首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
In this paper, the configuration and working mechanism of the recently developed double spherical seismic isolation (DSSI) bearing are introduced in detail. Then, vertical displacement of the DSSI bearing due to sliding on a spherical surface is analyzed. The results from seismic performance testing of the bearing are given, and a numerical analysis of a four span continuous girder bridge is performed. The numerical analysis compares the influence of three different bearing arrangement schemes on the structural seismic response, and the results show that the DSSI bearing is effective in increasing the vertical load bearing capacity, reducing the vertical displacement, and controlling the energy dissipation capacity within a certain range.  相似文献   

2.
An attempt has been made to study the behavior of nailed vertical excavations in medium dense to dense cohesionless soil under seismic conditions using a pseudo-dynamic approach. The effect of several parameters such as angle of internal friction of soil(Φ), horizontal(k_h) and vertical(k_v) earthquake acceleration coefficients, amplification factor(f_a), length of nails(L), angle of nail inclination(α) and vertical spacing of nails(S_v) on the stability of nailed vertical excavations has been explored. The limit equilibrium method along with a planar failure surface is used to derive the formulation involved with the pseudo-dynamic approach, considering axial pullout of the installed nails. A comparison of the pseudo-static and pseudo-dynamic approaches has been established in order to explore the effectiveness of the pseudo-dynamic approach over pseudo-static analysis, since most of the seismic stability studies on nailed vertical excavations are based on the latter. The results are expressed in terms of the global factor of safety(FOS). Seismic stability, i.e., the FOS of nailed vertical excavations is found to decrease with increase in the horizontal and vertical earthquake forces. The present values of FOS are compared with those available in the literature.  相似文献   

3.
Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project, a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks, the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed, and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake, with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface, while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure, local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside, and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs, the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated.  相似文献   

4.
The investigation on damages to frozen soil sites during the West Kunlun Mountains Pass earthquake with Ms 8.1 in 2001 shows that the frozen soil in the seismic area is composed mainly of moraine, alluvial deposit, diluvial deposit and lacustrine deposit with the depth varying greatly along the earthquake rupture zone. The deformation and rupture of frozen soil sites are mainly in the form of coseismic fracture zones caused by tectonic motion and fissures,liquefaction, seismic subsidence and collapse resulting from ground motion. The earthquake fracture zones on the surface are main brittle deformations, which, under the effect of sinlstral strike-slip movement, are represented by shear fissures, tensional cracks and compressive bulges. The distribution and configuration patterns of deformation and rupture such as fissures, liquefaction, seismic subsidence and landslides are all related to the ambient rock and soil conditions of the earthquake area. The distribution of earthquake damage is characterized by large-scale rupture zones, rapid intensity attenuation along the Qinghai-Xizang (Tibet) Highway, where buildings distribute and predominant effect of rock and soil conditions.  相似文献   

5.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

6.
There has been an increasing tendency to adopt the deep borehole technique for seismic observation.This paper deals with the effect of borehole on seismic waves in the deep borehole system and obtains the conclusion that,within the frequency range of seismic waves,the existence of a borehole has no effect on the horizontal component of a three-component seismometer in the borehole and has only a limited effect on the vertical component.To the first approximation,the difference between the borehole record and ground surface record of seismic waves can be attributed to the difference in seismometer deployment. This conclusion would be useful for the integrated utilization of borehole records and ground surface records of seismic waves.  相似文献   

7.
Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing offers excellent properties such as multi-dimensional seismic isolation,reasonable rotation capability,good ability to resist lifting load,uncoupled stiffness in horizontal and vertical directions,etc.In the 3DSIB,the horizontal dimension is designed by combining the Teflon sliding device and helical spring,while the vertical dimension is developed by introducing disk springs or helical springs.The mathematical model of the 3DSIB was established and its performance with the critical parameters was tested on a shaking table.Furthermore,the 3DSIB was applied in a 120 m span hangar structure and simulated using SAP2000 software to evaluate its performance in practical structures.The performance of the structures with and without 3DSIB was compared.It is shown that the hangar structure with 3D bearings achieves a better performance.The axial force and acceleration response of the structures with 3DSIB are effectively reduced,while the displacement response of the bearing is within the predetermined range.  相似文献   

8.
The nearly EW-trending East Kunlun fault zone is the north boundary of the Bayan Har block.The activity characteristics and the position of the eastern end of its eastward extension are of great significance to probing into the dynamic mechanism of formation of the east edge of the Tibetan Plateau,and also lay the foundation for seismic risk assessment of the fault zone.The following results are obtained by analysis based on satellite image interpretation of landforms,surface rupture survey,terrace scarp deformation survey,and terrace dating data on the eastern part of the East Kunlun fault zone:(1)the Luocha segment is a Holocene active fault,where a reverse L-shape paleoearthquake surface rupture zone of about 50 km long is located;(2)the Luocha segment is characterized by left-lateral slip movement under the compression-shear condition since the later period of the Late Pleistocene,with a rate of 7.68–9.37 mm/a and a vertical slip rate of 0.7–0.9 mm/a,which are basically in accord with the activity rate of segments on its west side.The results indicate that it is a part of eastward extension of the East Kunlun fault zone;(3)the high-speed linear horizontal slip of the nearly EW-trending East Kunlun fault zone is blocked by the South China block at east,and transforms into the vertical movement of the nearly SN-NNE trending Minjiang fault zone and the Longmenshan fault zone,and the uplift of Longmenshan and Minjiang.The area where transform of the two tectonic systems occurred confines the position of the east end;(4)Luocha segment and Maqu segment constitute the"Maqu seismic gap",so,seismic risk at Maqu segment is higher than that at Luocha segment,which should attract more attention.  相似文献   

9.
Based on the geodetic data taken from the National GPS Network established by China Climbing Program "Investigation of Crust Motion and Geodynamics in Modern Time",we derived the movement velocities of the GPS sites. In terms of the power series expansion of a rotation function for horizontal velocities on a spherical surface proposed by Haines and Holt (1993), we computed the horizontal velocity and strain-rate field. We preliminarily studied the appearances and characteristics of the present-day crustal movement and deformation in the Chinese mainland with the computed results. The researches demonstrated: ① The present-day crustal movement and deformation in the Chinese mainland are being jointly controlled by Indian, Pacific and Philippines Ocean Plates and Siberia-Mongolia block, and these three large plates and block form a situation of tripartite confrontation, but Indian Plate seems to play a leading role; ② The North-South Earthquake Zone plays an important adjustment role in the present-day crustal movement and deformation process, displaying clear characteristics of demarcation line of tectonics in large areas; ③ There seems to be another adjustment zone along the latitude line approximate N35°, but its characteristics are less obvious than that of the former; ④ Dynamic actions of these three large plates and block on the Chinese mainland are dynamic stable; appearing in stable push-press velocities. These results are generally accorded with the results determined from geology, geophysics, and seismology. By the contrast with seismicities, it appears preliminarily that there is some corresponding relation between intense shear strain zone and future strong seismicity area, but this problem needs further examination of earthquake examples.  相似文献   

10.
Based on the precise reieveling data of more than 260,000 km carried out from 1950 to 1991 in the Chinese mainland,recent crustal vertical movement is studied.By means of some quantitative indices,such as the pattern of crustal vertical movement,the intensity of differential movement,the maximum gradient and its distribution,etc.,the properties of movements are analyzed on a large scale.The results suggest that all the properties have a profound tectonic background of their own and are closely related to the zoning and seismic activity of active subplates.The driving force for the movement comes mainly from the northward push of the India plate acting on the Eurasia plate.The effects of motions of the Pacific and Philippine Sea plates in the east are much less significant.  相似文献   

11.
边坡破坏是累积性过程,从变形到破坏的过程中会产生永久位移,如果永久位移过大,极有可能产生滑坡。因此根据不同工况下采集到的位移数据,分析地震作用下反倾层状岩质边坡在不同内摩擦角下的破坏特征。利用二维数值流形法(NMM),以青藏高原金沙江流域西藏昌都地区芒康县索多西乡贡扎倾倒滑坡为研究对象,依据实地考察数据及室内力学试验得到的物理力学参数,建立数值计算模型,模拟地震作用下反倾层状岩质边坡倾倒破坏过程,并在边坡上布置3组监测点获取位移数据。模拟结果表明:随着内摩擦角的增大,边坡坡体从开始破坏到新的平衡状态和达到最大位移所需的时间越短,同时,滑动块体最大水平位移逐渐减小;内摩擦角<40°时,坡体在前15 s呈整体移动趋势,大部分岩块产生整体滑移,靠近坡顶处的岩块发生轻微转动,推动前面的岩块加速滑动,呈倾倒-滑移模式;内摩擦角>40°时,靠近坡顶的岩块首先产生滑动,并转动驱使前面的岩块,推动坡脚处岩块产生滑动,最终上部岩块达到新的平衡,呈渐进式倾倒破坏,产生整体性破坏的可能性较小。  相似文献   

12.
Large, rapid rockslope failures generate deposits with complex morphologies due to a number of causal and influencing factors. To investigate these, we conducted a detailed case study at the carbonate Tschirgant deposit (Tyrol, Austria). It preserved evidence of simultaneous rock sliding (very large, coherent hummocks) and rock avalanche spreading (smaller, more scattered hummocks and ridges). Motion indicators, such as longitudinal ridges furthermore pinpoint the transition between linear sliding and radial spreading. The lithological distribution in the Tschirgant deposit shows that it retained source stratigraphy despite being split into two accumulation lobes by a high bedrock ridge. Furthermore, lithology had a very strong control on the final deposit morphology in that the different lithologic units form individual deposit surfaces. River erosion has created fortuitous outcrops that reveal the basal rock avalanche contact. The underlying valley‐fill sediments (substrates) have been intricately involved in shaping the rock avalanche morphology and, where entrained, highlight internal rock avalanche deformation features. This study shows that intrinsic dynamic properties of granular media (e.g. tendency for longitudinal alignments), emplacement mode, lithology (and source predisposition), runout path topography, and substrates form the quintet of causal factors that shape rock avalanche morphology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The central focus of this work is to study the processes acting well below the surface of a moving rock or debris avalanche during travel over stationary substrate material. Small‐scale physical models at a linear scale of 1:104 used coal as avalanche analogue material and different granular material simulating sedimentary substrates varying in frictional resistance, thickness and relative basal boundary roughness, as well as inerodible, non‐deformable runout path conditions. Substrate materials with the least frictional resistance showed the greatest response to granular flow overriding, becoming entirely mobilized beneath and ahead of the moving mass and producing the longest runout observed with a unique deposit profile shape. With a smooth substrate basal contact, failure occurred along this plane and avalanche and substrate became coupled during runout. With a rough base, however, temporary force chains of grain contacts in the substrate prevailed longer, imparted their resistance to motion/shear into the granular flow, and the flow rear section consequently halted earlier than when moving over substrates with a weak base. Reducing substrate thickness diminished the effect of basal contact roughness on granular flow runout and deposit length. Inerodible, non‐deformable substrate conditions caused changes in granular flow behaviour from essentially en masse sliding on low‐friction surfaces to increasing granular agitation over rougher paths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Factors influencing the distance a disintegrating rock mass travels as it spreads across the landscape after detaching from a slope include the volume and mechanical properties of the material, local topography and the materials encountered in the runout path. Here we investigate the influence of runout‐path material on the mobility and final morphology of the Round Top rock avalanche deposit, New Zealand. This rock avalanche of mylonitic schist ran out over a planar surface of saturated fluvial gravel. Longitudinal ridges aligned radial to source grade into smaller aligned hummocks and digitate lobes in the distal reach. Soils and river gravels in the runout path are found bulldozed at elongate ridge termini where they formed local obstacles halting avalanche motion at these locations, thus aiding development of prominent elongate ridges on the deposit. Further travel over the disrupted substrate led to avalanche–substrate mixing at the base of the debris mass. Field observations combined with subsurface geophysical investigations and laboratory analogue models illustrate the processes of substrate deformation features at the Round Top rock avalanche. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
2022年1月8日,青海省门源县发生MS6.9地震,造成震中附近的兰新高铁大梁隧道受损,导致高铁长时停运。文章通过建立二维平面应变模型,加载双向门源波进行动力时程分析,得到了大梁隧道的地震动响应结果,并对模型在震后的受力变形及震害特征进行详细分析。结果表明:在门源波双向加载下,大梁隧道的地震动响应受水平地震荷载影响很大;沿着y轴正向,隧道的截面形状对纵向位移和加速度的地震动响应有加强作用;拱顶处地震动响应最大,其竖向及横向地震动响应加速度分别为5.206 4 m/s2、4.534 8 m/s2,竖向及横向位移分别为7.070 9 cm、0.641 5 cm;拱底处地震动响应最小,其竖向及横向地震动响应加速度分别为3.287 6 m/s2、4.511 2 m/s2,竖向及横向位移分别为4.851 6 cm、0.625 2 cm;拱肩、拱脚处存在明显的应力集中现象,拱顶、拱底、拱肩及拱脚处内力的受力形式发生变化,但是衬砌应力和内力的极值均发生在拱腰及拱脚处,说明拱腰及拱脚处为震害严...  相似文献   

16.
层状结构岩质边坡动力稳定性试验研究   总被引:8,自引:0,他引:8  
介绍了所进行的层状结构岩质边坡动力稳定性试验。结果表明,在水平地震动加速度达到0.4g时,层状结构岩质边坡就会出现局部的层间错动现象,当水平地震加速度达到0.8g时,层间结合力较弱的边坡将发生大面积的表面滑动和崩塌。而在铅直地震力作用下,当地震加速度达到1.0g时,才会出现破坏现象。因而对层状结构岩质边坡来说,其水平地震力造成的危害是主要的。  相似文献   

17.
Vertical electric sounding, bottom temperature of winter snowcover (BTS) and ground thermal measurement, debris surface analysis and a differential global positioning system (DGPS) survey were performed on the Posets rock glacier (Pyrenees) between 2001 and 2008. High precision records of horizontal and vertical movements of the rock glacier were measured using a DGPS on ten steel rods. Total and annual average displacements and thickness changes for each control point were derived from the field survey. Horizontal and vertical displacement rates in different sectors of the rock glacier were compared, and these compared with thermal, structural and morphological maps. The inferred surface deformation was characterized by extensional and compressive flows in which two dynamic types were found. The first type of movement is defined by the slide and flows related to the existence of an ice body over the frost body. The second dynamic type involved the displacement generated by deformation of the frozen body. The study attempts to understand the surface movement and dynamics of rock glaciers in marginal cold environments and their usefulness as environmental geoindicators. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Over 30 samples from bedrock and boulders from the Veliki vrh rock avalanche have been collected for surface exposure dating. The limestone rocks have been radiochemically treated to isolate and determine long-lived 36Cl by accelerator mass spectrometry. It could be shown that the Veliki vrh rock avalanche from the Košuta Mountain (Slovenia) event can be very likely linked to one of the major historical earthquakes in Europe happening on the 25th of January 1348. Taken into account independently determined denudation rates, inherited 36Cl originating from pre-exposure at shallow depths (20–55 m) could be calculated. The high amount of inherited 36Cl, i.e. 17–46% of the total 36Cl, makes this site not suitable for a precise determination of the 36Cl production rate as it was originally anticipated. Veliki vrh is a “classic” rock avalanche of high velocity. The slope failed in the upper part with a translational slide predominantly along the bedding planes, whereas dynamic fragmentation is the cause for further crushing of the material and the long runout.  相似文献   

19.
垂直向地震作用对节理岩体失稳破坏的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
基于线弹性断裂力学理论分析了垂直向地震作用对节理岩体地震动力破坏的影响。在仅考虑峰值时,最不利的单向地震动加速度方向是水平倾向坡外,双向则依据破裂机制是拉剪或压剪,加速度分别是水平倾向坡外与向下或向上的组合。地震动的幅值、作用方向及双向地震动的组合都可使岩体的破坏机制发生转化,并且是突变的、不可逆的。较低峰值的双向地震动产生的应力强度因子可能大于较高峰值的单向地震动所产生的应力强度应子。在岩体节理分布特征和静态应力场一定的初始条件下,第一个导致岩体中产生破裂的地震动加速度幅值及其方向的组合唯一地决定了岩体不可逆破坏发展的方向、机制及最终的破坏特征,其复杂性远大于静力作用时的情况。对岩体地震动力破坏问题的认识应充分考虑垂直向地震动的重要影响。  相似文献   

20.
This paper examines in terms of seismic performance, the effectiveness of anchor reinforcement against gravity retaining walls used to stabilize a dry homogenous fill slope in earthquake-prone environment. Both analyzed stabilizing measures have the same design yield acceleration estimated from a limit equilibrium approach. The earthquake-induced displacements are calculated using a sliding block formulation of the equation of motion. Sliding failure along the base of the gravity retaining wall and rotational failure of the soil active wedge behind the wall, as well as rotational failure of the slide mass of the anchor-reinforced slope were considered in the present formulation. For the specific characteristics of the analyzed fill slope and input horizontal ground motion, the slope reinforced with anchors appears to experience vertical and horizontal seismic displacements at slope crest smaller by 12% and respectively, 32% than the vertical and horizontal earthquake-induced deformations estimated at the top of the active wedge behind the gravity retaining wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号