首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The228Ra concentrations of the Dead Sea waters range from 0.13 to 1.48 dpm kg−1, two to three orders of magnitude higher than those of ocean waters and lake waters. However, the228Ra/226Ra activity ratios, (0.12–1.29) × 10−2, are in the range reported for the hydrosphere.The surface waters of the Dead Sea are enriched in228Ra by a factor of about three over the near-bottom waters. There is a factor of about two spatial variability in the mid-depth Ra concentrations at the two profile stations. The near-bottom228Ra gradients yield vertical eddy diffusivity coefficient (K) of 2.0 and 0.4 cm2 s−1 at profile locations 1 and 2 respectively. These values are comparable to those measured in oceans and lakes.  相似文献   

2.
The most important source of dissolved manganese, Mn(II), to the Dead Sea is by upward diffusion from bottom sediments. This source contributes about 80 tons of Mn(II) each year. The concentration of dissolved manganese in the Dead Sea is extraordinarily high (7.03 mg 1?1). It appears that the content (some 1.026 × 106 tons) of dissolved manganese in the sea has remained constant during 1977–1979, although oxygen was introduced into deeper layers during the deepening of the pycnocline (1977–1978) and during the overturn of its water masses in the winter of 1978/79. The rate of oxidation of Mn(II) in Dead Sea water is extremely slow hence Mn(II) may practically be considered as the stable form of Mn in Dead Sea waters. Dilution by fresh water causes a pH rise and may facilitate faster oxidation of the dissolved divalent manganese. It is shown here that the shape of the Mn(II) profile, observed in the lake during 1963, may have developed by oxidation of Mn(II) in the more diluted upper layers and subsequent reduction of the oxidation products in the anoxic and more saline deeper layers during 260 years of continuous meromixis.  相似文献   

3.
The distributions of dissolved and of particulate iron in the Dead Sea during the period which preceeded its overturn and thereafter (1977–1980) are reported. During 1977–1978, the vertical profiles of the iron phases revealed facets of the mixing pattern: the progressive deepening of the pycnocline, restricted mixing within the upper water mass and penetration of surface waters into the deepest layer. The inventories of particulate iron suggest resuspension of bottom sediments in November 1978 and after the overturn the gradual disappearance from the water column of iron sulfides and iron oxy-hydroxides. Fluxes of iron from and to the lake in the undisturbed meromictic Dead Sea have been estimated: it appears that diffusion of divalent iron from bottom sediments was the major source for the standing crop of iron in the lower water mass. Low settling velocities of solid particles in the dense and viscous Dead Sea is one of the causes for the relatively large concentrations of particulate iron. The rate constant for oxidation of divalent iron in Dead Sea sediment interstitial waters is larger by two orders of magnitude than in other natural waters.  相似文献   

4.
In this paper the reaction of the salt‐/freshwater interface due to the changes in the Dead Sea level are elaborated at in details by using the inflows into the Dead Sea, the outflows due to evaporation losses and artificial discharges, and the hydrographic registrations of the Dead Sea level. The analyses show that the interface seaward migration resulted in a groundwater discharge of around 423 Mio m3 per meter drop in the level of the Dead Sea in the period 1994–1998 and of around 525 Mio m3/m in the period 1930–1937. The additional amount of groundwater joining the Dead Sea due to the interface seaward migration was 51 Mio m3 per one square kilometer of shrinkage in the area of the Dead Sea in the period 1930–1937 and 91 Mio m3/km2 in the period 1994–1998. The riparian states of the Dead Sea are nowadays loosing 370 Mio m3/a of freshwater to the Dead Sea through the interface readjustment mechanisms as a result of their over exploitation of waters which formerly fed the Dead Sea.  相似文献   

5.
Dead Sea waters are moderately enriched in18O; the degree of enrichment constitutes a balance between the dilution by freshwater influx and the isotope fractionation which accompanies evaporative water loss and vapour exchange with the atmospheric moisture. Modelling of the seasonal cycle and long-term trends of δ18O, in response to the changes in the environmental parameters, shows that the major control is exercised by the salinity of the surface waters, through its effect on the vapour pressure gradient between the lake's surface and the atmosphere; the (steady state) isotopic composition of the more saline brines tends towards less enriched18O values. This fact can explain the relatively high δ18O levels encountered in the Lisan formation, which was deposited from Lake Lisan, —the less saline Pleistocene precursor of the Dead Sea.  相似文献   

6.
The high‐density Dead Sea water (1.235 g/cm3) forms a special interface configuration with the fresh groundwater resources of its surrounding aquifers. The fresh groundwater column beneath its surroundings is around one tenth of its length compared to oceanic water. This fact alone indicates the vulnerability of the fresh groundwater resources to the impacts of changes in the Dead Sea level and to saltwater migration. Ghyben‐Herzberg and Glover equations were used to calculate the volumes of water in coastal aquifers which were replaced by freshwater due to the interface seaward migration as a result of the drop in the level of the Dead Sea. For that purpose, the dynamic equation of Glover approach has been integrated to accommodate that type of interface readjustment. The calculated amounts of freshwater which substituted salt Dead Sea water due to the migration of interface are 3.21 · 1011 m3, from a Dead Sea level of –392 m to τ411 m below sea level. The average porosity of coastal aquifers was calculated to range from 2.8 to 2.94%. Geoelectric sounding measurements showed that areas underlying the coastal aquifers formerly occupied by the Dead Sea water are gradually becoming flushed and occupied by freshwater. The latter is becoming salinized due to the residuals of Dead Sea water in the aquifer matrix, the present salinity of which is lower than that of the Dead Sea water. At the same time salt dissolution from the Lisan Marl formation is causing collapses along the shorelines in the form of sinkholes, tens of meters in diameter and depth.  相似文献   

7.
The increasing demands on recreational waters have made microbial contamination a matter of public and scientific concern. This study aimed to search for Salmonella spp. in waters classified according EU Directive 2006/7/EC, in order to assess associations between its prevalence and the concentration of the non-pathogenic new faecal indicators: Escherichia coli and intestinal enterococci. Although a statistically significant association was observed Salmonella was detected on beaches classified as “Good” (9.3%) and “Excellent” (14.4%) which compromises the idea that faecal indicators can be predictors of pathogens.Attending the high prevalence of Salmonella found (23.1%) it seemed important to improve the efficiency of the conventional analytical method (ISO 6340:1995), comparing its draft with SML-VIDAS Salmonella and two new chromogenic media: AES Salmonella Agar Plate (ASAP) and Simple Method Salmonella (SMS). ASAP showed the higher efficiency and can be recommended for a faster detection and presumptive identification of salmonellae in bathing waters.  相似文献   

8.
ABSTRACT

The regional groundwater groups of central Israel include:

  1. bicarbonate waters representing the replenishment areas;

  2. chloride waters representing the confined and the base-level zones;

  3. sulfate waters of the intermediate zones (fig. 2).

These water types were found to fit broadly into five hydrogeographical groups.

The chemical evolution of the ground waters is a function of: a) lithology and solubility of the aquifer components and of the surrounding strata; b) mixing between groundwater bodies of different composition. The first factor is important mainly within the confined zones while the latter is conspicuous in the Rift Valley and adjacent areas.

Groundwater mixing within the Dead Sea basin produces waters with Mg > Na > Ca, and Cl ? SO > HCO3. Other brines show the order: Ca > Na > Mg. All these brines show compositions different from ocean water.  相似文献   

9.
The Dead Sea is the lowest spot on Earth. It is a closed saline lake located in the middle of the Jordan Rift Valley between Lake Tiberias and the Red Sea. Its major tributaries are the Jordan River itself and the Dead Sea side wadis. The Dead Sea has a unique ecosystem and its water has curative, industrial and recreational significance. The level of the Dead Sea has been continuously falling since the early 1930s at an average rate of 0·7 m per year. The water level, as of February 1998, is about 410·9 m below mean sea level. In this paper, a water balance model is developed for the Dead Sea by considering different hydrological components of this water balance, including precipitation, runoff, evaporation and groundwater flow. This model is calibrated based on historical levels of the Dead Sea. Different scenarios are investigated, including the proposed Dead Sea–Red Sea Canal. This project is supposed to halt the shrinking of the Dead Sea and restore it to pre‐1950 levels in the next century. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
The effect of monsoon, coastal current and temperature on the distribution and seasonal variations of Calanus sinicus abundance were studied. The samples from the northwest continental shelf of South China Sea were collected with 505 μm planktonic nets from July 2006 to October 2007. The abundance of C. sinicus made up 34.28% and 12.34% of all copepods in spring and summer, respectively. The distribution of C. sinicus varied seasonally and regionally. The distribution of C. sinicus ranged between east inshore and offshore waters from the Leizhou Peninsula to Hainan Island, with a mean of 23.00 (±77.78) ind. m−3 in spring. In summer it had a mean of 13.74 (±45.10) ind. m−3 occurring only in the east inshore waters from Leizhou Peninsula to Hainan Island. C. sinicus was not abundant during autumn and winter seasons. The surveyed area was divided into three sub-regions based on topographical analysis and water mass, region I (included the east inshore waters of Leizhou Peninsula), region II (included the east inshore waters of Hainan Island) and region III (included the offshore waters from Leizhou Peninsula to Hainan Island). The average abundance of C. sinicus within region I was determined to be 115.63 (±145.93) and 68.12 (±84.00) ind. m−3 in spring and summer, respectively, values higher than those of regions II and III. Our findings suggested that C. sinicus was transported from the East China Sea to the northwest continental shelf of South China Sea by the Guangdong Coastal Current, which was driven by the northeast monsoon in spring. The presence of a cold eddy, in addition to coastal upwelling driven by the southwest monsoon, provided suitable survival conditions for C. sinicus in summer. This species disappeared in autumn due to high temperatures (>27 °C) and did not begin to enter into the northwest continental shelf of South China Sea from the East China Sea during the period of investigation in winter. The frequency of C. sinicus was low in region III during the year as a result of the South China Sea Warm Current and pelagic waters with high temperature during the spring and summer months.  相似文献   

11.
Submerged macrophyte vegetation has been mapped in four calcareous groundwater-fed streams in Bavaria (southern Germany) in order to compare and assess two different methods of river bioindication. The first one, the trophic index of macrophytes (TIM), is a tool to assess the trophic status of running waters. In contrast, the reference index (RI) is an ecological index which evaluates the difference between a reference community and the actual submerged vegetation, depending on the river type, as required by the Water Framework Directive. Water nutrient concentrations were measured once at selected sites in all water courses.The TIM reflects water phosphorus concentrations, accounting also for nutrients enrichment in the sediment, and is not influenced by shading, depth, substrate and flow velocity of the water course. The TIM is very sensitive to small variations in P concentration when the P level is low, while the index tends to a maximum as soluble reactive phosphorus (SRP) and total phosphorus (Ptot) exceed a certain value.The RI indicates river ecological status which is not only influenced by trophic status but by every factor leading to a deviation of the actual macrophyte community from the reference community. In the investigated rivers the RI indicated reduced flow velocity caused by milldams and shading by riparian vegetation, in addition to trophic status.In rivers that are at the boundary between two different river types, classification of river type can play a crucial role for river status assessment. Incorrect classification of river type can lead to both, a “too good” and “too bad” assessment.  相似文献   

12.
From 1979 to 1984, the overall water balance of the Dead Sea was characterized by a water deficit. However, an excess of freshwater inflow during the 1979/80 rainy season resulted in a 3-year-long meromictic phase. This was followed by three consecutive overturns of the water column in December 1982, 1983 and 1984. The buildup and dissipation of the seasonal thermocline and halocline is followed throughout this period which covers a wide range of water balance situations. The gravitational stabilities of the summer pycnoclines, measured in terms of N2 3×10−2 s−2, are at least one order of magnitude greater than the values reported in freshwater lakes and oceans. The contributions of temperature and salinity to N2 and to the integrated stability W are examined separately, and their interdependence is pointed out. Two irreversible effects in the evolution of the properties of the water masses are identified: (1) a monotonic increase in the density of the deep waters; and (2) a monotonic shift of the NaCl saturation curve towards higher salinities.  相似文献   

13.
Hypoxic conditions (dissolved oxygen (DO)<2 mg l−1) have been documented in the nearshore coastal waters of Long Bay, South Carolina, United States of America, during summer months over the past several years. Hypoxia was documented in August 2009 in the nearshore (<500 m offshore) for ten consecutive days and four days in September 2009 corresponding with spring tides. This study measured radon activities of shallow beachface groundwater and nearshore bottom waters to estimate mixing rates and submarine groundwater discharge (SGD) in the nearshore waters of central Long Bay. Statistical analyses demonstrate significant correlations between high bottom water radon activities, low DO, and cooler bottom water temperatures during hypoxic conditions. Elevated radon activities during hypoxia were significantly influenced by upwelling favorable conditions which severely limited cross-shelf mixing. Model results indicate mixing of nearshore and offshore waters was limited by up to 93% (range: 43-100%) relative to non-hypoxic conditions. Data suggests previously overlooked natural phenomena including limited cross-shelf mixing and SGD can significantly influence nearshore water quality.  相似文献   

14.
According to the European Water Framework Directive, the ecological status (ES) of a water body is determined by comparing observation data with undisturbed Reference Conditions (RCs). Defining RCs is crucial when evaluating the ES of a water body as it strongly affects the final outcome of any index application. Identifying RCs by observing real sites is not feasible in many marine environments, such as the Emilia-Romagna coast (Italy, N-Adriatic Sea). We used a statistical approach on a large dataset to derive RCs for the application of the benthic index M-AMBI in this area. We then applied M-AMBI to samples collected along a gradient of presumed environmental disturbance. The results put 14.8% of the Emilia-Romagna samples in “High” ES, 60.2% in “Good”, 23.0% in “Moderate” and 2.0% in “Poor”, showing a spatial gradient of improving quality. These results are in agreement with the extensive ecological knowledge available for this area.  相似文献   

15.
Water budget analyses are important for the evaluation of the water resources in semiarid and arid regions. The lack of observed data is the major obstacle for hydrological modelling in arid regions. The aim of this study is the analysis and calculation of the natural water resources of the Western Dead Sea subsurface catchment, one which is highly sensitive to rainfall resulting in highly variable temporal and spatial groundwater recharge. We focus on the subsurface catchment and subsequently apply the findings to a large‐scale groundwater flow model to estimate the groundwater discharge to the Dead Sea. We apply a semidistributed hydrological model (J2000g), originally developed for the Mediterranean, to the hyperarid region of the Western Dead Sea catchment, where runoff data and meteorological records are sparsely available. The challenge is to simulate the water budget, where the localized nature of extreme rainstorms together with sparse runoff data results in few observed runoff and recharge events. To overcome the scarcity of climate input data, we enhance the database with mean monthly rainfall data. The rainfall data of 2 satellites are shown to be unsuitable to fill the missing rainfall data due to underrepresentation of the steep hydrological gradient and temporal resolution. Hydrological models need to be calibrated against measured values; hence, the absence of adequate data can be problematic. Therefore, our calibration approach is based on a nested strategy of diverse observations. We calculate a direct surface runoff of the Western Dead Sea surface area (1,801 km2) of 3.4 mm/a and an average recharge (36.7 mm/a) for the 3,816 km2 subsurface drainage basin of the Cretaceous aquifer system.  相似文献   

16.
Radon (222Rn) concentration in geothermal waters and CO2-rich cold springwaters collected weekly in duplicate samples from four stations in northern Taiwan were measured from July 1980 to December 1983. Seven spike-like radon anomalies (increases of 2 to 3 times the standard deviation above the mean) were observed at three stations. Following every anomaly except one, an earthquake ofM L above 4.6 occurred within 4 to 51 days, at an epicentral distance 14 to 45 km, and at a focal depth of less than 10 km. The distribution of the earthquakes preceded by radon anomalies is skewed in certain directions from the radon stations; the radon stations seem to be insensitive to earthquakes occurring in the other directions. At the fourth station, near a volcanic area, much gas (mainly CO2) is discharged from the well, together with hot water. A very high concentration of radon was detected in the discharged gas; therefore trapping of gas in the water can result in anomalously high radon contents. According to limited measurements, the radon concentration in water appears to be undersaturated with respect to that in gas. This suggests that hot water is very susceptible to radon loss, and monitoring of radon in gas is more desirable.  相似文献   

17.
Shallow marine sediments were collected from seven stations (three of which located at Gerlache Inlet, two at Tethys Bay, one at Adelie Cove and one just beneath the Italian Research Base) along the Terra Nova Bay coast (Ross Sea, Antarctica). Their chemical, biochemical and microbiological properties were studied in order to provide further insights in the knowledge of this Antarctic benthic ecosystem. Overall, the organic carbon (OC) represented the major fraction of total carbon (TC) and displayed concentrations similar to or slightly lower than those previously measured in Antarctic bottom sediments. The biopolymeric carbon within OC ranged from 4.1% to 19.9% and showed a wide trophic range (65–834 μg g−1 d.w.). Proteins (PRT) represented on average the main biochemical class contributing to labile organic carbon, followed by lipids (LIP) and carbohydrates (CHO). The activity of aminopeptidase, β-d-glucosidase, alkaline phosphatase and esterase was checked, giving the highest values at Tethys Bay and at the deepest water sediments. The principal component analysis, which was computed considering physical, chemical (elemental and biochemical sedimentary composition) and microbiological parameters (including bacterial abundance, ectoenzymatic activities, T-RFs richness and diversity indices), allowed to obtain two main clusters (“Tethys Bay” and “other stations”). Based on data obtained, two representative 16S rRNA clone libraries using samples from Tethys Bay and Gerlache Inlet were constructed. The sequences of 171 clones were compared to those available in public databases to determine their approximate phylogenetic affiliations. Both aerobic and anaerobic bacteria were disclosed, with the majority of them affiliated with the Gamma- and Deltaproteobacteria, Bacteroidetes and Acidobacteria. The occurrence of strictly anaerobic bacteria suggests that sediments might also undergo anoxic conditions that, in turn, could favor the accumulation of PRT in respect to CHO, assuming that fermentation of amino acids is slower than that of sugars from decomposing polysaccharides.  相似文献   

18.
El Chichón crater lake appeared immediately after the 1982 catastrophic eruption in a newly formed, 1-km wide, explosive crater. During the first 2 years after the eruption the lake transformed from hot and ultra-acidic caused by dissolution of magmatic gases, to a warm and less acidic lake due to a rapid “magmatic-to-hydrothermal transition” — input of hydrothermal fluids and oxidation of H2S to sulfate. Chemical composition of the lake water and other thermal fluids discharging in the crater, stable isotope composition (δD and δ18O) of lake water, gas condensates and thermal waters collected in 1995–2006 were used for the mass-balance calculations (Cl, SO4 and isotopic composition) of the thermal flux from the crater floor. The calculated fluxes of thermal fluid by different mass-balance approaches become of the same order of magnitude as those derived from the energy-budget model if values of 1.9 and 2 mmol/mol are taken for the catchment coefficient and the average H2S concentration in the hydrothermal vapors, respectively. The total heat power from the crater is estimated to be between 35 and 60 MW and the CO2 flux is not higher than 150 t/day or ~ 200 gm− 2 day− 1.  相似文献   

19.
We collected two subspecies of masu salmon: Oncorhynchus masou masou from four localities (southern Sea of Japan northward to Hokkaido) and O. masou ishikawae from upstream from Ise Bay close to a heavy industrial area. All 209 PCB congeners were analyzed using HRGC/HRMS. PCA ordination of congener concentrations divided data into three groups: (i) ssp. masou from Hokkaido, (ii) ssp. masou from the other regions and (iii) ssp. ishikawae. The highest ∑ PCB concentration (40.39 ng/wet wt) was in ssp. ishikawae followed by ssp. masou from southern waters; however the TEQdioxin-like PCBs was highest in ssp. masou from southern water (1.96 pg-TEQdioxin-like PCBs/g wet wt.) due to the high proportion of congener #126 in its complement (#126 has the highest toxic equivalency factor among congeners). There is likely a contamination source offshore in the southern Sea of Japan and/or along the migratory route of ssp. masou.  相似文献   

20.
The discharge of nutrients, phytoplankton and pathogenic bacteria through ballast water may threaten the Cayo Arcas reef system. To assess this threat, the quality of ballast water and presence of coral reef pathogenic bacteria in 30 oil tankers loaded at the PEMEX Cayo Arcas crude oil terminal were determined. The water transported in the ships originated from coastal, oceanic or riverine regions. Statistical associations among quality parameters and bacteria were tested using redundancy analysis (RDA). In contrast with coastal or oceanic water, the riverine water had high concentrations of coliforms, including Vibrio cholerae 01 and, Serratia marcescens and Sphingomona spp., which are frequently associated with “white pox” and “white plague type II” coral diseases. There were also high nutrient concentrations and low water quality index values (WQI and TRIX). The presence of V. cholerae 01 highlights the need for testing ballast water coming from endemic regions into Mexican ports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号