断.在松潘-甘孜地块内可能具有双层的滑脱构造.上层滑脱发生在10—15km的深度上,该滑脱带表现为高温韧性滑脱剪切带.下层滑脱则发生在30km左右的深度上,其下方为青藏高原东部广泛存在的下地壳流.布格重力异常的分析表明,在中上地壳,四川盆地的密度较高,松潘.甘孜地块密度相对较低.龙门山断裂带位于密度较高的一侧,是松潘-甘孜地块向东南方的四川盆地逆冲的结果.在地壳下部,四川盆地为高P波速度和高密度区,表明地壳物质是坚硬的,松潘-甘孜块体是低s波速度和低密度区,表明物质比较软弱.高密度块体阻挡了青藏高原东部下地壳物质向四川盆地下方的流动.受印度板块往北运动的影响,青藏高原下地壳物质向东流动.中上地壳物质向东运动受到刚性强度较大的扬子地块的阻挡,在龙门山断裂带上产生应力集中,导致中央断裂带上应力突然释放,产生汶川Ms8.0级地震.  相似文献   

4.
龙门山断裂带位于青藏高原东缘,在中生代和晚新生代经历强烈的构造变形,急剧抬升,是研究青藏高原隆升和扩展动力学过程的重要窗口.本文利用起伏地形下的高精度成像方法,对"阿坝一龙门山一遂宁"宽角反射/折射地震数据重新处理,通过走时反演重建研究区地壳速度结构.剖面自西向东跨越松潘一甘孜块体、龙门山断裂带和四川盆地,不同块体速度结构表现了显著的差异.松潘甘孜块体地表复理石沉积层内有高速岩体侵入,低速层低界面起伏不平反映了该区的逆冲推覆构造.中下地壳速度横向上连续变化,平均速度较低(约6.26 km·s~(-1)).四川盆地沉积层西厚东薄,并在西侧出现与挤压和剥蚀作用相关的压扭形态.中下地壳西薄东厚,平均速度较高(约6.39 km.s~(-1)).龙门山断裂带是地壳速度和厚度的陡变带,Moho面自西向东抬升约13 km.在整个剖面上Moho面表现为韧性挠曲,中下地壳横向上连续变化,推测古扬子块体已到达松潘甘孜块体下方.松潘甘孜块体下方中下地壳韧性变形,并在底部拖曳着被断裂切割的脆性上地壳,应力在不同断裂上积累和释放,诱发大量地震.  相似文献   

5.
龙门山中南段地壳上地幔三维密度结构   总被引:1,自引:1,他引:0  
基于高精度布格重力异常资料,以川滇地区P波速度三维层析成像结果为约束建立初始模型,采用预优共轭梯度(Preconditional Conjugate Gradiem,PCG)反演方法得到了龙门山断裂带中南段的地壳上地幔(深度范围0~65km)三维密度结构(网格间距为10km(横向)×10km(纵向)×5km(深度))。密度成像结果表明:龙门山断裂带中南段两侧地壳密度结构存在明显差异,四川盆地有约10km厚的低密度沉积层,松潘-甘孜块体因沉积层较薄,且部分地区有基岩出露,上地壳表现为高密度结构;松潘-甘孜块体中、下地壳有大范围低密度层分布,介质强度明显低于高密度的四川盆地,青藏高原东移物质受到四川盆地阻挡后更易于在低密度的一侧发生挤压形变及隆升,从而形成龙门山逆冲推覆构造带;龙门山断裂带内部在地壳结构上具有明显的分段特征,表现为沿着龙门山断裂带地壳密度变化不连续,以汶川地震和芦山地震震中为界,形成多个高、低密度异常区;同时,结合地震精定位结果分析,汶川地震及其余震多分布于壳内中央断裂带西侧高密度体内,芦山地震及其余震则集中在地壳密度变化梯级带附近并偏向高密度体一侧。四川盆地下地壳密度较高,其前缘随深度增加向青藏高原方向扩展,在上地幔顶部接近龙门山断裂带以西。松潘-甘孜块体中、下地壳虽然有一定规模的低密度体分布,但其连通性差,在平面上多形成局部低密度异常区,是否存在下地壳流仍无法给出明确的证据。  相似文献   

6.
龙门山断裂带是青藏高原的东部边缘,也是高原最陡的边缘之一.跨龙门山断裂,在不到100km的空间尺度内,地形差异高达~4km,而对控制、维持这一地形差异的机制尚存在很大争议.文章基于地震波速度结构、地壳厚度、岩石圈有效弹性厚度等资料,结合岩石圈均衡和岩石圈挠曲分析,定量研究了地壳、岩石圈地幔对地形的贡献.结果表明,控制龙门山地区地形的主要机制包括岩石圈均衡和岩石圈挠曲的静态支撑,以及下地壳流及地幔对流的动力作用,不同机制在松潘-甘孜块体和四川盆地对地形贡献的权重不一.静态地形和动力地形对龙门山断裂两侧~4km的地形差异贡献相当,其中静态地形差异~2km,主要来自岩石圈均衡贡献;动力地形差异~2km,源自松潘-甘孜块体下下地壳流的物质堆积上隆作用和四川盆地下上地幔对流的向下应力拉拽的综合效应.因此,下地壳流与地幔对流是研究龙门山及其邻近地区动力学问题必需考虑的动力因素.  相似文献   

7.
青藏高原东南缘的龙门山断裂两侧具有陡峭的地形特征,在约50~100 km的水平距离内,地形高程从2000 m增加到4000 m,该区强烈的壳幔变形特征及地球动力学模式一直是研究的热点问题.本文从四川地区49个固定台站记录的远震资料提取了P波接收函数,获得了四川盆地及周边的地壳厚度和泊松比,并以此构建反演的初始模型.在线性反演的基础上,引入了分别拟合低频和高频接收函数的两步反演技术,用以反演台站下方的地壳S波速度结构.数字试验表明,该方法可以有效抑制接收函数反演的不唯一性,为了得到最优解,最后用Bootstrap重采样技术估计解的不确定性.结果表明,四川盆地的地壳厚度在40~46 km,松潘-甘孜块体北部的地壳厚度为46~52 km,而南部增厚到50~60 km.从四川盆地向西跨过龙门山断裂,地壳厚度增加了10~15 km.在四川盆地及周边地区,地壳泊松比在0.26~0.32之间,呈块体分布特征,高泊松比(0.28~0.32)主要沿龙门山断裂以及安宁河-小江断裂分布.地壳S波速度结构表明,来自青藏高原中部的中下地壳低速层可能受到了坚硬的四川盆地阻挡,改变原来的运动方向并沿龙门山断裂展布,由于低速层的囤积导致该区地形陡峭和下地壳增厚.  相似文献   

8.
芦山—康定地区是川滇块体、松潘—甘孜块体和华南块体三个块体过渡的"Y"型交汇区,构造变形十分强烈.本文对EGM2008计算的布格重力异常进行1~5阶离散小波变换,得到三方向分量平方和的平方根(HVDM)图像;利用实测剖面布格重力异常数据,得到剖面的布格重力异常归一化总梯度(NFG)图像.结果分析表明:(1)垂直于龙门山断裂带南段剖面的NFG图像显示推覆构造体前端切割较浅、后端逐步变深至中地壳,说明松潘—甘孜块体在深约10~30km之间存在滑脱构造,在青藏高原东向挤出和四川盆地的阻挡作用下,造成深、浅部构造差异性运动,形成逆冲推覆的龙门山构造带;(2)HVDM图像和剖面的NFG图像均显示龙门山断裂带西南段与中段和东北段不同,松潘—甘孜块体对四川盆地的逆冲推覆作用沿北东方向具有分段性;(3)雅江—洪雅剖面NFG图像显示鲜水河断裂带和龙门山断裂之间存在高梯度变化带,在鲜水河断裂带下方强变形带不仅在20km左右东倾至龙门山断裂带前缘,且逐渐近垂直向下伸入至少到下地壳,反映了两大断裂带交汇区域变形作用较强.川滇块体内部和四川盆地内部则显示低值,说明其变形作用较弱.强烈左旋剪切的鲜水河断裂带对芦山—康定地区构造活动具有主要的控制作用.  相似文献   

9.
川滇地区重力场与深部结构特征   总被引:4,自引:0,他引:4  
川滇地区地处青藏高原东缘强烈变形区,区内的龙门山断裂带、安宁河断裂带与鲜水河断裂带构成了华南块体、川滇块体与松潘-甘孜块体的重要分界.为研究川滇地区深部地壳结构特征,本文利用布格重力数据,并应用小波多尺度分析方法对重力场进行了分离,进而对该区地壳介质密度结构进行了分析.研究结果表明:川滇块体与松潘-甘孜块体中上地壳密度...  相似文献   

10.
本文使用位于青藏高原东南缘的25个地震台站的远震数据,采用P波和S波接收函数的方法研究了台站下方的Moho深度、泊松比以及地幔过渡带的厚度.计算结果表明:① 青藏高原东南缘的地壳厚度由松潘—甘孜地体和羌塘地体的约60 km,向邻区的印支地体以及扬子板块分别减薄为约38 km和约42 km; ② 羌塘地体的泊松比主要集中范围为0.25~0.28,地壳物质组分主要为中基性岩石,推测与下地壳镁铁质成分的增加有关.松潘—甘孜块体、印支块体和扬子板块的泊松比为0.25~0.26,主要为中酸性岩石组分.缺乏高的泊松比(≥0.30)分布表明青藏高原东南缘的地壳不存在广泛的部分熔融,但是不排除局部部分熔融的存在;③ 青藏高原东南缘的羌塘地体内存在一个比较明显的、异常变化范围为10~26 km的地幔过渡带增厚区域,其对应着地幔过渡带内100℃~260℃的温度降低,可以推断与此异常区域的地幔过渡带内存在俯冲的板块有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号