首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Periodic paddy field flooding is a major source of groundwater recharge. Many paddy fields thus are used as groundwater recharge ponds after harvesting the first crop of the summer. Following rice harvesting, paddy field surfaces may crack into fissures as a result of drainage and exposure to sunlight. Field observation indicates that applying precipitation to the paddy field can increase the rate of infiltration. To quantitatively evaluate the amount of infiltration in a cracked paddy field, this study sets up a simple soil crack model to simulate the field infiltration process. A three‐dimensional groundwater model FEMWATER is adopted to simulate water movement in the paddy field subjected to various crack conditions. Using the field and laboratory data of irrigation water requirements, soil physical properties, hydraulic conductivities and soil profiles obtained from Ten‐Chung, FEMWATER simulates the water movement in the dry cracked paddy. Simulation results show that if the cracks develop extensively and penetrate the ploughed soil, the infiltration rate may increase significantly. The infiltration fluxes of crack with depths of 80, 60 and 27·5 cm are 18·77, 14·50 and 8·06 times higher than that of 20 cm, respectively. The simulation results of cracks with 80 cm depth correlated closely with field observations. The results of the study elucidate the processes of unsaturated water movement in a dry cracked paddy field. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

This study focuses on the calibration and validation of a dual-permeability soil water flow model for simulating soil water dynamics during the growing period in an irrigated corn field and during the rainy winter period in an uncropped field in northern Greece. The 1D numerical transient dual-permeability model MACRO 5.0 was used to describe the soil water dynamics, the water balance and deep percolation considering both macropore (two-domain) flow and non-macropore (one-domain) flow. The simulated results were compared with measurements of total soil water content at different depths in the soils. The values of the statistical criteria RMSE, E and CRM were better when macroporosity flow was considered; the soil water content showed better redistribution in the soil profile. The limited irrigation of the corn field during the growing period and the irrigation rates did not create conditions for deep percolation of water. In the uncropped field (bare soil), the wet conditions and the high rainfall during the simulation period created conditions for significant deep percolation, whether macropore flow was included in the model or not. The two-domain approach significantly affects the actual evaporation and the deep percolation. The difference between these two approaches is in the amount of deep percolation and the flow path of drainage flow. In the two-domain approach, most deep percolation follows the macropore domain (79.8%). The errors due to macropore parameter uncertainty and to the difficulties of measuring the macropore water content and flow were estimated by a sensitivity analysis for the more important parameters of the model.

Editor Z.W. Kundzewicz

Citation Antonopoulos, V.Z., Georgiou, P.E., and Kolotouros, C.A., 2013. Soil water dynamics in cropped and uncropped fields in northern Greece using a dual-permeability model. Hydrological Sciences Journal, 58 (8), 1748–1759.  相似文献   

3.
Due to the occurrence of ponding during the period of rice growth, the analyses of rainfall‐runoff in paddy fields are different from those in general lands. The diffusive tank model has been successfully applied in rainfall‐runoff simulations in paddy fields because it can well describe the features of the local water flow. In most of the applications of this model, although the determination of the related model parameters is important, detailed investigations on each individual parameter are definitely needed to improve the accuracy of the results. In the study, an improved procedure is proposed to determine certain variables involved in the diffusive tank model and the application is conducted in a field area in Taiwan. In the application, the roughness of the river channel was assessed according to the actual field conditions. Instead of using the observed water levels in each rainfall event, the notch width of the rectangular contracted weir per unit area was evaluated by direct field measurements to calibrate the discharge coefficient. Test results from the selected field in six rainfall events showed that the local average value of the notch width of the rectangular contracted weir per unit area was 1·025 m/ha. Compared to the results of field measurements, the relative errors of the predictions were within 3% in all tests of rainfall events. In addition, for different types of catchment partitions, it was found that the corresponding weir discharge coefficients remained roughly unchanged. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
5.
High methane (CH4) fluxes emitted from paddy fields strongly contribute to the accumulation of greenhouse gases into the atmosphere, compromising the eco-compatibility of one of the most important world foods. A strong link exists between infiltration rates of irrigation water and CH4 emissions. Since depth to the groundwater table affects infiltration rates, a relevant groundwater impact is expected on CH4 emissions from paddy fields. In this work, a theoretical approach is adopted to investigate the aquifer effect on CH4 dynamics in paddies. Infiltration rates are strongly affected by the development of different connection states between aquifer and irrigation ponded water. A strong reduction in infiltration rates results from a water table near to the soil surface, when the system is hydraulically connected. When the groundwater level increases, the infiltration rate reduction due to the switch from disconnected to connected state promotes a relevant increase of CH4 emissions. This is due to a strong reduction of dissolved organic carbon (DOC) percolation, which leads to higher DOC availability for microbial CH4 production and, consequently, higher CH4 emissions. Our simulations show that CH4 fluxes can be reduced by up to 24% when groundwater level is decreased and the aquifer is disconnected from ponding water. In paddies with shallow aquifers, lowering the water table with a drainage system could thus represent a promising CH4 mitigation option.  相似文献   

6.
A cell‐based long‐term hydrological model (CELTHYM) that can be integrated with a geographical information system (GIS) was developed to predict continuous stream flow from small agricultural watersheds. The CELTHYM uses a cell‐by‐cell soil moisture balance approach. For surface runoff estimation, the curve number technique considering soil moisture on a daily basis was used, and release rate was used to estimate baseflow. Evapotranspiration was computed using the FAO modified Penman equation that considered land‐use‐based crop coefficients, soil moisture and the influence of topography on radiation. A rice paddy field water budget model was also adapted for the specific application of the model to East Asia. Model sensitivity analysis was conducted to obtain operational information about the model calibration parameters. The CELTHYM was calibrated and verified with measured runoff data from the WS#1 and WS#3 watersheds of the Seoul National University, Department of Agricultural Engineering, in Hwaseong County, Kyounggi Province, South Korea. The WS#1 watershed is comprised of about 35·4% rice paddy fields and 42·3% forest, whereas the WS#3 watershed is about 85·0% forest and 11·5% rice paddy fields. The CELTHYM was calibrated for the parameter release rate, K, and soil moisture storage coefficient, STC, and results were compared with the measured runoff data for 1986. The validation results for WS#1 considering all daily stream flow were poor with R2, E2 and RMSE having values of 0·40, ?6·63 and 9·69 (mm), respectively, but validation results for days without rainfall were statistically significant (R2 = 0·66). Results for WS#3 showed good agreement with observed data for all days, and R2, E2 and RMSE were 0·92, 0·91 and 2·23 (mm), respectively, suggesting potential for CELTHYM application to other watersheds. The direct runoff and water balance components for watershed WS#1 with significant areas of paddy fields did not perform well, suggesting that additional study of these components is needed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Methane (CH4) is a potent greenhouse gas that is emitted from paddy fields, and the large CH4 fluxes represent a worldwide issue for the rice production eco-compatibility. In this work a model is proposed to investigate the role of water flows on CH4 emissions from flooded paddy soils. The model is based on a system of partial differential mass balance equations of the chemical species affecting CH4 fate, and water flows are modeled by the Darcy equation. Moreover, in order to properly model the dynamics of CH4, a number of physico-chemical processes and features not included in currently available CH4 emission models are considered: paddy soil stratigraphy; nutrient adsorption and root water uptake; gas transport and respiration within root aerenchyma compartment. The proposed model allows to simulate the spatio-temporal dynamics of chemical compounds within paddy soil as well as to quantify the influence of different processes on nutrient input/output budgets. Simulations without water flow have shown a considerable overestimation of CH4 emissions due to a different spatio-temporal dynamics of dissolved organic matter (DOC – source of energy for CH4 production). In particular, when water fluxes have not been modeled the overestimation can reach 54%, 41% and 67% of daily minimum, daily maximum, and total over the whole growing season CH4 emission, respectively. Moreover, the model results suggest that roots influence CH4 dynamics principally due to their nutrient uptake, while root effect on advective flow plays a minor role. Finally, the analysis of CH4 transport fluxes has shown the limiting effect of upward dispersive transport fluxes on the downward CH4 percolation.  相似文献   

8.
The hydraulic characteristics of the plough pan of paddy fields provide continuous ponding conditions during the growing season and control the water use efficiency in wet rice production. Its saturated hydraulic conductivity Ks, however, exhibits a large spatiotemporal variability as a consequence of a highly dynamic soil structure involving temporary shrinkage cracks. Water flow through the earthen bunds surrounding the fields further contributes to the uncertainty in water flux calculations. The objective of this study was to develop a simple deterministic model with stochastic elements (‘PADDY‐FLUX’) for depiction of deep percolation, and to assess the effect of different water management scenarios on percolation in two channel command areas. Darcy's law is used as the fundamental equation for water flow calculations with the ponding water depth h as a time‐dependent variable. Flux uncertainty is estimated by a Monte‐Carlo‐type implementation. Ks is treated as a random variable of a bimodal probability density function (PDF), which is the weighted sum of two Gaussian PDFs (accounting for a matrix and a preferential flow domain). The weighing factor α is a function of h, reflecting an increasing risk for preferential flow situations after desiccation and the development of shrinkage cracks. Under‐bund percolation is calculated using transfer functions. The results demonstrate that percolation losses increase in the following order: continuous soil saturation < continuous flooding (CF) < mid‐season drainage and intermittent irrigation (MD + II) < mid‐season drainage and continuous flooding. The bunds contribute up to 54 and 17% to total fluxes under CF and MD + II, respectively. Preferential water fluxes are responsible for the major part of water losses as soon as desiccation causes the formation of shrinkage cracks. As a conclusion, continuous soil saturation should be promoted as the least water‐intensive irrigation regime, while intermittent irrigation is recommended only in case that irreversible shrinkage cracks have already developed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Analysis of water movement in paddy rice fields (I) experimental studies   总被引:2,自引:0,他引:2  
For the purpose of increasing the amount of ground water recharge, we investigated the hydraulic characteristics of water infiltration in a flooded paddy rice field in Ten-Chung, Chung-Hwa county, Taiwan. Experimental results based on mini-tensiometers and double ring infiltrometer measurements indicated that the least permeable layer occurred at the interface of the puddled topsoil and non-puddled subsoil. The average thickness of this layer was about 7.5 cm and saturated hydraulic conductivity ranged from 0.034 to 0.083 cm/day. Vertical infiltration flow was saturated within the plow sole layer and became unsaturated in the subsoil below the plow sole layer. The hydraulic conductivity of the subsoil, 20–30 times greater than that of the plow sole layer, revealed that the subsoil was more permeable than the plow sole layer. In situ measurements also demonstrated that breakage of the plow sole layer increased infiltration rate by a factor of 3.7. Increasing ponded water depth from 6 to 16 cm increased infiltration 1.5 fold. It is suggested that using the fallow paddy rice fields without puddling is a feasible way to enhance groundwater recharge, but for cultivated paddy rice fields, breaking the plow sole needs further study in terms of its recoverability and because of the potential contamination of the shallow aquifer by agrochemicals. The experimental data can be applied in numerical simulation models to quantify detailed water movement mechanisms and accurately estimate the amount of ground water recharge in paddy rice fields.  相似文献   

10.
This work presents results from two complementary and interconnected approaches to study water temperature and salinity patterns in an estuarine tidal channel. This channel is one of the four main branches of the Ria de Aveiro, a shallow lagoon located in the Northwest coast of the Iberian Peninsula. Longitudinal and cross-sectional fields of water temperature and salinity were determined by spatial interpolation of field measurements. A numerical model (Mohid) was used in a 2D depth-integrated mode in order to compute water temperature and salinity patterns. The main purpose of this work was to determine the horizontal patterns of water temperature and salinity in the study area, evaluating the effects of the main forcing factors. The field results were depth-integrated and compared to numerical model results. These results obtained using extreme tidal and river runoff forcing, are also presented. The field results reveal that, when the river flow is weak, the tidal intrusion is the main forcing mechanism, generating saline and thermal fronts which migrate with the neap/spring tidal cycle. When the river flow increases, the influence of the freshwater extends almost as far as the mouth of the lagoon and vertical stratification is established. Results of numerical modelling reveal that the implemented model reproduces quite well the observed horizontal patterns. The model was also used to study the hydrology of the study area under extreme forcing conditions. When the model is forced with a low river flow (1 m3 s−1) the results confirm that the hydrology is tidally dominated. When the model is forced with a high river flow (1,000 m3 s−1) the hydrology is dominated by freshwater, as would be expected in such an area.  相似文献   

11.
With the advancement in oil exploration,producible oil and gas are being found in low resistivity reservoirs,which may otherwise be erroneously thought as water zones from their resistivity.However,the evaluation of low resistivity reservoirs remains difficult from log interpretation.Since low resistivity in hydrocarbon bearing sands can be caused by dispersed clay,laminated shale,conductive matrix grains,microscopic capillary pores and high saline water,a new resistivity model is required for more accurate hydrocarbon saturation prediction for low resistivity formations.Herein,a generalized effective medium resistivity model has been proposed for low resistivity reservoirs,based on experimental measurements on artificial low resistivity shaly sand samples,symmetrical anisotropic effective medium theory for resistivity interpretations,and geneses and conductance mechanisms of low resistivity reservoirs.By analyzing effects of some factors on the proposed model,we show theoretically the model can describe conductance mechanisms of low resistivity reservoirs with five geneses.Also,shale distribution largely affects water saturation predicted by the model.Resistivity index decreases as fraction and conductivity of laminated shale,or fraction of dispersed clay,or conductivity of rock matrix grains increases.Resistivity index decreases as matrix percolation exponent,or percolation rate of capillary bound water increases,and as percolation exponent of capillary bound water,or matrix percolation rate,or free water percolation rate decreases.Rock sample data from low resistivity reservoirs with different geneses and interpretation results for log data show that the proposed model can be applied in low resistivity reservoirs containing high salinity water,dispersed clay,microscopic capillary pores,laminated shale and conductive matrix grains,and thus is considered as a generalized resistivity model for low resistivity reservoir evaluation.  相似文献   

12.
The large volume of groundwater stored in the Tedori River alluvial fan, Ishikawa Prefecture, Japan, is an important source of local drinking and industrial water. The Tedori River was observed to be highly turbid from the beginning of May 2015 to at least November 2017 due to a landslide in the upper reach of the river. After the landslide, the groundwater level was drawn down by several to 10 m near the middle river section during paddy irrigation periods in 2015 and 2016. This study addresses the impacts of the highly turbid water on groundwater recharge from the river and paddy fields. In 2016, we sampled groundwater, river water, paddy irrigation water, paddy ponding water, and precipitation five times at 2-month intervals. We analysed the H, O, and Sr stable isotopic compositions and major dissolved ion (and Sr) concentrations and compared our data to previous data obtained in June 2011. Ca, Sr, Cl, SO4, and TN concentrations and δ18O values were higher in June 2016 than in June 2011; these increases were more extreme along the left bank of the Tedori River than along the right bank. We explored the mixing of Tedori River water with groundwater using a two-endmember mixing model based on their Sr concentrations and isotopic compositions. Compared to June 2011, mixing ratios were decreased near the Tedori River in 2016, and larger decreases were observed along the left bank and in the middle stream area. These results confirm that the contribution to groundwater recharge from the river decreased during the turbidity event, particularly along the left bank.  相似文献   

13.
The graph model presented in Part I of this series provides the basis for development of a computer simulation of tightly packed ice fields taken as ensembles of square-shaped ice floes with random physical properties. A program based on an alternating-direction scheme is developed to model the time evolution of a field of ice floes in a rectangular domain. The simulation of a field in an Arctic channel shows that there is a strong tendency for an earlier onset of microscale plastic flows and formation of irregular clusters of ice floes and openings in a field with spatially random properties versus a field with deterministic spatially homogeneous properties. A special study is conducted of an elastic-plastic transition in a field of 101×101 floes. The transition to macroscopically plastic flow is possible only with a percolation of inelastic regions through the entire domain of the ice field. The fact that this percolation is characterized by a noninteger fractal dimension uncovers a (possibly principal) generation mechanism of ice field morphologies, and points to scale dependence in mechanics of ice fields for certain ranges of loads.  相似文献   

14.
The hydraulic conductivity of heterogeneous porous media depends on the distribution function and the geometry of local conductivities at the smaller scale. There are various approaches to estimate the effective conductivity Keff at the larger scale based on information about the small scale heterogeneity. A critical geometric property in this ‘upscaling’ procedure is the spatial connectivity of the small-scale conductivities. We present an approach based on the Euler-number to quantify the topological properties of heterogeneous conductivity fields, and we derive two key parameters which are used to estimate Keff. The required coefficients for the upscaling formula are obtained by regression based on numerical simulations of various heterogeneous fields. They are found to be generally valid for various different isotropic structures. The effective unsaturated conductivity function Keff (ψm) could be predicted satisfactorily. We compare our approach with an alternative based on percolation theory and critical path analysis which yield the same type of topological parameters. An advantage of using the Euler-number in comparison to percolation theory is the fact that it can be obtained from local measurements without the need to analyze the entire structure. We found that for the heterogeneous field used in this study both methods are equivalent.  相似文献   

15.
Although the importance of sustainable soil management is recognized, there are many threats to soils including widespread soil structural degradation. This reduces infiltration through the soil surface and/or the percolation of water through the soil profile, with important consequences for crop yields, nutrient cycling and the hydrological response of catchments. This article describes a broad‐scale modelling approach to assess the potential effect that improved agricultural soil management, through reduced soil structural degradation, may have on the baseflow index (BFI) of catchments across England and Wales. A daily soil–water balance model was used to simulate the indicative BFI of 45 696 thirty‐year model runs for different combinations of soil type, soil/field condition, land cover class and climate which encapsulate the variability across England and Wales. The indicative BFI of catchments was then calculated by upscaling the results by spatial weighting. WaSim model outputs of indicative BFI were within the 95% confidence intervals of the national‐average BFI values given for the Hydrology of Soil Type (HOST ? ) classes for 26 of the 28 classes. At the catchment scale, the concordance correlation coefficient between the BFI from the WaSim model outputs and those derived from HOST was 0·83. Plausible improvements in agricultural soil/field condition produced modest simulated increases of up to 10% in the indicative BFI in most catchments across England and Wales, although for much of southern and northern England the increases were less than 5%. The results suggest that improved soil management might partially mitigate the expected adverse effects of climate change on baseflow to rivers. Healthy, well‐functioning soils produce many additional benefits such as better agricultural yields and reduced pollutant movement, so improved soil management should provide win‐win opportunities for society, agricultural systems and the environment and provide resilience to some of the expected environmental impacts of climate change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The present study assesses the uncertainty of flow and radionuclide transport in the unsaturated zone at Yucca Mountain using a Monte Carlo method. Matrix permeability, porosity, and sorption coefficient are considered random. Different from previous studies that assume distributions of the parameters, the distributions are determined in this study by applying comprehensive transformations and rigorous statistics to on-site measurements of the parameters. The distribution of permeability is further adjusted based on model calibration results. Correlation between matrix permeability and porosity is incorporated using the Latin Hypercube Sampling method. After conducting 200 Monte Carlo simulations of three-dimensional unsaturated flow and radionuclide transport for conservative and reactive tracers, the mean, variances, and 5th, 50th, and 95th percentiles for quantities of interest (e.g., matrix liquid saturation and water potential) are evaluated. The mean and 50th percentile are used as the mean predictions, and their associated predictive uncertainties are measured by the variances and the 5th and 95th percentiles (also known as uncertainty bounds). The mean predictions of matrix liquid saturation and water potential are in reasonable agreement with corresponding measurements. The uncertainty bounds include a large portion of the measurements, suggesting that the data variability can be partially explained by parameter uncertainty. The study illustrates propagation of predictive uncertainty of percolation flux, increasing downward from repository horizon to water table. Statistics from the breakthrough curves indicate that transport of the reactive tracer is delayed significantly by the sorption process, and prediction on the reactive tracer is of greater uncertainty than on the conservative tracer because randomness in the sorption coefficient increases the prediction uncertainty. Uncertainty in radionuclide transport is related to uncertainty in the percolation flux, suggesting that reducing the former entails reduction in the latter.  相似文献   

17.
A statistical model of fracture, based on percolation theory, is presented which allows the quantitative evaluation of clustering of cracks in solids. Unlike models of branching processes which are more in accord with Griffith fracture, the concept of percolation lattices (finite and infinite) is used following from a physical model of multiple fracture.Some experimental results on acoustic emission, dilatancy and geophysical precursors of earthquakes can be correlated with the percolation fracture model. The model does not depend on the mechanism of crack formation, critical parameters being the number of elementary events (cracks), the dimensionality of the process and the coordination number for a network of cracks and, in finite systems, their specific size.Fracture prediction is possible from the number of elementary acts, cluster statistics and other characteristic parameters of the model. Possible applications of the percolation model for earthquake prediction are considered.  相似文献   

18.
19.
鲂胚胎的发育   总被引:7,自引:1,他引:6  
太湖湖区暴雨径流携带有大量的泥沙和土壤有机物质,对河湖水质造成污染,为了定量分析有机污染对太湖水体的影响,分水田和旱地两种土地利用条件,采用数学模型模拟了湖区丰。平,枯典型年的产流,土壤侵蚀和有机物流失过程及年总量。结果表明,湖区土壤侵蚀量和有机物流失量随地表排水强度的增加呈指数形式增大,尤其是每年暴雨期,湖区地表排水中有机物含量显著增大,建议在太湖流域水质规划和治理中加以重视并采取必要防治措施。  相似文献   

20.
A generalized watershed model was used to evaluate the effects of global climate changes on the hydrologic responses of freshwater ecosystems. The Enhanced Trickle Down (ETD) model was applied to W-3 watershed located near Danville, Vermont. Eight years of field data was used to perform model calibration and verification and the results were presented in Nikolaidis et al., (1993). Results from the Goddard Institute for Space Studies (GISS) and the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation models which simulated the doubling of present day atmospheric CO2 scenarios were used to perform the hydrologic simulations for the W-3 watershed. The results indicate that the W-3 watershed will experience increases in annual evapotranspiration and decreases in annual outflow and soil moisture. Stochastic models that simulate collective statistical properties of meteorological time series were developed to generate data to drive the ETD model in a Monte-Carlo fashion for quantification of the uncertainty in the model predictions due to input time series. This coupled deterministic and stochastic model was used to generate probable scenarios of future hydrology of the W-3 watershed. The predicted evapotranspiration and soil moisture under doubling present day atmospheric CO2 scenarios exceed the present day uncertainty due to input time series by a factor greater than 2. The results indicate that the hydrologic response of the W-3 watershed will be significantly different than its present day response. The Enhanced Trickle Down model can be used to evaluate land surface feedbacks and assessing water quantity management in the event of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号