首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A complete landslide inventory and attribute database is the importantly fundamental for the study of the earthquake-induced landslide. Substantial landslides were triggered by the MW7.9 Wenchuan earthquake on May 12th, 2008. Google Earth images of pre- and post-earthquakes show that 52 194 co-seismic landslides were recognized and mapped, with a total landslides area of 1 021 km2.Based on the statistics,we assigned all landslide parameters and established the co-seismic landslides database, which includes area, length, and width of landslides, elevation of the scarp top and foot edge, and the top and bottom elevations of each located slope. Finally, the spatial distribution and the above attribute parameters of landslides were analyzed. The results show that the spatial distribution of the co-seismic landslides is extremely uneven. The landslides that mainly occur in a rectangular area (a width of 30 km of the hanging wall of the Yingxiu-Beichuan fault and a length of 120 km between Yingxiu and Beichuan) are obviously controlled by surface rupture, terrain, and peak ground acceleration. Meanwhile, a large number of small landslides (individual landslide area less than 10 000 m2)contribute less to the total landslides area. The number of landslides larger than 10 000 m2 accounts for 38.7% of the total number of co-seismic landslides, while the area of those landslides account for 88% of the total landslides area. The 52 194 co-seismic landslides are caused by bedrock collapse that usually consists of three parts:source area, transport area, and accumulation area. However, based on the area-volume power-law relationship, the resulting regional landslide volume may be much larger than the true landslide volume if the landslide volume is calculated using the influenced area from each landslide.  相似文献   

2.
The 1927 Gulang M8.0 earthquake has triggered a huge number of landslides, resulting in massive loss of people''s life and property. However, integrated investigations and results regarding the landslides triggered by this earthquake are rare; such situation hinders the deep understanding of these landslides such as scale, extent, and distribution. With the support of Google Earth software, this study intends to finish the seismic landslides interpretation work in the areas of Gulang earthquake (VIII-XI degree) using the artificial visual interpretation method, and further analyze the spatial distribution and impact factors of these landslides. The results show that the earthquake has triggered at least 936 landslides in the VIII-XI degree zone, with a total landslide area of 58.6 km2. The dense area of seismic landslides is located in the middle and southern parts of the X intensity circle. Statistical analysis shows that seismic landslides is mainly controlled by factors such as elevation, slope gradient, slope direction, strata, seismic intensity, faults and rivers. The elevation of 2 000-2 800 m is the high-incidence interval of the landslide. The landslide density is larger with a higher slope gradient. East and west directions are the dominant sliding directions. The areas with Cretaceous and Quaternary strata are the main areas of the Gulang seismic landslides. The X intensity zone triggered the most landslides. In addition, landslides often occur in regions near rivers and faults. This paper provides a scientific reference for exploring the development regularities of landslides triggered by the 1927 Gulang earthquake and effectively mitigating the landslide disasters of the earthquake.  相似文献   

3.
Distribution of Landslides in Baoshan City, Yunnan Province, China   总被引:1,自引:1,他引:0  
Using Google Earth software as a platform, this study has established an integrated database of both old and new landslides in Baoshan City, Yunnan Province, China, and analyzed their development characteristics together with distribution rules, respectively. Based on the results, a total of 2 427 landslides occurred in the study area, including 2 144 new landslides and 283 old landslides, with a total area of about 104.8 km2. The new landslides are mostly in small-scales with an area less than 10 000 m2, while the area of individual old landslide is mostly larger than 10 000 m2. By analyzing the relationship between the two types of landslides and eight impact factors (i.e., elevation, slope angle, slope aspect, slope position, lithology, fault, regional Peak Ground Acceleration (PGA), and average annual rainfall), the different individual influencing factors, distribution regularities and mechanisms of the two types of landslides are revealed. In detail, the main influencing factors of new landslides are elevation, slope angle, slope aspect, slope position, lithology, regional PGA and average annual rainfall, while the influencing factors of old landslides are mainly elevation, slope angle, and lithology. This study provides basic data and support for landslide assessment and further disaster reduction in Baoshan City. Besides, it also provides new constraints in deeply understanding the effect of different topographic and geological conditions, historical earthquakes, rainfall and other factors on the occurrence mechanisms of both new landslides and old landslides.  相似文献   

4.
Accurate volume calculation of each individual landslide triggered by strong historical earthquakes can help understand the characteristics of the typical earthquake-induced landslides, thus providing significant information for the modification of the focal parameters of historical earthquakes. In this study, we select one rock fall and three loess landslides triggered by the 1556 AD Huaxian M8 1/2 earthquake, compute their volumes using the low-altitude high-precision Unmanned Aerial Vehicle (UAV) photogrammetry and landslide profile restoration methods. The results show that:① the whole influencing area of the Huangjiagou Rock Fall is approximately 3.03×105 m2 and the area of the collapsed rock accumulated at the slope foot is 3.33×104 m2, accounting for approximately 10% of the entire influencing range. However, the estimated volume of the collapsed rock is only 0.699×106 m3, indicating a rock fall with large influencing range but limited collapsed rock; ② the geological form of thethree loess landslides are preserved intactly, with volumes of 0.283×108 m3, 0.074×108 m3, and 0.377×108 m3. These important geological hazard relics reflect the strong vibrations and severe casualties in the meizoseismal area; ③ loess landslides are the key reason of the serious death toll in the hilly-gully loess area. Our new method can be used to estimate the influencing area and the actual volume of each individual landslide, and rationally evaluate the role of earthquake landslides in the disaster. In addition, quantitative research on secondary disasters triggered by strong historical earthquakes is beneficial for understanding the surface process and focal parameters of the earthquakes.  相似文献   

5.
SBAS-InSAR technology is characterized by the advantages of reducing the influence of terrain-simulation error, time-space decorrelation, atmospheric error, thereby improving the reliability of surface-deformation monitoring. This paper studies the early landslide identification method based on SBAS-InSAR technology. Selecting the Jiangdingya landslide area in Zhouqu County, Gansu Province as the research area, 84 ascending-orbit Sentinel-1A SAR images from 2015 to 2019 are collected. In addition, using SBAS-InSAR technology, the rate and time-series results of surface deformation of the landslide area in Jiangdingya during this period are extracted, and potential landslides are identified. The results show that the early landslide identification method based on SBAS-InSAR technology is highly feasible and is a better tool for identifying potential landslides in large areas.  相似文献   

6.
Rainfall-induced landslides have occurred frequently in Southwestern China since the Wenchuan earthquake,resulting in massive loss of people''s life and property. Fortunately,landslide early-warning is one of the most important tools for landslide hazard prevention and mitigation. However, the accumulation of historical data of the landslides induced by rainfall is limited in many remote mountain areas and the stability of the slope is easily affected by human engineering activities and environmental changes, leading to difficulties to accurately realize early warning of landslide hazards by statistical methods. The proposed warning method is divided into rainfall warning component and deformation warning component because the deformation induced by rainfall has the characteristic of hysteretic nature. Rainfall, tilted angle and crack width are chosen as monitoring indexes. Rainfall grade level that contains rainfall intensity and duration information is graded according to the variation of the safety factor calculated by 3-D finite difference numerical simulation method, and then is applied using the strength reduction method and unascertained information theory to obtain the deformation grade level of several monitored points. Finally, based on the system reliability theory, we establish a comprehensive landslide warning level method that provides four early warning levels to reflect the safety factor reductions during and post rainfall events. The application of this method at a landslide site yield generally satisfactory results and provide a new method for performing multi-index and multi-level landslide early warnings.  相似文献   

7.
Analyzing the spatial distribution characteristics of earthquake-induced secondary disasters based on advanced techniques is significantly important, especially in understanding the process of strong earthquakes in the Loess Pateau. Using ArcGIS, this study interprets multi-temporal high-resolution satellite images, field investigation data, and historical seismic records. Major conclusions are obtained as follows:① Landslides induced by the Haiyuan earthquake are mainly distributed in the intersection area of the end of the Haiyuan fault and Liupanshan fault, as indicated by multiple dense distribution centers; ② The landslide distribution of the Haiyuan Earthquake is determined by the distance to the fault, topographic relief, slope, lithology, and other factors. In detail, the closer the distance to the fault, the greater the density of the landslide. The greater the slope and relief of the terrain, the greater the density and the smaller the average area of a landslide. Compared with tertiary strata, Quaternary strata has a larger average area, and the density of the landslides is smaller; ③ The density curve of the death toll in the Haiyuan earthquake can be used as a reference for the distribution of co-seismic landslides. Several Haiyuan co-seismic landslides are distributed in the Tongwei landslide area; however, the major landslides here are induced by the 1718 Tongwei earthquake rather than the 1920 Haiyuan earthquake; ④ The co-seismic landslides of the Haiyuan earthquake exhibits the "slope effect" in the south-west plate of Haiyuan fault, presenting the dominant sliding direction towards the fault and epicenter; however, the "slope effect" is not evident in the northeast plate of the fault.  相似文献   

8.
The quantitative calculation of the volume of large earthquake-triggered landslides and related dammed lake sediments is of great significance in the study of secondary disasters and focal parameters of strong historical earthquakes. In this study, the dammed lake induced by Qishan M7 earthquake (Lingtai County, Gansu Province, Northwest China) is selected as the research object. Based on the information collected from the 4 boreholes in the dammed lake area, we further take advantage of the low-level Unmanned Aerial Vehicle (UAV) photogrammetry and the morphology recovery method,to calculate the volume of the dammed lake and landslides, respectively. Finally, major conclusions are obtained as follows:① the AMS-14C age at the bottom of the Qiuzigou Dammed Lake sediments is 2 890±30 BP, which coincides with the 780 BC Qishan earthquake; furthermore, the Qiuzigou Landslides seem to have been triggered by the earthquake, forming an enclosed dammed lake deposition environment after the upstream sediments accumulate;② the Qiuzigou landslides are opposite-sliding landslides that have blocked the river valley; in detail, landslide volumes at the right and left banks are 235×104 m3 and 229×104 m3, respectively. The length of the dammed lake is 2.6 km, with a thickness of approximately 43 m near the landslides, and the total sedimentary volume is 573×104 m3; ③the erosion rate of Qiuzigou Landslide Dammed Lake is 0.44 mm/a, the accumulation rate is 15.05 mm/a, and the soil erosion modulus is 593 t/(km2/a), characterized as slight erosion. Quantitative research on the formation of landslides and dammed lakes from strong historical earthquakes is vital for increasing our understanding of the vibrational characteristics and surface action processes of these types of earthquakes.  相似文献   

9.
Earthquake is one of the main causes of high-speed and long-runout landslides. Generally, the heat generated in the sliding zone is significant in such devastating landslides. In this study, we establish a two dimensional slope model which includes 0.2 million elements to simulate the development of high speed and long-runout landslides using the discrete element software MatDEM. The model not only suggests that heat is produced by friction and fracturing, but also simulates the process of tension generation in cracks and the generation of a high heat zone near the sliding region. Besides, the heat field graph indicates a banded high heat belt that is related to the location of the thickest sliding body. The logarithms of the total calorific value and the highest value in the heat zone during the sliding process are linearly related to the logarithm of the landslide height.  相似文献   

10.
The 2013-04-20 Lushan earthquake(seismic magnitude Ms 7.0 according to the State Seismological Bureau)induced a large number of landslides.In this study,spatial characteristics of landslides are developed by interpreting digital aerial photography data.Seven towns near the epicenter,with an area of about 11.11 km2,were severely affected by the earthquake,and 703 landslides were identified from April 24,2013 aerial photography data over an area of 1.185 km2.About 55.56% of the landslide area was less than 1000 m2,whereas about 3.23 % was more than 10,000 m2.Rock falls and shallow landslides were the most commonly observed types in the study area,and were primarily located in the center of Lushan County.Most landslide areas were widely distributed near river channels and along roads.Five main factors were chosen to study the distribution characteristics of landslides:elevation,slope gradients,fault,geologic unit and river system.The spatial distribution of coseismal landslides is studied statistically using both landslide point density(LPD),defined as the number of landslides(LS Number)per square kilometer,and landslide area density(LAD),interpreted as the percentage of landslides area affected by earthquake.The results show that both LPD and LAD have strong positive correlations with five main factors.Most landslides occurred in the gradient range of 40°-50° and an elevation range of 1.0-1.5 km above sea level.Statistical results also indicate that landslides were mainly formed in soft rocks such as mudstone and sandstone,and concentrated in IX intensity areas.  相似文献   

11.
The MS7.0 Jiuzhaigou earthquake in Sichuan Province of 8 August 2017 triggered a large number of landslides. A comprehensive and objective panorama of these landslides is of great significance for understanding the mechanism, intensity, spatial pattern and law of these coseismic landslides, recovery and reconstruction of earthquake affected area, as well as prevention and mitigation of landslide hazard. The main aim of this paper is to present the use of remote sensing images, GIS technology and Logistic Regression(LR)model for earthquake triggered landslide hazard mapping related to the 2017 Jiuzhaigou earthquake. On the basis of a scene post-earthquake Geoeye-1 satellite image(0.5m resolution), we delineated 4834 co-seismic landslides with an area of 9.63km2. The ten factors were selected as the influencing factors for earthquake triggered landslide hazard mapping of Jiuzhaigou earthquake, including elevation, slope angle, aspect, horizontal distance to fault, vertical distance to fault, distance to epicenter, distance to roads, distance to rivers, TPI index, and lithology. Both landsliding and non-landsliding samples were needed for LR model. Centroids of the 4834 initial landslide polygons were extracted for landslide samples and the 4832 non-landslide points were randomly selected from the landslide-free area. All samples(4834 landslide sites and 4832 non-landslide sites)were randomly divided into the training set(6767 samples)and validation set(2899 samples). The logistic regression model was used to carry out the landslide hazard assessment of the Jiuzhaigou earthquake and the results show that the landslide hazard assessment map based on LR model is very consistent with the actual landslide distribution. The areas of Wuhuahai-Xiamo, Huohuahai and Inter Continental Hotel of Jiuzhai-Ruyiba are high hazard areas. In order to quantitatively evaluate the prediction results, the trained model calculated with the training set was evaluated by training set and validation set as the input of the model to get the output results of the two sets. The ROC curve was used to evaluate the accuracy of the model. The ROC curve for LR model was drawn and the AUC values were calculated. The evaluation result shows good prediction accuracy. The AUC values for the training and validation data set are 0.91 and 0.89, respectively. On the whole, more than 78.5% of the landslides in the study area are concentrated in the high and extremely high hazard zones. Landslide point density and landslide area density increase very rapidly as the level of hazard increases. This paper provides a scientific reference for earthquake landslides, disaster prevention and mitigation in the earthquake area.  相似文献   

12.
本文以天水地区为研究区,结合地震潜在震源区模型和Newmark位移预测方程,采用概率地震危险性分析方法,计算了该地区50年超越概率10%水平下的Newmark位移。同时,根据天水地区50年超越概率10%下的阿里亚斯烈度,并结合Newmark位移与阿里亚斯烈度的关系式,计算了天水地区在遭受50年超越概率10%下的阿里亚斯烈度影响时,潜在滑坡体产生的Newmark位移分布。通过比较上述两种方法得到的天水地区不同Newmark位移的分布特征,本文认为二者虽然存在较大差异,但其空间分布特征均能反映天水地区每个场点处的相对滑坡危险性。对滑坡危险性水平进行分区的结果显示,天水地区60%以上的区域具有高地震滑坡危险性,50%以上的区域具有甚高地震滑坡危险性。本文的研究结果可以作为天水地区地震危险性及风险评估的参考资料,也可以作为天水地区城市规划、土地使用规划、地震应急准备以及其它公共政策制定的参考资料。   相似文献   

13.
Landslides threaten lives and property throughout the United States, causing in excess of $2 billion in damages and 25–50 deaths annually. In regions subjected to urban expansion caused by population growth and/or increased storm intensities caused by changing climate patterns, the economic and society costs of landslides will continue to rise. Using a geographic information system (GIS), this paper develops and implements a multivariate statistical approach for mapping landslide susceptibility. The presented susceptibility maps are intended to help in the design of hazard mitigation and land development policies at regional scales. The paper presents (a) a GIS‐based multivariate statistical approach for mapping landslide susceptibility, (b) several dimensionless landslide susceptibility indexes developed to quantify and weight the influence of individual categories for given potential risk factors on landslides and (c) a case study in southern California, which uses 11 111 seismic landslide scars collected from previous efforts and 5389 landslide scars newly digitized from local geologic maps. In the case study, seven potential risk factors were selected to map landslide susceptibility. Ground slope and event precipitation were the most important factors, followed by land cover, surface curvature, proximity to fault, elevation and proximity to coastline. The developed landslide susceptibility maps show that areas classified as having high or very high susceptibilities contained 71% of the digitized landslide scars and 90% of the seismic landslide scars while only occupying 26% of the total study area. These areas mostly have ground slopes higher than 46% and 2‐year, 6‐hour precipitation greater than 51 mm. Only 12% of digitized landslides and less than 1% of recorded seismic landslides were located in areas classified as low or very low susceptibility, while occupying 42% of the total study region. These areas mostly have slopes less than 27% and 2‐year, 6‐hour precipitation less than 41 mm. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
汶川地震滑坡危险性评价——以武都区和文县为例   总被引:1,自引:0,他引:1       下载免费PDF全文
利用GIS技术详细研究汶川地震在甘肃省陇南市武都区和文县触发的滑坡地质灾害的分布规律及其与地震烈度、地形坡度、断层、高程、地层岩性的相关关系,采用基于GIS的加权信息量模型的崩塌滑坡危险性评价方法,对研究区的地震滑坡危险性进行学科分析。结果表明:极高危险区在高程上主要分布在集水高程区,高度危险区主要沿白水江、白龙江等主干河流两侧极高易发区的边界向两侧扩展,轻度和极轻度危险区面积占比较小,主要分布在低烈度、活动断裂不发育、人类活动微弱的高海拔地区,另外国道G215沿极高危险性区域分布明显;利用危险性等级分区结果统计人口公里格网数据,得到武都区和文县潜在影响人口,发现研究区约78万人将受到地震滑坡灾害的潜在影响。  相似文献   

15.
工程场地地震安全性评价、特别是在地震小区划工作中,对地震滑坡的评价通常采用定性分析方法,因此,对其影响范围未给出定量的评价结果。本文以吕梁新城地震小区划滑坡评价为例,通过对该区的地质条件、地貌特征的研究,针对具有典型特征的剖面,选取地震力、内聚力、摩擦角作为影响因子,采用离散单元法(DEM)对潜在滑坡体的稳定性进行了数值模拟计算,得到了可能失稳的滑坡体潜在滑动的影响范围。并在此基础上通过对已知滑坡与潜在滑坡剖面结构特征的类比,对整个研究区内滑坡体的影响范围进行了评价。研究结果可为吕梁新城的规划提供依据,也可为同类工程中地震滑坡灾害的定量评价提供参考。  相似文献   

16.
潜在地震滑坡危险区区划方法   总被引:5,自引:0,他引:5       下载免费PDF全文
不同地区地震活动的强度和频率是不同的.基于地震危险性分析的地震滑坡危险研究在综合了地震烈度、位置、复发时间等因素的基础上,考虑了地震动峰值加速度时空分布的特点,可以有效地应用于潜在地震滑坡危险区区划.以汶川地震灾区为研究对象,根据研究区的地质构造、地震活动特点等划分出灾区的潜在震源区,对该区进行地震危险性分析,并在此基础上采用综合指标法做出基于地震危险性分析的地震滑坡危险性区划.所得地震滑坡危险性区划按照滑坡危险程度分为高危险、较高危险、较低危险和低危险四级,表示未来一段时间内研究区在遭受一定超越概率水平的地震动作用下,不同地区地震滑坡发生的可能程度. 本文给出的地震滑坡危险性区划结果中,汶川地震滑坡崩塌较发育的汶川、北川、茂县等部分区域均处于高危险或较高危险区域;在对具有较高DEM精度的北川擂鼓镇地区所作的地震滑坡危险性区划中,汶川地震中实际发生的地震滑坡灾害与地震滑坡危险区划结果表现出较好的一致性.对区域范围而言,基于地震危险性分析的地震滑坡区划,可为初期阶段的土地规划使用及重大工程选址提供参考.  相似文献   

17.
GIS支持下的地震诱发滑坡危险区预测研究   总被引:24,自引:0,他引:24  
唐川  朱静  张翔瑞 《地震研究》2001,24(1):73-81
为了满足对地震诱发滑坡危险区预测的不断增长的迫切要求,灾害评价成为帮助决策过程重要的基础工具之一。即使地震滑坡危险性各组份的评价很困难,但地理信息可辅助提出这种灾害制图的有关方法。描述了用于地理信息系统识别和定量计算不同地震滑坡危险区的技术方法,确定了地震烈度、地形坡度、岩土体类型和现存滑坡密度共4个因子参与的地震诱发滑坡危险性分析。在ARC/INFO DRID支持下,进行叠合分析,由此编制了云南省地震诱发滑坡危险区预测图。由地貌学家提出的地震诱发滑坡预测为规划和工程师提供了对区域规划和建筑工程有价值的技术方法。  相似文献   

18.
This study constructs a preliminary inventory of landslides triggered by the MS 6.8 Luding earthquake based on field investigation and human-computer interaction visual interpretation on optical satellite images. The results show that this earthquake triggered at least 5 007 landslides, with a total landslide area of 17.36 ?km2, of which the smallest landslide area is 65 ?m2 and the largest landslide area reaches 120 747 ?m2, with an average landslide area of about 3 500 ?m2. The obtained landslides are concentrated in the IX intensity zone and the northeast side of the seismogenic fault, and the area density and point density of landslides are 13.8%, and 35.73 ?km?2 peaks with 2 ?km as the search radius. It should be noted that the number of landslides obtained in this paper will be lower than the actual situation because some areas are covered by clouds and there are no available post-earthquake remote sensing images. Based on the available post-earthquake remote sensing images, the number of landslides triggered by this earthquake is roughly estimated to be up to 10 000. This study can be used to support further research on the distribution pattern and risk evaluation of the coseismic landslides in the region, and the prevention and control of landslide hazards in the seismic area.  相似文献   

19.
陈帅  苗则朗  吴立新 《地震学报》2022,44(3):512-527
地震滑坡危险性评估可为震后应急响应等提供科学的决策依据。纽马克位移法可不依赖同震滑坡编目快速评估同震滑坡危险性。工程岩体物理力学参数是该方法的核心参数之一,但其赋值过于单一,难以反映复杂地质背景下岩体强度的空间差异性。针对上述问题,本文在分析地震滑坡影响因子的基础上,选择距断层距离、高程和距水系距离作为影响岩体强度的评价指标并建立岩体强度评价模型,获得区域岩体强度修正系数,进而修正传统方法的临界加速度。结合震后的即时地震动峰值加速度,采用简化纽马克位移法计算边坡累积位移,开展地震滑坡危险性快速评估,并以汶川MW7.9地震的地震滑坡危险性评估为例验证本文方法。结果表明,相对于传统方法,本文方法划分的地震滑坡危险区与同震滑坡分布更加一致。   相似文献   

20.
地震滑坡是最常见的地震次生地质灾害之一,不仅带来环境恶化,通常还造成严重的人员伤亡和财产损失,因此备受关注。为了解地震滑坡研究发展趋势,凝练地震滑坡定量评估科学问题,文章对区域地震滑坡定量评估起源、发展现状、存在的问题及未来发展进行了系统总结。研究结果表明:(1)区域地震滑坡灾害定量评估研究兴起于20世纪80年代,经过50多年学者的不懈努力,取得了丰硕的成果。区域地震滑坡灾害定量评估研究面临着新的社会需求。(2)地震滑坡是地震动力、地质特征和地貌条件等多因素耦合作用的结果,地震滑坡现象只有考虑成因机理与动力过程方可解释,地震滑坡成因机理研究主要集中于强震条件下斜坡的动力响应规律分析。(3)地震滑坡发育特征、成因机理以及数据库建设等基础研究推动了地震滑坡灾害风险定量评估研究。区域地震滑坡灾害风险定量评估包括地震滑坡危险性定量评估、地震滑坡易损性定量评估、地震滑坡危害性定量评估等内容。(4)在区域地震滑坡灾害定量评估方面,还需要进一步探索区域地震滑坡灾害形成的系统性和时空分布规律性、改进和完善区域地震滑坡灾害风险定量评估方法、开拓区域地震滑坡灾害防治战略规划。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号